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1 Introduction

Matrix models have been considered as constructive definition of quantum gravity. Rel-

atively simple one- and two-hermitian matrix models have been solved exactly and pro-

vide nonperturbative formulation of two-dimensional Euclidean quantum gravity coupled

to c < 1 conformal matters [4–10]. Yang-Mills types of matrix models with fermionic

symmetry have been proposed as nonperturbative formulation of string/M theory [11–

14]. Each of them is given as a lower dimensional reduction of maximally supersymmetric

Yang-Mills theory and have not yet been solved exactly as in the case of two-dimensional

quantum gravity.
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The large-N renormalization group (RG) method proposed by Brezin and Zinn-

Justin [15] is an analytic approach to investigate critical behavior of such a matrix model

in the large-N limit. For simple one- or two-hermitian matrix models where exact results

are available, it has been shown that large-N RG analysis captures critical behavior of the

models, first qualitatively [15] and later even quantitatively with the help of Schwinger-

Dyson equations [16–19].

Though the original motivation of this large-N RG method is to analyze models that

we cannot solve exactly, and to find a way to overcome the so-called c = 1 barrier, the

actual application has not been explored much so far.1 In the past decades, the focus

of the study on large-N matrix models as quantum gravity has been shifted to reduced

supersymmetric Yang-Mills type matrix models as mentioned above. There have been lots

of study on these models (see e.g. [22–27]), including very impressive numerical studies

(e.g. [28]), but it is of course very plausible if we can develop an analytic approach to

dissect such models. One of the characteristics of these “new” matrix models is that the

matrix elements have direct physical interpretation; for example, they are often interpreted

as positions of D-branes and open strings connecting them. On the other hand, in the

case of matrix models for Euclidean D < 2 quantum gravity, the matrices are technical

tools to sum up random surfaces with spin degrees of freedom that give rise to conformal

matters. Thus, the large-N RG method proposed by Brezin and Zinn-Justin somehow

inherits this nature; namely, there are no criteria on which matrix elements are to be

integrated out. On the other hand, in the modern interpretation, we may want to attribute

some physical meaning to matrix elements, and formulate large-N RG based on this. With

this motivation, together with D. Tomino, we have formulated a large-N RG by using

the fuzzy spherical harmonics [29–32]. The fuzzy spherical harmonics are an analogue

of the standard spherical harmonics, and they span a basis on which general hermitian

matrices can be expanded. Thus, there appears a clear notion of high/low energy modes

for expansion coefficients. We can in this way formulate the large-N RG, and have shown

that they enjoy several nice properties such as locality and derivative expansion of double

trace terms. We also find Gaussian and non-Gaussian fixed points, and discuss their

properties. However, we have also faced a difficulty that originates in a noncommutative

nature of the geometry; it is embodied as emergence of new nonlocal interactions between

fields on antipodal points on the fuzzy sphere. In the previous work, we carry out the RG

analysis by dropping these antipodal interactions. In this paper, we come back to this issue

and present more complete treatment of RG analysis.

In the following subsection, we start our discussion with what we have done in the

previous paper and what we want to do in this paper.

1.1 Large-N renormalization group based on fuzzy spherical harmonics

We first review the basic formulation of the large-N RG based on the fuzzy spherical

harmonics.2 We then describe its intriguing aspects that have been observed in the previ-

ous study [1].

1One may see [20, 21] for some trials.
2Here only basics which are necessary to explain the problems are presented. More detailed explanation

is provided later.
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We start with a matrix model that describes φ4 scalar field theory on a fuzzy S2 of

radius ρN ,3

SN =
ρ2N
N

trN

(

− 1

2ρ2N
[Li, φ]

2 +
m2

N

2
φ2 +

κ
(0)
N

4
φ4

)

, (1.1)

where N denotes the size of the hermitian matrix φ, Li is the generator of the SU(2) in the

spin L representation with N = 2L+ 1, and m2
N and κ

(0)
N are the mass (squared) and the

coupling constant respectively.4 φ is expanded by use of N ×N fuzzy spherical harmonics

matrices,

φ =
2L
∑

l=0

l
∑

m=−l

φlmTlm. (1.2)

The maximum of the angular momentum 2L is related to the size of the matrix N as

N = 2L + 1. The expansion coefficients φlm are considered to be dynamical degrees of

freedom in field theory of φ, and thus there exists a clear notion of “high energy” modes.

The large-N RG transformation is defined by integrating over 2L+1 number of maximum

angular momentum modes, φ2Lm with −L ≤ m ≤ L. This can be carried out by usual

perturbation theory, and it generates trφ2 and trφ4 terms (of the reduced size). Upon a

suitable change of the matrix basis, these changes can be absorbed into the mass and the

coupling constant. This is an analogue of Wilsonian RG flow, and we can find Gaussian

as well as non-Gaussian fixed points in the previous study [1]. In fact, this procedure can

also be regarded as the Wilsonian RG of a scalar field theory on the fuzzy sphere. We also

examined linearized RG transformation around the fixed points and calculated the scaling

dimensions of operators at the fixed points as its eigenvalues. Various large-N limits with

different noncommutativity respected are also argued.

The perturbative calculation of the RG transformation also generates various terms

that are not present in the starting action (1.1); up to O
(

(κ
(0)
N )2

)

we considered, it includes

trNφ6 term and also double trace terms. It turns out that in the low energy regime l ≪ L

these terms are either negligible or can be rewritten as a series of single trace operators

with derivatives (commutators with Li’s) which are suppressed in 1/N . Namely, it has been

observed that the corrections are controlled as in the case of usual Wilsonian RG analysis.

However, it is found that there appears another type of correction terms that does not

present in the usual Wilsonian RG. Let us consider the following simplest example,

trN
〈

φφoutφφout
〉

∝
2L−1
∑

l=0

l
∑

m=−l

(−1)lφlmtrN
(

φTlm

)

[

1 +O
(

1

L

)]

, (1.3)

where φout =
∑

m φ2LmT2Lm is the highest momentum mode to be integrated out and the

other two φ are low energy modes with l < 2L. The expectation value means that φout

3In appendix A, we summarize the basic properties of the fuzzy sphere and also construction of the

matrix model for scalar field theory on it.
4In [1], κ

(0)
N was called gN . In this paper, the symbol gN is reserved for other combinations of the

coupling constants. In later sections, κ
(0)
N stands for the coupling constant for the same operator trNφ4.

– 3 –



J
H
E
P
0
6
(
2
0
1
5
)
0
6
2

are contracted by use of the tree level propagator. 1/L corrections can be expressed as

derivatives on φ, but it is sufficient to look at the leading term for the current purpose. If

(−1)l is absent, the leading term is simply trNφ2, but it cannot be organized in that way

due to this phase factor. Inspired by the parity property of the spherical harmonics,

Ylm(θ, ϕ) = (−1)lYlm(π − θ, ϕ+ π) , (1.4)

we may include the phase factor by the definition of a new matrix,

φA =
∑

l,m

(−1)lφlmTlm , (1.5)

and call it an antipode matrix, or an antipode field on the fuzzy sphere,5 as the afore-

mentioned property implies that this field resides at the antipodal point on S2. Thus, the

leading term is written as trN (φφA), which can be seen as the most nonlocal two-point

interaction term on S2. In fact, by using (A.8) and (A.12) in appendix A, we find

1

N
trN

(

φφA
)

=

∫

dΩ

4π
φ(θ, ϕ)φ(π − θ, ϕ+ π). (1.6)

Actually, integrating out the highest modes generates various types of new nonlocal in-

teraction terms with antipode fields. It is worth noticing that this nonlocality is different

from what arises in the usual noncommutative field theory defined by the star product.6

Indeed, according to (A.15) in appendix A, a noncommutative product between func-

tions φ1(θ, ϕ) ∗ φ2(θ, ϕ) corresponds to the matrix product φ1φ2, which is different from

φ1(θ, ϕ)φ2(π− θ, ϕ+π) corresponding to the matrix product φ1φ
A
2 . In the previous paper,

we simply drop these new terms, and carry out RG analysis.

However, in the first place, according to the spirit of RG, we have to include interaction

terms with the antipode fields from the beginning because they are generated in the RG.

Furthermore, as well known in quantum field theory on noncommutative geometries (we

call it noncommutative field theory or NCFT), such an IR effect due to the UV loop

integral is a characteristic feature of NCFT (UV/IR mixing [34]), and it is then of great

importance and interest to investigate them in further details. If the terms with antipode

fields are kept, the resultant effective action is not a smooth function of the momentum

l even in the low energy regime, due to the oscillating sign. In [35], Vaidya has argued

that this is due to UV/IR mixing effect and concluded that the Wilsonian RG cannot

be implemented in scalar field theory on the fuzzy sphere. However, Chu, Madore, and

Steinacker have criticized this conclusion by showing that integrating out the all momenta,

instead of just l = 2L, leads to much milder behavior and the two-point function is smooth

at small values of the external momenta l [36]. They have also shown that a contribution

to the two-point function of noncommutativity, which they call noncommutative anomaly,

remains finite even after taking a continuum S2 limit. Thus this reflects the effect from the

underlying noncommutativity. This noncommutative anomaly is also shown to lead the

5It is possible to define the antipode basis TA
lm = (−1)lTlm and write φA =

∑

φlmTA
lm.

6Such nonlocality may reflect a stringy nature of the theory. In a slightly different context, a string-like

degree of freedom that connects two opposite points on a squashed fuzzy sphere has been studied in [33].
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usual UV/IR mixing effect if we take a noncommutative plane limit by blowing up a point

on the fuzzy sphere. In the context of the large-N RG analysis, this observation suggests

that we would have a well-defined RG flow by performing RG transformation repeatedly.

If so, the large-N RG will open up a possibility that noncommutative field theories are

formulated constructively through large-N matrix models.7 In this paper, we pursuit such

possibilities and will consider the large-N RG with antipode fields included.

This paper is organized as follows: in the following section we formulate the large-

N RG based on the fuzzy spherical harmonics with antipode fields. By integrating out

high-momentum modes perturbatively, the RG equations are derived. In section 3, we find

various fixed points and also carry out linearized study around them. There, we encounter a

peculiar feature of the large-N RG with antipode fields; namely, the RG equations are quite

different for the cases with the starting size of N being even or odd. Irrespective of this, it

turns out that the position of fixed points and the critical exponents for each fixed points

agree in even and odd N cases. Thus, it suggests that out large-N RG analysis correctly

captures universal features of the theory. Finally, in section 4, we provide conclusions and

discussions. In appendix A, we summarize the basics of matrix model formulation for scalar

field theory on a fuzzy sphere and enumerate useful formulas. Some details of perturbative

calculations are presented in appendix B.

2 Large-N renormalization group on fuzzy sphere with antipode fields

In this section, the formulation of the large-N RG of the matrix model describing scalar

field theory on the fuzzy sphere with antipode fields is presented. In the first subsection, we

set up our action for scalar field theory on the fuzzy sphere that also includes interaction

vertices of antipode fields. This is the starting point of our large-N RG analysis. We then

carry out a perturbative calculation that corresponds to a coarse-graining procedure in the

following subsection. Finally, we explain suitable rescaling of the traces and the radius of

the sphere ρN , with respect to various noncommutative parameters in the large-N limit,

and we derive a set of RG equations for mass parameters and coupling constants.

2.1 Action with antipode fields

In the previous work, the basic action (1.1) is used to formulate the RG equations for m2
N

and κ
(0)
N . As discussed in section 1.1, we consider large-N RG analysis with antipode fields.

Thus, we take the following extended action as our starting point,

SN = S
(kin.)
N + S

(pot.)
N ,

S
(kin.)
N =

1

N
trN

(

−1

2
[Li, φ]

2 +
ρ2Nm2

N

2
φ2 − ζN

2
[Li, φ][Li, φ

A] +
ρ2Nm̃2

N

2
φφA

)

,

S
(pot.)
N =

ρ2N
4N

trN

(

κ
(0)
N φ4 + κ

(1)
N φ3φA + κ

(2α)
N φ2(φA)2 + κ

(2β)
N (φφA)2

)

, (2.1)

7Since nonlocal interactions are introduced, apart from the noncommutative anomaly, there may be

further points to be checked, such as unitarity or causality (in Lorentzian case, for example [37]), for field

theory to be well-defined. We leave this point for future study.
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where m2
N and m̃2

N are mass parameters, ζN a parameter for the kinetic term with an

antipode field, and κ
(a)
N coupling constants. The index a takes the values 0, 1, 2α, and

2β to distinguish the types of the vertices, and in particular, their numbers represent

how many antipode fields are contained in the vertices. As shown in appendix A.3, the

antipode projection φ 7→ φA has a property that all the fields inside a trace can be antipode

projected by reversing the order of them inside the trace. See (A.24). Thus, without loss of

generality, we can restrict the number of the antipode fields in a trace to be no more than

half of the number of the fields. Hence (2.1) is the most general action with the rotational

symmetry SO(3) on the fuzzy sphere and Z2 symmetry φlm → −φlm up to the second

derivative in quadratic terms and O(φ4) non-derivative interactions. It should be obvious

from this observation that introducing φA does not mean introduction of new degrees of

freedom, since the actual degrees of freedom are the mode coefficients φlm. This extended

action is considered to be just an addition of momentum dependent interaction terms. On

the other hand, it is much simpler to use φA to express the action with such interactions

since it enables us to write them in terms of the matrix product and trace. Thus, in the

action we introduce the antipode field φA as if it is an independent field, but we note that

we do not have to integrate φA as an independent variable of φ in the large-N RG.

2.2 Coarse-graining: perturbative calculation

In the idea of the large-N RG, the modes with high l will be integrated out to produce an

effective action for the modes with lower angular momenta. We may start with a generic

situation; namely, n̂ number of the outermost momentum shells, l = 2L, 2L− 1, · · · , 2L−
n̂+1, are integrated out. Thus, we first divide the space of the angular momentum Λ into

the one for higher modes to be integrated (called out modes), and the others (called in

modes) as

Λ = {(l,m) | 0 ≤ l ≤ 2L, −l ≤ m ≤ l} = Λ
(n̂)
out ⊕ Λ

(n̂)
in ,

Λ
(n̂)
out = {(l,m) | 2L− n̂+ 1 ≤ l ≤ 2L, −l ≤ m ≤ l} ,

Λ
(n̂)
in = {(l,m) | 0 ≤ l ≤ 2L− n̂, −l ≤ m ≤ l} , (2.2)

and define correspondingly

φlm =

{

φout
lm (l,m) ∈ Λ

(n̂)
out

φin
lm (l,m) ∈ Λ

(n̂)
in

. (2.3)

A matrix only with in-modes, φin, and similarly φout, are defined as

φin =
∑

(l,m)∈Λ
(n̂)
in

φin
lmTlm, φout =

∑

(l,m)∈Λ
(n̂)
out

φout
lm Tlm . (2.4)

The coarse-graining procedure is then formulated as

SN−n̂(m
2
N−n̂, m̃

2
N−n̂, κ

(a)
N−n̂) = − log

∫

∏

(l,m)∈Λ
(n̂)
out

dφout
lm e−SN (m2

N ,m̃2
N ,κ

(a)
N

), (2.5)
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where SN−n̂(m
2
N−n̂, m̃

2
N−n̂, κ

(a)
N−n̂) is an action of (N − n̂)× (N − n̂) matrix. As in the pre-

vious study [1], the large-N RG formalism presented here respects the rotational symmetry

SO(3), and the resultant action should also be organized with respect to SO(3) irreducible

representations. So far, we construct a mapping from N ×N matrix to (N − n̂)× (N − n̂)

matrix. Instead of integrating out l = 2L, 2L−1, · · · 2L−n̂+1 modes in one coarse-graining

procedure, we may repeatedly perform the smallest n̂ = 1 mapping n̂ times to realize the

same mapping. As we discuss in section 3.2.1, truncation or approximations make dif-

ference between them in general, but it can be negligible to lower order calculations we

consider. Thus, we restrict ourselves to considering n̂ = 1 case for the time being, and

establish large-N RG equations.

We stress here that our RG (2.5) is not just a mathematical problem of interest, but

has firm physical ground. In fact, the mapping rule (A.11)–(A.13) given in appendix A

tells us that the action (2.1) we start from is completely equivalent to a field theory on a

fuzzy sphere with radius ρ2N

S =

∫

ρ2NdΩ

4π

(

− 1

2ρ2N

(

Liφ(θ, ϕ)
)2

+
m2

N

2
φ(θ, ϕ)2

− ζN
2ρ2N

Liφ(θ, ϕ)Liφ(π−θ, ϕ+π)+
m̃2

N

2
φ(θ, ϕ)φ(π−θ, ϕ+π)

+
κ
(0)
N

4
φ(θ, ϕ)4+

κ
(1)
N

4
φ(θ, ϕ)3φ(π−θ, ϕ+π)+

κ
(2α)
N

4
φ(θ, ϕ)2φ(π−θ, ϕ+π)2

+
κ
(2β)
N

4

(

φ(θ, ϕ)φ(π−θ, ϕ+π)
)2

)

, (2.6)

as a function of φlm. Here all products are understood as a noncommutative product

defined in (A.15).8 Hence (2.5) can also be regarded as applying the standard Wilsonian

RG to the field theory (2.6) on the fuzzy sphere with antipodal interactions, which is cut

off in such a way that the rotational symmetry is preserved. Thus our RG also reveals

properties of such a field theory. Furthermore, as we discuss later, our RG is formulated

to describe the large-N limit with noncommutativity α of the fuzzy sphere fixed (see (A.5)

in appendix A). Therefore we can fix α as small as we like to describe a field theory on the

sphere regularized in a rotationally invariant way by small enough noncommutativity.

To carry out the integration for out modes by perturbation theory, we first decompose

the quadratic part of the action as

S
(kin.)
N =S

(kin.) in
N +S

(kin.) out
N ,

S
(kin.) in
N =

1

N
trN

(

−1

2
[Li, φ

in]2+
ρ2Nm2

N

2
φin2− ζN

2
[Li, φ

in][Li, φ
inA]+

ρ2Nm̃2
N

2
φinφinA

)

,

S
(kin.) out
N =

1

N
trN

(

−1

2
[Li, φ

out]2+
ρ2Nm2

N

2
φout2− ζN

2
[Li, φ

out][Li, φ
outA]+

ρ2Nm̃2
N

2
φoutφoutA

)

=
2L
∑

m=−2L

1

2

[

N(N−1)
(

1+(−1)N−1ζN
)

+ρ2N
(

m2
N+(−1)N−1m̃2

N

)]

φout ∗
2Lmφout

2Lm . (2.7)

8As is well known, O(φ2) or O(φφA) terms are not affected by the noncommutativity and hence the

product can be replaced with the usual one as in (1.6).
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Note that there is no cross term between φin and φout in the quadratic part of the action.

Here, we have used the fact that for the out modes the antipode projection is simply

multiplying the phase factor (−1)N−1,

φoutA =
2L
∑

m=−2L

(−1)2Lφ2LmT2Lm = (−1)N−1φout . (2.8)

This fact is also useful to organize the interaction vertices below.

We define

Z0 =

∫ 2L
∏

m=−2L

dφout
2Lm e−S

(kin.) out
N , 〈O〉0 =

1

Z0

∫ 2L
∏

m=−2L

dφout
2LmO e−S

(kin.) out
N , (2.9)

then our RG equation (2.5) becomes

SN−1(m
2
N−1, m̃

2
N−1, κ

(a)
N−1) = − logZ0 + S

(kin.) in
N − log

〈

e−S
(pot.)
N

〉

0
. (2.10)

Thus the calculation of SN−1(m
2
N−1, κ

(a)
N−1) amounts to evaluating

〈

e−S
(pot.)
N

〉

0
. Now, in

order to carry out perturbative calculation, we reorganize the interaction part of the action

S
(pot.)
N according to the number of φin, φout as well as the number of antipode projections,

S
(pot.)
N =

ρ2N
N





∑

a=0,1,2α,2β

g
(a)
0NV(a)

0 +
∑

b=0,1α,1β

g
(b)
1NV(b)

1 +
∑

c=0,1

(

g
(c)P
2N V(c)P

2 + g
(c)NP
2N V(c)NP

2

)

+g
(0)
3NV(0)

3 + g
(0)
4NV(0)

4



 , (2.11)

where

V(0)
0 =

1

4
trN

(

φin4
)

, V(1)
0 =

1

4
trN

(

φin3φinA
)

,

V(2α)
0 =

1

4
trN

(

φin2(φinA)2
)

, V(2β)
0 =

1

4
trN

(

(φinφinA)2
)

, (2.12)

V(0)
1 = trN

(

φin3φout
)

, V(1α)
1 =

1

2
trN

(

φout
(

φin2φinA+φinAφin2
)

)

,

V(1β)
1 = trN

(

φoutφinφinAφin
)

, (2.13)

V(0)P
2 = trN

(

φin2φout2
)

, V(0)NP
2 =

1

2
trN

(

(

φinφout
)2
)

, (2.14)

V(1)P
2 =

1

2
trN

(

φout2
(

φinφinA + φinAφin
)

)

, V(1)NP
2 =

1

2
trN

(

φoutφinφoutφinA
)

, (2.15)

V(0)
3 = trN

(

φinφout3
)

, (2.16)

V(0)
4 =

1

4
trN

(

φout4
)

, (2.17)

and the combinations of the original couplings are packed into g
(a)
iN as

g
(a)
0N = κ

(a)
N , (a = 0, 1, 2α, 2β) (2.18)
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g
(0)
1N = κ

(0)
N +

1

4
(−1)N−1κ

(1)
N ,

g
(1α)
1N =

1

2
κ
(1)
N +(−1)N−1κ

(2α)
N ,

g
(1β)
1N =

1

4
κ
(1)
N +(−1)N−1κ

(2β)
N ,

(2.19)

g
(0)P
2N = κ

(0)
N +

1

2
(−1)N−1κ

(1)
N +

1

2
κ
(2α)
N ,

g
(0)NP
2N = κ

(0)
N +

1

2
(−1)N−1κ

(1)
N +κ

(2β)
N ,

(2.20)

g
(1)P
2N =

1

2
κ
(1)
N +

1

2
(−1)N−1κ

(2α)
N +(−1)N−1κ

(2β)
N ,

g
(1)NP
2N =

1

2
κ
(1)
N +(−1)N−1κ

(2α)
N ,

(2.21)

g
(0)
4N = g

(0)
3N = κ

(0)
N +(−1)N−1κ

(1)
N +κ

(2α)
N +κ

(2β)
N . (2.22)

The numbers in the lower indices for V(a)
i and g

(a)
iN stand for the number of out modes;

namely the number of “legs” in the following perturbation theory. On the other hand, the

numbers in the upper indices denote the number of in fields with the antipode projection.

The other labels, α, β, and P and NP , are for distinction of the types of vertices. The

symmetry factors in (2.12)–(2.17) are assigned by paying attention to the fact that φ

and φA are not independent as noted at the end of section 2.1. Notice that since the

antipode projection on out fields simply provides an overall alternating phase (−1)N−1,

only φinA appears in the above vertices. We have also utilized the trace property of antipode

fields, (A.27), to reduce the number of antipode fields.

The expectation value can be evaluated by using the propagator of the out modes
〈

φout
2Lmφout

2Lm′

〉

0
= δm+m′(−1)mPN , (2.23)

where PN does not depend on m, m′ and has the form

PN =
1

N(N − 1)[1 + (−1)N−1ζN ] + ρ2N [m2
N + (−1)N−1m̃2

N ]
. (2.24)

By using this, we can perturbatively integrate out φout. It can be schematically summa-

rized as

− log
〈

e−S
(pot.)
N

〉

0
=

ρ2N
N

∑

a=0,1,2α,2β

g
(a)
0NV(a)

0 +
ρ2N
N

4
∑

i=1

∑

a

g
(a)
iN

〈

V(a)
i

〉

0

− 1

2

(

ρ2N
N

)2 4
∑

i,j=1

∑

a,b

g
(a)
iN g

(b)
jN

〈

V(a)
i V(b)

j

〉

c
+O(κ3N ) , (2.25)

where 〈· · ·〉c means taking the connected part. The summation over the indices a and b is

understood as running over the possible values including P and NP for V(a)
2 given in (2.14)

and (2.15). O(κ3N ) stands for the third or higher order corrections in κ
(a)
N . V(a)

0 does not

contain φout and is then directly inherited to N − 1 theory.
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The action (2.1) has a Z2 symmetry φ → −φ (or more precisely, φlm → −φlm), and

so does S
(kin.) out
N . Thus, expectation values that contain odd number of out modes vanish

identically. Furthermore,
〈

V(0)
4

〉

0
and

〈

V(0)
4 V(0)

4

〉

c
does not include φin and they do not

affect the renormalization of the parameters. With these considerations, we have

SN−1

= Sin
N +

ρ2N
N

∑

a

g
(a)
2N

〈

V(a)
2

〉

0

− 1

2

(

ρ2N
N

)2[
∑

a,b

g
(a)
1Ng

(b)
1N

〈

V(a)
1 V(b)

1

〉

c
+ 2

∑

a

g
(a)
1Ng

(0)
3N

〈

V(a)
1 V(0)

3

〉

c
+ g

(0)
3Ng

(0)
3N

〈

V(0)
3 V(0)

3

〉

c

+
∑

a,b

g
(a)
2Ng

(b)
2N

〈

V(a)
2 V(b)

2

〉

c
+ 2

∑

a

g
(a)
2Ng

(0)
4N

〈

V(a)
2 V(0)

4

〉

c

]

+O(κ3N ) + (φin independent terms)− lnZ0 . (2.26)

Here, − lnZ0 is also a φin independent term and we will no longer write the last two terms

explicitly. Sin
N = S

(kin.) in
N +

ρ2N
N

∑

a g
(a)
0NV(a)

0 is the original action in (2.1) with φ replaced

with φin.

We first argue that in the low energy regime of φin fields, namely in which angular

momenta l associated with all of φin are much smaller compared to 2L, l ≪ L, corrections

involving V(a)
1 and V(0)

3 , i.e. the second line in (2.26), are negligible in the large-N (therefore

large-L) limit. In order to evaluate these terms, it is sufficient to consider

〈

trN (O1φ
out)trN (O2φ

out)
〉

c
,
〈

trN (O1φ
out)trN (φinφout3)

〉

c
,
〈

trN (φinφout3)trN (φinφout3)
〉

c
,

(2.27)

where Oi (i = 1, 2) is a cubic order homogeneous polynomial in φin and φinA. For example,

V(1α)
1 corresponds to the choice O1 = 1

2

(

φin2φinA + φinAφin2
)

as in (2.13). Since all three

fields in Oi are in-modes, their angular momenta lj (j = 1, 2, 3) are all small compared

to the cutoff, lj ≪ L. The total angular momentum of Oi is, by the usual addition rule,

bounded by l1 + l2 + l3 which is again much smaller than L. The trace trN (Oiφ
out) is

nonvanishing only when the momenta of Oi and φout are equal, and this condition cannot

be met. Thus, this vertex does not contribute to the perturbative calculation we consider

now, and the first two terms in (2.27) are indeed negligible. The third term has already

been considered in the previous study [1] as
〈

V 2
3

〉

c
. We simply quote the result as

〈

trN (φinφout3)trN (φinφout3)
〉

c
= (polynomial in L)× e3L ln 3

4 , (2.28)

which is exponentially small for large-L. Some more details are given in appendix B.

Therefore, we need to consider

SN−1 = Sin
N +

ρ2N
N

∑

a=0,1

[

g
(a)P
2N

〈

V(a)P
2

〉

0
+ g

(a)NP
2N

〈

V(a)NP
2

〉

0

]
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− 1

2

(

ρ2N
N

)2[

g
(0)P
2N g

(0)P
2N

〈

V(0)P
2 V(0)P

2

〉

c
+ 2g

(0)P
2N g

(0)NP
2N

〈

V(0)P
2 V(0)NP

2

〉

c

+ g
(0)NP
2N g

(0)NP
2N

〈

V(0)NP
2 V(0)NP

2

〉

c
+ 2g

(0)P
2N g

(1)P
2N

〈

V(0)P
2 V(1)P

2

〉

c

+ 2g
(0)P
2N g

(1)NP
2N

〈

V(0)P
2 V(1)NP

2

〉

c
+ 2g

(0)NP
2N g

(1)NP
2N

〈

V(0)NP
2 V(1)NP

2

〉

c

+ 2g
(1)P
2N g

(0)NP
2N

〈

V(1)P
2 V(0)NP

2

〉

c
+ g

(1)P
2N g

(1)P
2N

〈

V(1)P
2 V(1)P

2

〉

c

+ 2g
(1)P
2N g

(1)NP
2N

〈

V(1)P
2 V(1)NP

2

〉

c
+ g

(1)NP
2N g

(1)NP
2N

〈

V(1)NP
2 V(1)NP

2

〉

c

+ 2g
(0)P
2N g

(0)
4N

〈

V(0)P
2 V(0)

4

〉

c
+ 2g

(0)NP
2N g

(0)
4N

〈

V(0)NP
2 V(0)

4

〉

c

+ 2g
(1)P
2N g

(0)
4N

〈

V(1)P
2 V(0)

4

〉

c
+ 2g

(1)NP
2N g

(0)
4N

〈

V(1)NP
2 V(0)

4

〉

c

]

+O(κ3) + (irrelevant or negligible) . (2.29)

In order to evaluate relevant expectation values, it is sufficient to consider the following

pieces,

〈

trN
(

O1 φ
out O2 φ

out
)〉

0
= (2N−1) PN trN

[

O1OA
2 −

1

N
O1(−∆)OA

2 +O(N−2)

]

, (2.30)

〈

trN
(

O1φ
outO2φ

out
)

trN
(

φout4
)

〉

c

= N(2N − 1)2P 3
N trN

[

O1OA
2 − 1

N
O1(−∆)OA

2 +O(N−2)

]

, (2.31)

〈

trN
(

O1φ
outO2φ

out
)

trN
(

O3φ
outO4φ

out
)〉

c

= N(2N − 1)P 2
N trN

[

OA
1 O2OA

3 O4 −
1

2N

(

−
∑

i

∆(i)
(

OA
1 O2OA

3 O4

)

+OA
1 O2∆

(

OA
3 O4

)

)

+ (O3 ↔ O4) +O(N−2)

]

, (2.32)

where Oi (i = 1, 2, 3, 4) are polynomials of φin and φinA or an identity 1, and some expo-

nentially small terms are neglected. ∆ is defined as in (A.10) and ∆(i) acts only on Oi or

OA
i . These formulas are derived in appendix B (n̂ = 1 case). By choosing suitable Oi, we

can represent the various types of vertices. For example,

V(1)P
2 = trN

(

O1φ
outO2φ

out
)

with O1 =
1

2

(

φinφinA + φinAφin
)

, O2 = 1 . (2.33)

Then we can apply the general formulas to evaluate the expectation values. With these

formulas, we find

SN−1

= − 1

2N
trN

(

[Li, φ
in]2 + ζN [Li, φ

in][Li, φ
inA]

)

+
ρ2N
2N

[

m2
N +B1(N)

(

g
(0)
2N +

1

2
g
(1)NP
2N

)(

1− ρ2NB2(N)g
(0)
4N

)]

trN
(

φin2
)
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+
ρ2N
2N

[

m̃2
N +B1(N)

(

g
(1)P
2N +

1

2
g
(0)NP
2N

)(

1− ρ2NB2(N)g
(0)
4N

)]

trN
(

φinφinA
)

+
ρ2N
4N

[

g
(0)
0N − ρ2NB2(N)

(

g
(0)P
2N +

1

2
g
(1)NP
2N

)2]

trN
(

φin4
)

+
ρ2N
4N

[

g
(1)
0N − 4ρ2NB2(N)

(

g
(0)P
2N +

1

2
g
(1)NP
2N

)(

g
(1)P
2N +

1

2
g
(0)NP
2N

)]

trN
(

φin3φinA
)

+
ρ2N
4N

[

g
(2α)
0N − ρ2NB2(N)

((

g
(0)P
2N +

1

2
g
(1)NP
2N

)2

+

(

g
(1)P
2N +

1

2
g
(0)NP
2N

)2

− 1

4

(

g
(0)NP
2N

)2
)]

× trN
(

φin2(φinA)2
)

+
ρ2N
4N

[

g
(2β)
0N − ρ2NB2(N)

((

g
(1)P
2N +

1

2
g
(0)NP
2N

)2

+
1

4

(

g
(0)NP
2N

)2
)]

trN
(

φinφinAφinφinA
)

+O(κ3) + (irrelevant or negligible) , (2.34)

where subleading contributions of 1/N are dropped. We have defined

B1(N) = B1(N ;m2
N , m̃2

N ) = 2(2N − 1)PN , B2(N) = B2(N ;m2
N , m̃2

N ) = 2(2N − 1)P 2
N .

(2.35)

As shown here, we sometimes omit the mass dependence from B1(N) and B2(N) to make

expressions concise. Note that the mass dependence comes through the propagator factor

PN given in (2.24).

The coefficients of each operator will be identified with new mass and coupling param-

eters of the size N − 1 theory. However, the trace is still defined in the space of N × N

matrices, and the length scale ρN may also be renormalized in the spirit of Wilsonian RG.

In the next subsection, we deal with them.

2.3 Mapping the trace and rescaling

The result of the perturbative calculation (2.34) is yet to be identified with a theory of

(N − 1) × (N − 1) matrices. The trace is still defined in N × Ny space, and the matrix

basis should be replaced with the one with a smaller size. Furthermore, after integrating

out the higher momentum modes, the range of the momenta is changed, and it needs to

be scaled to the original range as in the standard RG of field theory. This procedure

involves the renormalization of the radius ρN . Together with these procedures, in order

to fix the overall scale, we will normalize φin so that the kinetic term has the canonical

normalization. Then we can fix relations between the parameters in the original theory

and the renormalized theory.

We first consider the mapping of the trace in N×N matrix space into (N−1)×(N−1)

one. This is essentially the same procedure we took in [1]. Let us write the basis for N ×N

as T
(N)
lm (0 ≤ l ≤ 2L) and (N − 1)× (N − 1) as T

(N−1)
lm with l = 0, · · · , 2L− 1. Since φin

lm

does not have components l = 2L, we can define φin
lm = cφ̃lm with 0 ≤ l ≤ 2L − 1, and

also an (N − 1)× (N − 1) matrix as φ̃ =
∑

l φ̃lmT
(N−1)
lm . Here, c is a constant to be fixed.
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By (A.8) and (A.10) in appendix A, the kinetic term is mapped as

1

N
trN

(

− [Li, φ
in]2

)

=
c2

N − 1
trN−1

(

− [L̃i, φ̃]
2

)

, (2.36)

where L̃i is the SU(2) generator of spin L− 1
2 representation. We require that the kinetic

term stays canonical through the RG procedure, and then c is fixed to be 1. The trace of

the quadratic term also transforms simply as

1

N
trN

(

φin2
)

=
1

N − 1
trN−1

(

φ̃2
)

. (2.37)

It is easy to see that the same normalization applies if the trace involves antipode ones.

On the other hand, the quartic vertices turns out to have a nontrivial factor. A trace

with four matrices is written in terms of 3j and 6j symbols by (A.19). A nontrivial N

dependence comes from L = (N − 1)/2 in two 6j symbols, and we apply the following

recursion relation from [38]

{

a b l

L L L

}

=
1

√

(2L+ a+ 1)(2L− a)(2L+ b+ 1)(2L− b)
(2.38)

×
[

− 2L
√

(2L+l+1)(2L−l)

{

a b l

L− 1
2 L− 1

2 L− 1
2

}

+
√

a(a+1)b(b+1)

{

a b l

L L L− 1

}

]

.

When a+ b+ l =even, by use of (A.35) and (A.36), we find

{

a b l

L L L

}

=

(

− 1 +
1

2N
+

1

8N2
+O(N−3)

)

{

a b l

L− 1
2 L− 1

2 L− 1
2

}

. (2.39)

Here in quartic vertices a and b are the angular momenta of in modes, while l is summed

over as in (A.19). When a + b + l is not even, we may roughly take the second term

in (2.38) to be subleading. This leads to a similar relation to (2.39), but O(N−2) term

depends on a, b, and l. Thus it is natural to expect that the coefficient of O(N−2) term is

still 1/8, independent of a, b, and l, for this case due to the continuity, but we do not have

a concrete expression at this moment. However, at least in the low energy regime a, b ≪ L,

it is no doubt that the second term in (2.38) is of O(1/N2) compared to the first term. In

summary, we can write down a mapping formula for quartic vertices as

1

N
trN

(

T
(N)
l1m1

T
(N)
l2m2

T
(N)
l3m3

T
(N)
l4m4

)

=

(

1+O(N−2)

)

1

N−1
trN−1

(

T
(N−1)
l1m1

T
(N−1)
l2m2

T
(N−1)
l3m3

T
(N−1)
l4m4

)

.

(2.40)

Next, we consider the rescaling of ρ2N . In the usual Wilsonian RG of quantum field

theory, we integrate out the momentum p for the interval Λ/b ≤ p ≤ Λ where Λ is a cutoff

and b > 1 is a number associated with RG transformation. After integration, we perform a

scale transformation p → bp to get back to the original momentum space. It thus involves

scale transformations of all the dimensionful quantities; especially fields get rescaled, and
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from this change we can read the scaling dimensions of the fields. We define a fuzzy sphere

counterpart of b, called bN , as

b2N ≡ ρ2N
ρ2N−1

. (2.41)

So the question is how to define a scale forN−1 theory. Since the fuzzy sphere preserves the

rotation SO(3) symmetry, the most natural invariant is the total angular momentum L2
i ,

and the momentum squared is given by dividing it by the radius squared. Thus we require

2L(2L+ 1)

ρ2N
=

2L(2L− 1)

ρ2N−1

, (2.42)

which gives b2N = N
N−2 . It should be noted that the relation between the fundamental scale

α and the fuzzy sphere radius ρN

ρ2N =
α2(N2 − 1)

4
(2.43)

(see appendix A), is preserved by the same α, up to O(N−2) corrections. Namely, this limit

is a large-N limit with the characteristic scale of the fuzzy sphere α fixed which describes

noncommutativity as in (A.5). In this sense, we call this large-N limit the “fuzzy sphere

limit”. Thus as stressed in (2.6), our RG provides nonperturbative information of the field

theory with antipodal interactions on the fuzzy sphere with fixed noncommutativity α.

As discussed in [1], we can think of another large-N limit, which is related to non-

commutative field theory (NCFT) [34, 39, 40] on the flat two-dimensional plane (see

e.g. [36, 41]). Thus, we call it the NCFT limit. In this case, the large-N limit is taken with

the noncommutativity θ in NCFT fixed as [36]

N → ∞ with θ =
2ρ2N
N

: fixed , (2.44)

which leads to b2N = N
N−1 . This limit is to zoom up a tiny part of the sphere (say, the

north pole), which will be approximated by a plane with a noncommutativity [ŷ1, ŷ2] = iθ.

In this case the RG is expected to describe a field theory on this plane (Moyal plane, or

noncommutative plane).

2.4 Renormalization group equations

After finishing the rescaling and the mapping of the traces, (2.34) should be identified with

an action of (N − 1)× (N − 1) size, up to negligible terms,

SN−1=
1

N − 1
trN−1

[

− 1

2
[L̃i, φ̃]

2 +
ρ2N−1m

2
N−1

2
φ̃2 − ζN−1

2
[L̃i, φ̃][L̃i, φ̃

A] +
ρ2N−1m̃

2
N−1

2
φ̃φ̃A

+
ρ2N−1

4

(

κ
(0)
N−1φ̃

4 + κ
(1)
N−1φ̃

3φ̃A + κ
(2α)
N−1φ̃

2(φ̃A)2 + κ
(2β)
N−1

(

φ̃φ̃A
)2
)]

. (2.45)

The identification of the parameters leads to the following RG equations (RGEs),

ζN−1 = ζN , (2.46)
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m2
N−1 = b2Nm2

N + b2NB1(N)X 1
N (κN )

(

1− ρ2NB2(N)g
(0)
4N

)

+O(κ3) , (2.47)

m̃2
N−1 = b2Nm̃2

N + b2NB1(N)X 2
N (κN )

(

1− ρ2NB2(N)g
(0)
4N

)

+O(κ3) , (2.48)

κ
(a)
N−1 = b2Nκ

(a)
N − b2Nρ2NB2(N)Y(a)

N (κN ) +O(κ3) , (2.49)

with a, b = 0, 1, 2α, and 2β. Here we have introduced the functions of the four-vector

κN =
(

κ
(0)
N , κ

(1)
N , κ

(2α)
N , κ

(2β)
N

)

as

X (1)
N (κN ) = g

(0)P
2N +

1

2
g
(1)NP
2N = κ

(0)
N +

1 + 2(−1)N−1

4
κ
(1)
N +

1 + (−1)N−1

2
κ
(2α)
N , (2.50)

X (2)
N (κN ) = g

(1)P
2N +

1

2
g
(0)NP
2N

=
1

2

(

κ
(0)
N +

2+(−1)N−1

2
κ
(1)
N +(−1)N−1κ

(2α)
N +

(

1+2(−1)N−1
)

κ
(2β)
N

)

, (2.51)

X (3)
N (κN ) =

1

2
g
(0)NP
2N =

1

2

(

κ
(0)
N +

(−1)N−1

2
κ
(1)
N + κ

(2β)
N

)

, (2.52)

Y(0)
N (κN ) =

(

X (1)
N (κN )

)2
, (2.53)

Y(1)
N (κN ) = 4X (1)

N (κN )X (2)
N (κN ) , (2.54)

Y(2α)
N (κN ) =

(

X (1)
N (κN )

)2
+
(

X (2)
N (κN )

)2 −
(

X (3)
N (κN )

)2
, (2.55)

Y(2β)
N (κN ) =

(

X (2)
N (κN )

)2
+
(

X (3)
N (κN )

)2
. (2.56)

Notice that the subscript N for X (i)
N and Y(a)

N refers only to the alternating coefficients in

their definitions.

We note that the parameter for φφA kinetic term ζN does not receive any correction.

Thus, in the RG procedure, we can take ζN = ζN−1 = · · · = ζ and ζ can be arbitrary. In

the next section, we start the fixed point analysis, and we will set ζ = 0 for convenience.

3 Fixed point analysis

Since the large-N limit corresponds to performing our RG infinitely many times, it would

be described by fixed points of the RG transformation. If they exist, for each fixed point

we can also deduce the scaling dimensions of operators in the large-N limit from linearized

RG transformation around the fixed point because the scaling dimension is response to

the scale transformation. In this section, we look for fixed points of the set of the RGEs.

If they exist, it would be strong evidence that a theory as in (2.6) with the parameters

given by them exists consistently and nonperturbatively. Notice that for this reason the

existence of a fixed point is striking in itself because we now allow quite nonlocal antipodal

interactions. We then consider linearized analysis around the fixed points to determine the

scaling dimensions.

3.1 Fixed points for 1-step RGEs

We first consider fixed points for the set of equations (2.47)–(2.49). They are RGEs for the

RG transformation from N ×N theory to (N − 1)× (N − 1) theory, which corresponds to
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the case with n̂, the number of momentum shells to be integrated out, being 1. Therefore,

we call them 1-step RGEs.

Fixed points are obtained by setting

m2
N−1 = m2

N = m2
∗ , m̃2

N−1 = m̃2
N = m̃2

∗ , κ
(a)
N−1 = κ

(a)
N = κ

(a)
∗ (a = 0, 1, 2α, 2β) ,

(3.1)

and solving the relations for m2
∗, m̃2

∗, and κ
(a)
∗ . As noted in the previous section, the

parameter ζN does not get renormalized and then we can consistently set ζN = ζN−1 =

· · · = ζ. We restrict ourselves to fixed points with ζ = 0.

Note that the mass parameters in PN , B1(N), and B2(N) are all set to be fixed point

values. We thus introduce the following notation,

P ∗
N =

1

N(N − 1) + ρ2N (m2
∗ + (−1)N−1m̃2

∗)
,

B∗
1(N) = B1(N ;m2

∗, m̃
2
∗) = 2(2N − 1)P ∗

N ,

B∗
2(N) = B2(N ;m2

∗, m̃
2
∗) = 2(2N − 1)P ∗

N
2 . (3.2)

To simplify the analysis, we use the following rescaled variables

m2
∗ =

x
(1)
∗

ρ2NP ∗
N

, m̃2
∗ =

x
(2)
∗

ρ2NP ∗
N

, κ
(a)
∗ =

b2N − 1

b2Nρ2NB∗
2(N)

y
(a)
∗ . (3.3)

By use of them, the fixed point equations are written as

x
(i)
∗ = −X (i)

N (y∗)

[

1− b2N − 1

b2N
g
(0)
4∗

]

(i = 1, 2) , (3.4)

0 = y
(a)
∗ − Y(a)

N (y∗) (a = 0, 1, 2α, 2β) , (3.5)

where X (i)
N (y∗) is given in (2.50) with κ

(a)
N replaced with y

(a)
∗ for each a and the same for

Y(a)
N (y∗), and g

(0)
4∗ = y

(0)
∗ + (−1)N−1y

(1)
∗ + y

(2α)
∗ + y

(2β)
∗ as in (2.22). Since the definition of

P ∗
N involves m2

∗ and m̃2
∗, the rescaling condition restricts the form of P ∗

N as

P ∗
N =

1− x
(1)
∗ − (−1)N−1x

(2)
∗

N(N − 1)
. (3.6)

Since (3.5) depends only on y
(a)
∗ , not x

(i)
∗ , one may find solutions to them. Then, by (3.4),

x
(i)
∗ are uniquely determined for a given set of y

(a)
∗ . Together with (3.6), the relations (3.3)

determines the fixed points in terms of the original variables. Thus, the question boils

down to finding solutions to (3.5). It should also be noticed that the second term in the

square bracket of (3.4) is 1/N suppressed compared to the first term, 1, and then we may

neglect that term to discuss leading order fixed points as long as g
(0)
4∗ is of O(1) at most.

From the definitions of Y(a)
N , one can see that the four equations (3.5) have purely

numeric coefficients which depends on N only through an alternating sign factor (−1)N−1.

Thus, solutions can be searched numerically, for N being even or odd separately, and all

solutions will be of order 1.
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For even N , we find the following fixed points (or lines),

(

y
(0)
∗ , y

(1)
∗ , y

(2α)
∗ , y

(2β)
∗

)

= (0, 0, 0, 0) , (0, 0,−4, 4) ,
(

t, 4(t±
√
t), 2(t±

√
t), 2± 2

√
t+ t

)

,

(

1

4

(

2 + t±
√
t+ 1

)

, t,
t

2
, 1− t

4

1∓
√
t+ 1

1±
√
t+ 1

)

,

(

1

2

(

1 + t∓
√
2t+ 1

)

, 2t, t,
1

2

(

3 + t±
√
2t+ 1

)

)

,

(

t± 2
√
t− 1,−4 + 4t± 4

√
t− 1,−2 + 2t± 2

√
t− 1, t

)

, (3.7)

where the double sign corresponds in each solution and t is a parameter. Formally, any

t ∈ R solves the equations, but may be restricted to the range in which the values y
(a)
∗

stay real. The first one is the Gaussian fixed point, which obviously leads to m2
∗ = m̃2

∗ =

κ
(a)
∗ = 0. It is curious that the even N case allows one-parameter families of solutions,

and then there are infinite number of fixed points irrespective of the fact that we have

four equations of four variables. Note that the first two solutions are not included in the

one-parameter families.

On the other hand, for odd N , there are four fixed points found,

(

y
(0)
∗ , y

(1)
∗ , y

(2α)
∗ , y

(2β)
∗

)

= (0, 0, 0, 0) ,
(

16,−64, 28, 20
)

, (3.8)
(

136

9
± 32

√
2

3
,−64∓ 136

√
2

3
,
272

9
± 64

√
2

3
,
170

9
± 40

√
2

3

)

.

One can check that only the common fixed point for N even and odd cases is Gaussian

one. So far, no parametric solution has been found.9

These observations suggest that the RG flow is stable only around the Gaussian fixed

point since we are considering the RG transformation fromN×N theory to (N−1)×(N−1)

one. The non-Gaussian fixed points (or lines) does not make sense since they are not really

“fixed” along the RG transformations. The structure of fixed points are quite different, as

N even ones include critical lines, but N odd ones not. This is in contrast to the case of

N → (N − 2) flow we analyze later, where N even and odd ones have the same number of

isolated fixed points.

Now we consider a linearized analysis around the Gaussian fixed point. Near Gaussian

fixed point (namely, m2
N , m̃2

N , κ
(a)
N ≪ 1 and the same for the parameters of N − 1), at the

leading order in the large-N limit we have

m2
N−1 = b2N

(

m2
N +

1

N

∑

a

δ(a)κ
(a)
N

)

, m̃2
N−1 = b2N

(

m̃2
N +

1

N

∑

a

δ̃(a)κ
(a)
N

)

, (3.9)

κ
(a)
N−1 = b2Nκ

(a)
N . (3.10)

9As discussed in the following subsections, the comparison between even and odd N cases should be

done in terms of the original parameters, m2
∗ and so on. However, the structures of the set of fixed points

are so different, and we do not expect common fixed points that make sense physically.
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Here a = 0, 1, 2α, 2β and

δ(0) = 4, δ(1) = 1 + 2(−1)N−1, δ(2α) = 2 + 2(−1)N−1, δ(2β) = 0,

δ̃(0) = 2, δ̃(1) = 2 + (−1)N−1, δ̃(2α) = 2(−1)N−1, δ̃(2β) = 2 + 4(−1)N−1 . (3.11)

The behavior of the coupling constants κ
(a)
N is trivial. We first look at critical lines of

the mass parameters, m̄(κN ) and ¯̃m(κN ) which are defined by the following difference

equations,

m2
N−1 − m̄(κ

(a)
N−1) = b2N

(

m2
N − m̄(κ

(a)
N )

)

, m̃2
N−1 − ¯̃m(κ

(a)
N−1) = b2N

(

m̃2
N − ¯̃m(κ

(a)
N )

)

.

(3.12)

Eqs. (3.10) and (3.12) manifest that all variables have eigenvalue b2N of the RG trans-

formation around the Gaussian fixed point. Since in the RG we have made the scale

transformation with p → bNp as discussed in (2.41), this implies they all have the scal-

ing dimension 2. Under the assumption that m̄ and ¯̃m are linear functions of κ
(a)
N , these

equations can be solved in the large-N limit for even and odd N cases separately,

Even N : m̄ = lnN
(

− 4κ
(0)
N + κ

(1)
N

)

,

¯̃m = lnN
(

− 2κ
(0)
N − κ

(1)
N + 2κ

(2α)
N + 2κ

(2β)
N

)

,

Odd N : m̄ = lnN
(

− 4κ
(0)
N − 3κ

(1)
N − 4κ

(2α)
N

)

,

¯̃m = lnN
(

− 2κ
(0)
N − 3κ

(1)
N − 2κ

(2α)
N − 6κ

(2β)
N

)

. (3.13)

Thus, we observe that the the mass parameters have different coupling dependence near

Gaussian fixed point for even and odd N cases. This suggests that even near Gaussian

fixed point the critical behavior depends on evenness/oddness of N . Note that −4 lnN

coefficient of κ
(0)
N for m̄ is also obtained in the previous study [1], and we reproduce that

result by setting other coupling constants to be zero, for either even or odd N .

In order to compare the result with the one from the following 2-step study, we present

eigenvectors of this linearized transformation in (m2, m̃2, κ(0), κ(1), κ(2α), κ(2β)) basis. On

this basis, the transformation matrix is of upper triangular form, with sextuple degener-

ate eigenvalue that corresponds to the canonical scaling dimension 2, and there are four

eigenvectors,

(1, 0, 0, 0, 0, 0) , (0, 1, 0, 0, 0, 0) ,
(

0, 0, 5 + 4(−1)N−1,−4− 8(−1)N−1, 0, 3
)

,
(

0, 0,−1− 2(−1)N−1, 2− 2(−1)N−1, 3, 0
)

,

(3.14)

where we have not normalized them. Unlike the cases of the following subsections, two of

the eigenvectors are different for even and odd N .

3.2 Fixed points for 2-step RGEs

The observation in the previous subsection may imply that Wilsonian RG is not imple-

mented on a fuzzy sphere, as Vaidya suggests in [35]. However, as mentioned in Introduc-

tion, Chu et al. [36] claim that the singular behavior due to the oscillating phase is not a
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true problem, and by carrying out loop integrals for all momenta the two point function

does not have such an oscillating behavior. This suggests that the problem occurs since

we consider only 1-step RG transformation, where only l = 2L modes are integrated out.

This motivates us to consider iterative application of RG transformation, which leads to

theory of N×N matrices to that of (N− n̂)×(N− n̂) matrices, with n̂ > 1. Choosing even

n̂ is also plausible, since evenness and oddness of N is preserved by RG transformation.

In this subsection, we consider the first nontrivial n̂ = 2 case, which we call 2-step RG

transformation. Its fixed points are expected to correspond to the large-N limit taken in

such a way that N = 2M or N = 2M + 1 as M → ∞.

3.2.1 2-step RG equations

By using the RG transformation (2.47)–(2.49) twice, we can write down 2-step RG equa-

tions

m2
N−2 = b2Nb2N−1m

2
N

+ b2Nb2N−1

(

B1(N ;m2
N , m̃2

N )X (1)
N (κN ) + B̃1(N − 1;m2

N , m̃2
N )X (1)

N−1(κN )

)

+O(κ2) , (3.15)

m̃2
N−2 = b2Nb2N−1m̃

2
N

+ b2Nb2N−1

(

B1(N ;m2
N , m̃2

N )X (2)
N (κN ) + B̃1(N − 1;m2

N , m̃2
N )X (2)

N−1(κN )

)

+O(κ2) , (3.16)

κ
(a)
N−2 = b2Nb2N−1κ

(a)
N

− b2Nb2N−1ρ
2
N

(

B2(N ;m2
N , m̃2

N )Y(a)
N (κN ) + B̃2(N − 1;m2

N , m̃2
N )Y(a)

N−1(κN )

)

+O(κ3) , (3.17)

where we consider up to O(κ) terms for the mass parameters. When we look for a fixed

point at the leading order in 1/N expansion, we check that all κ
(a)
N there are small and that

O(κ2) terms provide merely small corrections. In a later subsection, we carry out linearized

analysis around fixed points, and there it is necessary to include only the leading corrections

in the coupling constants, and then the above set of equations are sufficient for our purpose.

Here, the mass parameters and the coupling constants on the right hand sides are m2
N , m̃2

N ,

and κ
(a)
N . If we apply our RGE twice straightforwardly, we will havem2

N−1 and m̃2
N−1 on the

right hand sides, but they are all replaced with m2
N and m̃2

N respectively by using the RGEs

again. More precisely, in the second application of the RGEs, there appear propagators

with m2
N−1 and m̃2

N−1, namely B1(N − 1;m2
N−1, m̃

2
N−1) and B2(N − 1;m2

N−1, m̃
2
N−1).

These mass parameters are to be further replaced by the RGEs

m2
N−1 = b2Nm2

N +O(κ) , m̃2
N−1 = b2Nm̃2

N +O(κ) , (3.18)
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but, to the order we take now, it is sufficient to take the leading terms. This leads to

B1(N − 1;m2
N−1, m̃

2
N−1) = B̃1(N − 1;m2

N , m̃2
N ) +O(κ) ,

B̃1(N − 1;m2
N , m̃2

N ) = 2(2N − 3)P̃N−1 ,

P̃N−1 =
1

(N − 1)(N − 2) + ρ2N (m2
N + (−1)N−2m̃2

N )
, (3.19)

and B̃2(N −1;m2
N , m̃2

N ) = 2(2N −3)P̃ 2
N−1. Note that we have used the relation b2Nρ2N−1 =

ρ2N . In eqs. (3.15)–(3.17), X (i)
N−1(κN ) (i = 1, 2) and Y(a)

N−1(κN ) mean that the N dependent

coefficient (−1)N−1 in (2.50)–(2.56) should be replaced with (−1)N−2 but the arguments

are still κ
(a)
N . Namely, the subscript refers to the N dependence of the functions X (i)

N−1(·)
and Y(a)

N−1(·) themselves. Thus, on these RGEs, the mass parameter dependence appears

through Bi coefficients, while the coupling constants dependence is from X and Y.

Before going to fixed point analysis, we take a look at the validity of 2-step RGEs just

presented. Here, a map from N × N theory to (N − 2) × (N − 2) theory is defined by

applying 1-step RG transformation twice, which can in principle be different from the one

defined by integrating out both l = 2L and l = 2L− 1 modes at the same time, if we make

some approximations. For example, one possible difference is from a graph involving two

out-mode propagators, where one is l = 2L mode and the other is l = 2L − 1. The latter

does include these contributions, while the former (the ones we have just presented) does

not due to the low energy approximation used to derive the RG transformation. The reason

is that in the first step RG integrating only l = 2L, all the other lines are assumed to have

sufficiently low angular momentum l ≪ L by the low energy approximation, but in order

to reproduce this graph one of them should have l = 2L−1 in the next step RG, and hence

the low energy approximation assumed in the first step does not work. Such difference can

be understood as potential error terms for iterative application of RG transformation with

low energy approximation. It is therefore important to estimate such difference.

In appendix B, we present formulas for expectation values by integrating l =

2L, · · · , 2L − n̂ + 1 out modes.10 We use them to derive the RGEs from N × N the-

ory to (N − 2) × (N − 2) theory by integrating out l = 2L, 2L − 1 modes. We do not

present the details in this paper, but one can follow the calculation by use of the formulas

in appendix B. We have found that, to O(κ) for the masses and to O(κ2) for the coupling

constants, the result is exactly the same as (3.15)–(3.17). The difference appears in O(κ2)

terms for the mass RGEs (3.15) and (3.16). Therefore, we can trust our RGEs for n̂ = 2

case. Interestingly, this observation also suggests that we may formulate n̂-step RGEs just

by applying the 1-step RGE n̂ times. To the leading order in 1/N expansion, the difference

can appear only in O(κ2) terms in the mass RGEs and O(κ3) terms in the coupling con-

stant ones. We cannot fully justify this observation for now, as we do not have a complete

formula for
〈

V(a)
2 V(b)

2

〉

c
expectation value, but the structure of the asymptotic formula for

9j symbols seems to support this conjecture. If this is the case, then we can carry out RG

analysis to (N − n̂)× (N − n̂) size, where n̂ ≪ N but can be very large. This completes the

10Precisely speaking, one of the formulas is only valid for n̂ = 2 case, due to a technical difficulty (we are

about to mention it). But it is sufficient for the current purpose.
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large-N RG analysis and, for example, enables us to draw the global picture of RG flows.

However, we will leave this for future study, and now concentrate on n̂ = 2 case. From the

following subsection, we look for fixed points and study their properties.

3.2.2 Fixed points

As before, we set

m2
N−2 = m2

N = m2
∗ , m̃2

N−2 = m̃2
N = m̃2

∗ , κ
(a)
N−2 = κ

(a)
N = κ

(a)
∗ , (3.20)

and solve the following six equations obtained from (3.15)–(3.17),

m2
∗ = b2Nb2N−1m

2
∗ + b2Nb2N−1

(

B∗
1(N)X (1)

N (κ∗) + B̃∗
1(N − 1)X (1)

N−1(κ∗)

)

, (3.21)

m̃2
∗ = b2Nb2N−1m̃

2
∗ + b2Nb2N−1

(

B∗
1(N)X (2)

N (κ∗) + B̃∗
1(N − 1)X (2)

N−1(κ∗)

)

, (3.22)

κ
(a)
∗ = b2Nb2N−1κ

(a)
∗ − b2Nb2N−1ρ

2
N

(

B∗
2(N)Y(a)

N (κ∗) + B̃∗
2(N − 1)Y(a)

N−1(κ∗)

)

, (3.23)

where

B∗
1(N) = B1(N ;m2

∗, m̃
2
∗) = 2(2N − 1)P ∗

N , B̃∗
1(N − 1) = 2(2N − 3)P̃ ∗

N−1 ,

B∗
2(N) = 2(2N − 1)P ∗

N
2 , B̃∗

2(N − 1) = 2(2N − 3)P̃ ∗ 2
N−1 ,

P ∗
N =

1

N(N − 1) + ρ2N (m2
∗ + (−1)N−1m̃2

∗)
,

P̃ ∗
N−1 =

1

(N − 1)(N − 2) + ρ2N (m2
∗ − (−1)N−1m̃2

∗)
. (3.24)

We introduce the following rescaled variables,

m2
∗ =

x
(1)
∗

ρ2NP ∗
N

, m̃2
∗ =

x
(2)
∗

ρ2NP ∗
N

, κ
(a)
∗ =

b2Nb2N−1 − 1

b2Nb2N−1ρ
2
NB∗

2(N)
y
(a)
∗ . (3.25)

P ∗
N and P̃ ∗

N−1 can be written in terms of x
(i)
∗ (i = 1, 2) as

P ∗
N =

1−
(

x
(1)
∗ + (−1)N−1x

(2)
∗

)

N(N − 1)
, (3.26)

P̃ ∗
N−1 =

1

N(N − 1)

1− (x
(1)
∗ + (−1)N−1x

(2)
∗ )

1− 2(−1)N−1x
(2)
∗ − 2

N

(

1− (x
(1)
∗ + (−1)N−1x

(2)
∗ )

)

. (3.27)

With these variables, the fixed point equations are

0 = x
(i)
∗ + X (i)

N (y∗) +
B̃∗

1(N − 1)

B∗
1(N)

X (i)
N−1(y∗) ,

0 = y
(a)
∗ − Y(a)

N (y∗)−
B̃∗

2(N − 1)

B∗
2(N)

Y(a)
N−1(y∗) . (3.28)
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They are again algebraic equations with numerical coefficients (for a given N). We assume

that fixed points x
(i)
∗ and y

(a)
∗ are of order 1, and then take the leading order coefficients

in the large-N limit. Since
B̃∗

2 (N−1)
B∗

2 (N) depends on x
(i)
∗ , these six equations are now coupled,

but again we can numerically find four real solutions for even and odd N respectively.

For even N , we find

(

x
(1)
∗ , x

(2)
∗ , y

(0)
∗ , y

(1)
∗ , y

(2α)
∗ , y

(2β)
∗

)

=
(

0, 0, 0, 0, 0, 0
)

, (3.29)
(

− 0.1671, 0.1671, 0.1902, −0.7608, 0.09582, 0.4748
)

,
(

− 0.06894, 0.1267, 0.08281, −0.6088, 0.1656, 0.4766
)

,
(

− 0.1198, −0.1270, 0.01456, 0.06177, 0.02912, 0.01820
)

.

Let us call these four solutions e(i) (i = 0, 1, 2, 3) in order. On the other hand, for odd N ,

(

x
(1)
∗ , x

(2)
∗ , y

(0)
∗ , y

(1)
∗ , y

(2α)
∗ , y

(2β)
∗

)

=
(

0, 0, 0, 0, 0, 0
)

, (3.30)
(

− 0.1252, 0.1252, 0.1068, −0.4274, 0.05383, 0.2667
)

,
(

− 0.05500, 0.1011, 0.05271, −0.3875, 0.1054, 0.3034
)

,
(

− 0.1606, −0.1703, 0.02616, 0.1110, 0.05233, 0.03271
)

,

and we call them o(i) (i = 0, 1, 2, 3). Apart from the Gaussian fixed point case, the

numerical computation is done with 15 digits working precision, but we round the results

to four significant figures and show them. So far, we have numerically confirmed these sets

of solutions and it seems very unlikely that there exists another.

At a glance, they do not seem to share common solutions. However, the physical

quantities are the original parameters m2
N and the others. The rescaling factors in (3.25)

also depends on N as in (2.43), (3.26) and thus we indeed find that the fixed point values

of the masses and the coupling constants are the same for both e(i) and o(i) given by

(

α2m2
∗, α

2m̃2
∗, α

2κ
(0)
∗ , α2κ

(1)
∗ , α2κ

(2α)
∗ , α2κ

(2β)
∗

)

=
(

0, 0, 0, 0, 0, 0
)

,
(

− 0.5010, 0.5010, 0.4274,−1.710, 0.2153, 1.067
)

,
(

− 0.2306, 0.4239, 0.2317,−1.703, 0.4634, 1.334
)

,
(

− 0.4826,−0.5119, 0.05909, 0.2507, 0.1182, 0.07387
)

, (3.31)

for i = 0, 1, 2, 3 in order. Here we have neglected subleading contributions in the 1/N

expansion and α is the scale fixed in our RG describing the fuzzy sphere limit given in (2.43).

Therefore, our 2-step RGE turns out to have the common fixed points for even and odd N

cases. It seems nontrivial because the fixed point equations (3.21)–(3.23) change for even

and odd N . However one would anticipate agreement of the fixed points, since the fixed

point action which describes the large-N limit of our matrix model should not depend on

evenness or oddness of N . Actually, with hindsight, we may have foreseen this agreement

from the fixed point equations (3.15)–(3.17) in the large-N limit. For example, we consider
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the leading order part of 1/N in (3.15), with ρ2N , b2Nb2N−1, and the phases left untouched,

N

4b2Nb2N−1

(

1− b2Nb2N−1

)

m2
∗

=
1

1 +
ρ2
N

N2 (m2
∗ + (−1)N−1m̃2

∗)
X (1)
N (κ∗) +

1

1 +
ρ2
N

N2 (m2
∗ + (−1)N−2m̃2

∗)
X (1)
N−1(κ∗) .

On the right hand side, the phase factors in the first term are all (−1)N−1, including the

ones in X (1)
N (κ∗), while (−1)N−2 for the second term. Thus the right hand side takes

the same form for even and odd N . One can easily check that this is true for the other

fixed point equations. Therefore, the fixed points in terms of the original variables should

be the same for even and odd N. Note that this argument is more or less formal; the

parameters have nontrivial N dependence of which we need to take care when we solve

the fixed point equations. We have just observed that the (leading order) structure of the

fixed point equations admits common solutions for even and odd N . At any rate, the fact

that the even/odd N have the same fixed points strongly supports validity of our RG with

antipode fields.

Furthermore, from the field theory point of view, our result also seems to be consistent

with the claim in [36]: it is true that when we integrate only the highest mode, the result

would not be a smooth function with different values for even and odd N as pointed out

in [35], but integrating all modes in calculating correlation functions makes them smooth

and completely regular in the 1/N expansion. In our large-N RG, we have only considered

the integration over the highest modes and hence the RG itself is not smooth in the sense

that it has the explicit oscillating phase (−1)N−1 as found in [35]. The point here is that

integration over all modes is realized in our approach by looking at the fixed points. There

the phase dependence in fact disappears and we have the well-defined fixed points. Note

that the large-N limit, more precisely the fuzzy sphere limit we are considering is exactly

the same as in [36].

We also notice that since the loop expansion parameter is in general ρ2Nκ
(a)
N P 2

NN as

seen in (2.47)–(2.49), the finite fixed points in (3.31) are consistent with our perturbative

approach of the RG. In the following subsection, we further investigate the scaling dimen-

sions of the operators associated with each fixed point, which also imply that our RG is

legitimate enough to capture universality in the large-N limit.

3.2.3 Linearized analysis and scaling dimensions

In this subsection, we carry out linearized analysis around the fixed points found in the

previous subsection.

We start with m2
N RGE. By subtracting (3.21) from (3.15), and defining δm2

N−2 =

m2
N−2 −m2

∗, δm
2
N = m2

N −m2
∗ and so on, we find, up to the linear order in δm2

N and the

others,

δm2
N−2 = b2Nb2N−1δm

2
N (3.32)

+ b2Nb2N−1

[

δm2
N∂m2

N
+ δm̃2

N∂m̃2
N
+
∑

a

δκ
(a)
N ∂

κ
(a)
N

]

×
(

B1(N ;m2
N , m̃2

N )X (1)
N (κN ) + B̃1(N − 1;m2

N , m̃2
N )X (1)

N−1(κN )

)
∣

∣

∣

∣

fixed point
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where m2
N , m̃2

N , and κ
(a)
N on the right hand side will be replaced with their fixed point

values after taking the derivatives. By noting that the mass derivatives only act on B1, B̃1

and the κ
(a)
N derivatives on X , we find from (3.2)

δm2
N−2 = b2Nb2N−1δm

2
N

+ b2Nb2N−1B
∗
2(N)X (1)

N (κ∗)(−ρ2N )
[

δm2
N + (−1)N−1δm̃2

N

]

+ b2Nb2N−1B̃
∗
2(N − 1)X (1)

N−1(κ∗)(−ρ2N )
[

δm2
N − (−1)N−1δm̃2

N

]

+ b2Nb2N−1

∑

a

δκ
(a)
N

[

B∗
1(N)∂

κ
(a)
∗

X (1)
N (κ∗) + B̃∗

1(N − 1)∂
κ
(a)
∗

X (1)
N−1(κ∗)

]

= b2Nb2N−1δm
2
N

+
1− b2Nb2N−1

B∗
2(N)

[

B∗
2(N)X (1)

N (y∗) + B̃∗
2(N − 1)X (1)

N−1(y∗)
]

δm2
N

+ (−1)N−1 1− b2Nb2N−1

B∗
2(N)

[

B∗
2(N)X (1)

N (y∗)− B̃∗
2(N − 1)X (1)

N−1(y∗)
]

δm̃2
N

+ b2Nb2N−1

∑

a

[

B∗
1(N)∂

y
(a)
∗

X (1)
N (y∗) +B∗

1(N − 1)∂
y
(a)
∗

X (1)
N−1(y∗)

]

δκ
(a)
N , (3.33)

where in the final part, we have noted that X (1)
N (κ∗) and X (1)

N−1(κ∗) are linear in κ
(a)
∗ and

used the rescaled variables (3.25) to express the coefficients by use of the values of the fixed

points we have just found. It should also be noted that since the rescaling factors depends

on m2
∗ and m̃2

∗ but not on κ
(a)
∗ , κ

(a)
∗ derivative does not act on the rescaling factors. In

the similar way, one can evaluate δm̃N−2 and δκ
(a)
N−2, and the result is summarized in the

following matrix form,

δvN−2 =
(

b2Nb2N−116 + M̃
)

δvN , (3.34)

where δvN = (δm2
N , δm̃2

N , δκ
(0)
N , δκ

(1)
N , δκ

(2α)
N , δκ

(2β)
N )T , and δvN−2 is defined in the similar

way. 16 is 6×6 unit matrix and M̃ is a 6×6 matrix whose elements are from the derivative

part of the previous relations,

M̃i1 =
1− b2Nb2N−1

B∗
2(N)

[

B∗
2(N)X (i)

N (y∗) + B̃∗
2(N − 1)X (i)

N−1(y∗)
]

,

M̃i2 = (−1)N−1 1− b2Nb2N−1

B∗
2(N)

[

B∗
2(N)X (i)

N (y∗)− B̃∗
2(N − 1)X (i)

N−1(y∗)
]

,

M̃ia = b2Nb2N−1

[

B∗
1(N)∂

y
(a)
∗

X (i)
N (y∗) +B∗

1(N − 1)∂
y
(a)
∗

X (i)
N−1(y∗)

]

,

M̃a1 =
2(b2Nb2N−1 − 1)2

b2Nb2N−1[B
∗
2(N)]2

(

B∗
3(N)Y(a)

N (y∗) + B̃∗
3(N − 1)Y(a)

N−1(y∗)

)

,

M̃a2 = (−1)N−1 2(b2Nb2N−1 − 1)2

b2Nb2N−1[B
∗
2(N)]2

(

B∗
3(N)Y(a)

N (y∗)− B̃∗
3(N − 1)Y(a)

N−1(y∗)

)

,

M̃ab =
1− b2Nb2N−1

B∗
2(N)

(

B∗
2(N)∂

y
(b)
∗

Y(a)
N (y∗) + B̃∗

2(N − 1)∂
y
(b)
∗

Y(a)
N−1(y∗)

)

, (3.35)
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where i = 1, 2. On the left hand side, the ordered set (i, a) is understood to label the indices

of the matrix. We have introduced B∗
3(N) = B∗

2(N)P ∗
N and B̃3(N − 1) = B̃2(N − 1)P̃ ∗

N−1

for simplicity. By recalling that the N dependence of each coefficient factor,

b2Nb2N−1 = 1 +O(N−1) , B∗
k(N) = B̃∗

k(N − 1) = O(N1−2k) (k = 1, 2, 3) , (3.36)

and the fact that the values of the fixed points are of order 1, one can see that all the ele-

ments of M̃ is of O(N−1). We are going to find the eigenvalues λ for this RG transformation

matrix b2Nb2N−116 + M̃ .

Before going, we make a remark on the eigenvalues of the above linearized transforma-

tion matrix and the scaling dimensions associated with a given fixed point. Suppose that

there exists an operator O∆ of scaling dimension ∆ at a fixed point. Near the fixed point,

the operator receives a scale transformation through the RG transformation,

O∆ → b∆NO∆ , (3.37)

where bN = ρN/ρN−1 is the scale factor associated with the RG transformation defined

in (2.41). As we have discussed in section 2.3, bN in general has the following form

b2N = 1 +
γ

N
+O(N−2) , (3.38)

where γ = 2 for the fuzzy sphere limit and γ = 1 for the NCFT limit. In the current

consideration, we treat a sequence of the transformations, N → N − 1 → N − 2, and then

the O∆ would have the following factor under the linearized transformation matrix,

b∆Nb∆N−1 = 1 +
γ∆

N
+O(N−2) . (3.39)

On the other hand, since our RG transformation only changes N → N − 2 in total, the

leading of the eigenvalue of the linearized RG should be 1. Moreover, (3.39) implies that

the eigenvalue in general takes a form λ = 1 + w/N + O(1/N2) (i.e. no fractional power

of N) in the 1/N expansion from which we find that an operator corresponding to an

eigenvector belonging to λ has the scaling dimension ∆ = w/γ. More concretely, (3.34)

gives an explicit form of the linearized RG in the 1/N expansion

b2Nb2N−116 + M̃ = 16 +
1

N
M +O(N−2) , (3.40)

where

M = 2γ16 + M̃
∣

∣

O(N−1)
, (3.41)

and M̃
∣

∣

O(N−1)
means that we take the leading order term (namely, that of O(1/N) as

mentioned below (3.36)) for each matrix element. From this form, it is manifest that

if O(1/N) terms are dropped, the eigenvalue of the RG transformation matrix is 1, the

sextuple root. Thus if v is an eigenvector belonging to an eigenvalue λ = 1 + w/N of the

linearized RG in (3.40), it follows that

Mv = wv, (3.42)
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up to O(1/N) corrections, and that v corresponds to an operator with scaling dimension

∆ = w/γ. The general argument above predicts that w is O(1) and this is indeed the case

because M is a matrix of O(1). Note that when the loop corrections are neglected, which

corresponds to dropping M̃ , the eigenvalue of M is 2γ (sextuple root), and the scaling

dimensions are all ∆ = 2, as anticipated.

Now, we can calculate the eigenvalue and the eigenvectors associated with each fixed

point for N even and odd respectively. For numerical study, we also need to fix a value of

γ from b2N defined above. Thus, we study γ = 2 case (the fuzzy sphere limit) and γ = 1

case (the NCFT limit) separately. It has been found that after substituting the values of

the fixed points, the matrix elements (3.35) of even and odd N coincides, up to very small

numerical errors, for suitable pairs of fixed point values. Therefore, in this 2-step RGE

case, even and odd N cases share the same scaling dimensions (critical exponents) and

the corresponding eigenvectors (namely, associated operators) are also the same. As in the

case of the fixed point values, we can see that this agreement comes from the structure of

the linearized RGE. For example, from the middle expression in (3.33), the coefficient of

δm2
N (namely the matrix element M̃11) reads

−ρ2Nb2Nb2N−1

[

B∗
2(N)X (1)

N (κ∗) + B̃∗
2(N − 1)X (1)

N−1(κ∗)
]

.

If we consider the leading order part of 1/N with ρ2N , b2Nb2N−1, and the phases left un-

touched, it becomes

−
4ρ2Nb2Nb2N−1

N3

[ X (1)
N (κ∗)

[1 +
ρ2
N

N2 (m2
∗ + (−1)N−1m̃2

∗)]
2
+

X (1)
N−1(κ∗)

[1 +
ρ2
N

N2 (m2
∗ + (−1)N−2m̃2

∗)]
2

]

.

Again, the phase factors in the first term in the square bracket are all (−1)N−1, including

the ones in X (1)
N (κ∗), while (−1)N−2 for the second term. Thus, if the fixed point values

of κ
(a)
∗ are the same for even and odd N , which has already been confirmed, the matrix

element M̃11 is the same for even and odd N . One can check that this is also true for

all the other matrix elements. Thus, we can conclude that even and odd N cases share

the common eigenvalues and eigenvectors at the leading order in the large-N limit, and

this will be true for any choice of γ as long as fixed point values in terms of the physical

variables coincide.

The expression (3.35) is suitable for numerical study. We present the eigenvalues w

and the corresponding normalized eigenvectors on the basis (δm2, δm̃2, δκ(0), δκ(1), δκ(2α),

δκ(2β)) respectively for each fixed point e(i) (or equivalently o(i)) for i = 0, 1, 2, 3 in order.

For the fuzzy sphere limit (γ = 2), we find11

e(0)(Gaussian) :

w = 4 (sextuple) (1, 0, 0, 0, 0, 0) , (0, 1, 0, 0, 0, 0) ,

1√
26

(0, 0, 1,−4, 0, 3) ,
1√
17

(0, 0,−2, 2, 3, 0) ,

11Here, we present numerical eigenvectors as row vectors.
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e(1) :

w = 4.000 (double)
(

0.8541, 0.1223, 0.1043, −0.4173, 0.05256, 0.2604
)

w = 2.884± 1.548i
(

− 0.4987± 0.01239i, 0.4987∓ 0.01239i, −0.1406, 0.5625,

− 0.1511∓ 0.1870i, −0.2708± 0.1870i
)

w = 0.9568
(

− 0.6558, −0.6078, 0.3538, 0.02579, −0.1540, −0.2257
)

w = −5.308
(

− 0.1434, 0.1434, 0.2011, −0.8044, 0.09024, 0.5131
)

,

e(2) :

w = 4.000 (double)
(

− 0.8572, −0.09639, −0.05270, 0.3874, −0.1054, −0.3033
)

w = 2.762± 1.424i
(

0.3712∓0.1930i, −0.6057, 0.08151± 0.002246i, −0.5079±0.03613i,

0.2629± 0.1596i, 0.2013∓0.2389i
)

w = −1.113
(

− 0.1627, 0.6135, 0.2559, −0.2851, −0.4879, −0.4608
)

w = −4.687
(

− 0.06735, 0.1282, 0.1035, −0.7557, 0.1935, 0.5998
)

,

e(3) :

w = 4.000 (double)
(

− 0.9862, 0.1435, −0.01657, −0.07029, −0.03313, −0.02071
)

w = 3.991
(

0.6790, 0.7213, 0.02751, 0.1169, 0.05517, 0.03445
)

w = 3.767
(

− 0.8224, −0.5475, 0.01618, −0.1122, −0.09538, −0.04384
)

w = 2.667
(

0.9526, −0.1993, −0.1283, 0.05703, 0.04414, 0.1767
)

w = −5.325
(

0.5274, 0.5594, −0.1290, −0.5474, −0.2580, −0.1613
)

. (3.43)

From the discussion above, the scaling dimensions ∆ are given by ∆ = w/2 for the

fuzzy sphere limit case. Thus, the scaling dimensions associated with each fixed point are

e(1) : ∆ = 2.000 (double), 1.442± 0.7739i, 0.4784, −2.654,

e(2) : ∆ = 2.000 (double), 1.381± 0.7120i, −0.5563, −2.344,

e(3) : ∆ = 2.000 (double), 1.996, 1.884, 1.334, −2.662, (3.44)

where e(0), namely Gaussian fixed point, case always has ∆ = 2 as sextuple one, and is

omitted from the list. From (3.43) and (3.44), we obtain the following observations:

• There exist doubly degenerate ∆ = 2.000 within numerical errors for all cases. Nu-

merically two eigenvectors with ∆ = 2.000 also coincide with each other. The eigen-

vectors get significant contribution from δm2
N component; about 97% for e(3) case,

and about 73% for e(1), e(2). Thus, we can naturally identify them as a “mass” term

around each fixed point. They are the most relevant operator for all fixed points.

• For e(1) and e(2), we have complex eigenvalues (thus complex scaling dimensions)

and eigenvectors associated with them. The matrix M is a real matrix, and then

complex eigenvalues and eigenvectors have to show up in complex conjugate pairs.

• The e(3) fixed point has only real eigenvalues. There exist four relevant operators,

and three of them have almost ∆ = 2 value. It may be interesting to consider to

define an interacting continuum field theory around it.
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We make closer look at operators with ∆ = 2.000 and those with complex ∆. It is

observed that when we estimate the fixed point values (3.31) without enough precision,

two eigenvalues near 2.000 are not degenerate and eigenvectors belonging to them are in

fact distinct. However, as the precision grows, both eigenvalues come close to 2.000 and

eigenvectors also tend to coincide, and eventually we have single eigenvector with doubly

degenerate eigenvalue 2.000 within much precision. Physically important question here is

whether the eigenspace with the scaling dimension 2.000 has dimension one or two, because

it tells us the number of independence relevant operators with the scaling dimension of

mass. The above observation seems to suggest that the eigenspace has dimension one and

hence we have a single mass operators. At first sight, it seems strange that we have two

types of the mass operators trN
(

φ2
)

and trN
(

φφA
)

in the original action (2.1). In fact,

it should be noticed that given sequence of matrices for which two eigenvalues tend to be

degenerate and their eigenvectors tend to coincide, the dimension of the eigenspace in the

limit is not always one.12 Hence we have not had a definite answer to this question yet for

lack of the exact value of the fixed points, but we note that the two types of the mass term

in the original action (2.1) can be written in terms of the modes φlm as

1

N
trN

(

ρ2Nm2
N

2
φ2 +

ρ2Nm̃2
N

2
φφA

)

= ρ2N
∑

l,m

(

m2
N

2
φlmφ∗

lm + (−1)l
m̃2

N

2
φlmφ∗

lm

)

= ρ2N
∑

l: even,m

m2
N + m̃2

N

2
φlmφ∗

lm + ρ2N
∑

l: odd,m

m2
N − m̃2

N

2
φlmφ∗

lm. (3.46)

Thus the two mass terms can be essentially regarded as the mass terms for even l and

odd l modes. We do not expect that they are distinct operators with scaling dimension of

mass.13 In fact, in the fixed points in terms of physical parameters (3.31) as well as the

eigenvalues and eigenvectors (3.43), we do not find any difference between even and odd l

and this fact ensures well-definedness of the large-N limit. Hence it may be reasonable to

conclude that we have only one operator with ∆ = 2 in all cases e(i) (or equivalently o(i))

for i = 0, · · · , 3.
There exists a pair of complex eigenvalues in the fixed points e(1), e(2). As mentioned,

the complex eigenvalue has to come in a pair; λ = 1 + w/N with w = reiϑ and w∗ (r ≥ 0

and −π ≤ ϑ < π). By switching to a real eigenvector space, the linearized RGE matrix

12For example, consider the sequence of matrices

(

1 −ǫ2

ǫ 1

)

, (3.45)

with ǫ = 1/m (m ∈ N). Then it is easy to see for finite m we have two distinct eigenvalues each of which

has a one-dimensional eigenspace, and that as m → ∞, the eigenvalues and eigenvectors tend to agree.

Nevertheless in the m → ∞ limit we have a two-dimensional eigenspace of the eigenvalue 1.
13Since flipping the sign of m̃2

N is just exchanging the mass terms for l even and odd modes, this ob-

servation leads to a puzzle why there is no fixed point with the sing flipped. We do not have a definite

answer now.
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restricted to this eigenspace becomes

P

(

1 + w
N 0

0 1 + w∗

N

)

P−1 = 12 +
r

N

(

cosϑ − sinϑ

sinϑ cosϑ

)

, (3.47)

for a unitary matrix P . Thus, in the space of real couplings, the corresponding flow of

RGE transformation (near the fixed point) is a spiral. When it acts on a unit vector, the

second part gives a vector of length r/N ≪ 1. If Rew > 0, namely cosϑ > 0, this tiny

part is outward from the fixed points, while when Rew < 0, i.e. cosϑ < 0, it points toward

the fixed point. Thus, the former is interpreted as a spiral source, and the latter is a spiral

sink. When cosϕ = 0 exactly, the flow of RGE transformation forms a limit cycle, and we

need further subleading corrections in order to verify that this is the case. In the present

case the values of ϑ for each complex eigenvalues are

e(1) : ϑ = 0.4925 = 0.1568π , e(2) : ϑ = 0.4760 = 0.1515π . (3.48)

They are somehow close values, and correspond to spiral source behavior.

3.2.4 Fixed points by original parameters and extra scaling factor

So far, we have studied the properties of the fixed points for the fuzzy sphere limit case

(γ = 2) . However, as we have stressed in the last part of section 3.2.2, physical RGE flow

has to be considered in the physical parameter space spanned by m2
N , m̃2

N , κ
(a)
N . When we

look at the positions of the fixed points in this space given by (3.25), the finiteness of x
(i)
∗

and y
(a)
∗ in (3.29) and (3.30) implies that the fixed points are located in a finite region in the

case of the fuzzy sphere limit, where ρ2N scales like N2, but they go to infinity in the NCFT

limit, N → ∞ with θ = 2ρ2N/N fixed. The latter invalidates our perturbative calculation.

In the case of well-known d = 4 − ǫ RG analysis in scalar field theory, we need to

include a nontrivial wave function renormalization factor for a nontrivial fixed point to be

realized. If we canonically normalize the kinetic term, as we do here, this extra factor gives

rise a nontrivial N dependence to the couplings. In the previous study [1], we introduced

an extra factor c(N) = cNχ attached to the coupling constant and tuned χ to realize the

NCFT limit with a finite coupling constant. Now, we try to introduce the same extra factor

and reconsider the NCFT limit. We replace the coupling constants as

κ
(a)
M → c(M)κ

(a)
M , (M = N − 2 , N − 1 , N) . (3.49)

From (3.25), one can easily see that χ should be 1 for κ
(a)
∗ to be finite in the NCFT limit.

Then it is obvious that we cannot keep m2
∗ and m̃2

∗ finite by c(N), but as long as all κ
(a)
∗

remain finite and small, our perturbative approach is justified. From this observation, we

also see that we can use the common c(N) factor for all the couplings. In RGEs (3.15)–

(3.17), we make the replacement (3.49), and do the analysis again. We now introduce a

bit different rescaling variables,

m2
∗ =

ξx
(1)
∗

ρ2NP ∗
N

, m̃2
∗ =

ξx
(2)
∗

ρ2NP ∗
N

, κ
(a)
∗ =

ξ

c(N)

b2Nb2N−1 − 1

b2Nb2N−1B2(N)ρ2N
y
(a)
∗ , (3.50)

– 29 –



J
H
E
P
0
6
(
2
0
1
5
)
0
6
2

where

ξ =
b2Nb2N−1 −

c(N−2)
c(N)

b2Nb2N−1 − 1
=

γ + χ

γ
+O(N−1) . (3.51)

Note that in the NCFT limit of our interest, γ = 1 and χ = 1, and then ξ = 2 +O(N−1),

while in the fuzzy sphere limit, γ = 2 and χ = 0, and so ξ = 1, where (3.50) is reduced

to (3.25) (when c = 1). One can check that by use of these variables, the fixed point

equations take the same form as (3.28). Thus, we can use the same set of numerical

solutions of O(1) given in (3.29) and (3.30).

It should be noted that the propagator factor is modified too,

P ∗
N =

1− ξ
(

x
(1)
∗ + (−1)N−1x

(2)
∗

)

N(N − 1)
,

P̃ ∗
N−1 =

1

N(N − 1)

1− ξ(x
(1)
∗ + (−1)N−1x

(2)
∗ )

1− 2ξ(−1)N−1x
(2)
∗ − 2

N

(

1− ξ(x
(1)
∗ + (−1)N−1x

(2)
∗ )

)

, (3.52)

and so are B∗
1(N) and the other factors correspondingly. These equations with ξ = 1

reproduce (3.26) and (3.27). This modification does affect the position of the fixed points

in terms of the physical parameters. By use of (3.50), we find

(

θm2
∗/N, θm̃2

∗/N, cθκ
(0)
∗ , cθκ

(1)
∗ , cθκ

(2α)
∗ , cθκ

(2β)
∗

)

=















































(

− 0.4006, 0.4006, 0.1367,−0.5466, 0.06885, 0.3411
)

e(1) solution ,
(

− 0.1982, 0.3643, 0.08557,−0.6291, 0.1711, 0.4925
)

e(2) solution ,
(

− 0.4861,−0.5156, 0.02998, 0.1272, 0.05996, 0.03748
)

e(3) solution ,
(

− 0.5010, 0.5010, 0.2137,−0.8548, 0.1077, 0.5334
)

o(1) solution ,
(

− 0.2423, 0.4454, 0.1279,−0.9404, 0.2558, 0.7363
)

o(2) solution ,
(

− 0.3865,−0.4100, 0.01895, 0.08040, 0.03790, 0.02369
)

o(3) solution ,

(3.53)

Therefore, the fixed point values do not match for even and odd N in this case. This

may imply that this modification is not capable of defining theory around fixed points in

a well-defined manner, but we keep moving on to the linearized analysis. At first sight it

looks strange that the fixed point values of m2 and m̃2 are divergent in the large-N limit

as O(N). However, as discussed in [36], this is the limit that leads to a massive scalar field

theory with the well-known phase factor associated with each vertex on the Moyal plane.

The linearized RGE (3.34) is also modified as

δvN−2 =

(

b2Nb2N−1

(

12
c(N)

c(N−2)14

)

+ M̄

)

δvN , (3.54)

where M̄ is modified from M̃ as

M̄ =

(

12
1

c(N−2)14

)(

ξM̃ij M̃ib

ξ2M̃aj ξM̃ab

)(

12

c(N)14

)

, (3.55)
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where i, j = 1, 2 and a, b = 0, 1, 2α, 2β, and M̃ij and the others are the matrix elements

given in (3.35). Note that the factors B∗
i (N) and B̃i(N − 1) are also modified as in (3.52).

We again set the eigenvalue λ = 1 + w/N . It is not difficult to see that, to the leading

order in the 1/N expansion, we can drop the first and the third matrices in the definition

of M̄ (3.55). Thus, we can carry out numerical study as before. It should be noted that we

cannot forget these matrices when we fix the eigenvectors. Actually, to obtain well-defined

eigenvectors, we need to include 1/N corrections. Thus, in the following we present the

calculated values of the eigenvalues w, for even and odd N cases respectively.

For even N ,

e(1) : w = 4.000, 2.044± 0.5627i, 2.000, 0.9568, −5.513,

e(2) : w = 4.000, 2.618, 2.077, 1.235, −0.3694, −4.642,

e(3) : w = 4.000, 3.470, 2.296, 2.000, 0.9338, −17.76, (3.56)

and when N is odd,

o(1) : w = 4.000, 2.000, 0.4404± 1.683i, −2.865, −16.51,

o(2) : w = 4.000, 1.988, 0.9761± 1.082i, −3.180, −10.88,

o(3) : w = 4.000, 3.769, 2.667, 2.339, 2.000, −5.673, (3.57)

and for the common Gaussian fixed point (e(0) and o(0)), the eigenvalues are w = 2 (double)

and w = 4 (quadruple). Thus, we can observe that the scaling dimensions associated with

fixed points do not match for even and oddN . They indeed share some properties; there are

one ∆ = 4 and one ∆ ≃ 2 operators for each case, for example, but the scaling dimensions

should be universal and are expected to coincide for even and odd N . Together with the

fact that the location of the fixed points does not agree, we conclude that this modification

utilizing c(N) factor will not lead well-defined fixed points.

Although it might be possible to find a well-defined NCFT limit by choosing c(N) in

a more elaborate way, it is worth pointing out that at least perturbatively the antipode

transformation is incompatible with the NCFT limit. Actually in this limit we have to

restrict ourselves to the representation space of SU(2) with J3 = −(N − 1)/2 + O(1)

corresponding to a region near the south pole of the fuzzy sphere [36]. Hence it is evident

that even if the original matrix φ is in this space, φA inevitably does not belong to it. In fact,

we cannot figure out a possible NCFT limit of the most simple antipode interaction (1.6).

Since in (3.53) we found the fixed points in the NCFT limit with physical coupling constants

as small as we can trust perturbation theory (at least by choosing c appropriately), this

is a problem which should be addressed even perturbatively. We can attribute the lack

of consistent fixed points and scaling dimensions to this problem. In [36] it is confirmed

that in the NCFT limit we have been discussing, a nonplanar diagram on the fuzzy sphere

reproduces the well-known phase factor on the Moyal plane and as a consequence it has

IR divergence via the UV/IR mixing [34]. Since in the RG we look at the IR physics, it is

very likely that non-existence of a well-defined fixed points in the NCFT limit reflects the

UV/IR mixing. It is indeed true that the antipode interactions originate from the loop of

– 31 –



J
H
E
P
0
6
(
2
0
1
5
)
0
6
2

the highest modes and we could not find any nontrivial fixed point including them in the

NCFT limit in contrast to the fuzzy sphere limit. It would be interesting to examine more

how the UV/IR mixing appears in our RG, in particular, in a nonperturbative manner.

4 Conclusions and discussions

In this paper, we have formulated the large-N renormalization group (RG) for the rank

N matrix model which defines a scalar field theory on a fuzzy sphere. As a result of

coarse-graining procedure in the large-N RG, there (inevitably) appears an antipode field,

which is defined as a scalar field twisted by a sign factor fluctuating with respect to its

angular momentum. The antipode field is characteristic of noncommutative nature of the

geometry. For example, it would not emerge if we regularize the theory by use of simple

cutoff. Thus according to the spirit of the RG, we start from the action with it describing

new nonlocal interactions between fields and antipode ones.

It has been discussed that the appearance of the antipode field spoils the validity of

the RG structure [35]. On the other hand, it has been also shown [36] that by integrating

momenta of intermediate states over the whole range, the renormalized action becomes

a smooth function of the external momenta. Furthermore, such a smooth function gives

rise to a characteristic phase factor related to UV/IR mixing effects under a suitable limit

to noncommutative field theory. These observations lead us to expectation that the RG

analysis provides well-defined fixed point theory that would correspond to a field theory

on a fuzzy sphere. Actually it turns out that the renormalization group equation (RGE)

contains the oscillating phase factor (−1)N−1 and that the fixed points given by these

RGEs are somehow pathological. It gives several continuum series of critical points, critical

lines for even N , but it only provides isolated four points in the case of odd N . The

only common fixed point is Gaussian one, and properties of Gaussian fixed point are also

different with respect to N . Thus, we may not expect that RGE is well defined in this

case. However, the arguments above suggest that this undesirable behavior would possibly

be cured if we iterate the RG transformation to include the effects of integrating out lower

momentum modes. Hence we consider an RG transformation from the original size N ×N

to (N − 2) × (N − 2) one as a next step. This can be obtained by repetition of the RG

transformation just given, but to the lower order in perturbation theory it agrees with the

RGE defined by integrating out l = 2L and 2L−1 modes. A fixed point of the RGE in this

case describes the large-N limit with keeping evenness or oddness of N . In fact, we find four

fixed points for even and odd N case respectively, and also confirm that these four points

are at the same locations. We further carry out a linearized analysis around them, and also

observe that they provide equivalent linearized theories with the same scaling dimensions

and the set of scaling operators. This is consistent with the claim in [36], because we take

account of the integration over lower modes by looking at the fixed points and then obtain

the well-defined large-N limit on the fuzzy sphere.

More precisely, we consider two types of large-N limits; the fuzzy sphere limit in which

the fundamental scale of the fuzzy sphere is kept, and the NCFT limit that corresponds

to zooming up a point on a fuzzy sphere to obtain a noncommutative plane. In the case
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of the NCFT limit, we try to make the locations of the fixed points in a region where

perturbation theory is valid by introducing an extra N dependence to couplings. This

however does not work well; the positions of fixed points are altered differently for even

and odd N cases, and are no longer the same. The linearized analysis also results in an

inconsistent outcome for even and odd N . Thus, this trial may not lead to a nice NCFT

limit. This would reflect the IR singularity due the UV/IR mixing on the noncommutative

plane, because the antipode field originates from the loop of UV modes and resulting

interactions between fields on the antipode points are IR phenomena. Thus we find sharp

contrast with the fuzzy sphere limit and the NCFT limit, and this observation could be

regarded as a (nonperturbative) manifestation of the claim made in [36], that the fuzzy

sphere does not have the UV/IR mixing, but that the noncommutative anomaly there

yields the UV/IR mixing in the NCFT limit.

In the usual Wilsonian RG, the more we repeat the RG transformation, the more

kinds of interaction terms we have. In order to handle them, we usually argue that most

of them are irrelevant and hence we could drop them. In the present case, we examine

two-dimensional noncommutative field theories by using our large-N RG. Thus we cannot

invoke such argument. In fact, our RG also gives rise to several derivative corrections

as shown explicitly in e.g. (2.30)–(2.32). It is true that they are suppressed in 1/N , are

derivative terms written as the double commutator and hence can be neglected at least

in low energy regime, but we should include them in the original action because they

are actually generated via the RG. However, since we are in two dimensions, we have in

principle infinitely many of them (because the scalar field has dimension zero) and it is

impossible. Thus it is fair to say that we have found the fixed points and made analyses

around them in the subspace of the coupling constants with such derivative corrections

turned off.

In our RG including antipode interactions, two well-defined fixed points have complex

conjugate eigenvalues of the linearized RG transformation. This result is naturally inter-

preted as the fact that these fixed points are spiral sources in the two-dimensional subspace

corresponding to operators associated with these eigenvalues. Such spiral behavior is quite

rare in the ordinary Wilsonian RG in field theories. The reasons why we have it are ex-

plained as follows: in order to form a spiral flow, multiple operators need to be mixed

in the RG. However, in the ordinary Wilsonian RG we consider operators with definite

quantum numbers like the dimensions. It is then quite hard that operators with different

quantum numbers are mixed. In contrast, in the present case we consider field theories in

two dimensions in which a scalar field has the vanishing scaling dimension at least around

the Gaussian fixed point. Moreover, the most essential reason would be that we have exact

degeneracy of operators, i.e. a field and its antipode counterpart like φ and φA. Their

degeneracy is exact and is expected to hold even nonperturbatively as suggested by the

property given in (A.27) in appendix A. Thus they would be easily mixed and triggers the

spiral behavior. Note that scaling dimensions around a fixed point are usually controlled

by the conformal field theory, but in our case it is not available due to noncommutativity.

The other nontrivial fixed point has real scaling dimensions and eigenvectors. On

top of that, the fixed point values of the coupling constants for the quartic terms are all
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positive,14 in contrast to the other two fixed points where there exist negative ones. Thus

it is possible that the theory around there can be well-defined, and the existence of such

a fixed point may open a possibility that we can define an interacting field theory in a

noncommutative space constructively. Such field theory, if any, would provide us a hint

what kind of degrees of freedom emerges in the large-N limit from the matrices. This will

be an interesting future direction.

It would also be interesting to examine how nonperturbative phenomena in the large-

N limit are captured in the large-N RG. Among others, it is quite nice if supersymmetry

breaking shown in [43] in the matrix model describing the lower dimensional superstring

theory [44] can be described via the large-N RG.
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A Scalar field theory on a fuzzy sphere and useful formulas

We briefly introduce scalar field theory on a fuzzy sphere, which can be represented as a

hermitian matrix model. We also present some interesting features of antipode projection,

introduced in section 1.1, and also provide some formulas which are useful in our com-

putation. We make the introduction concise. Readers may refer to [1] for more detailed

introduction.

A.1 Scalar field theory on a fuzzy sphere

We consider the following real scalar field theory on S2 of radius ρ,

S =

∫

ρ2dΩ

4π

(

− 1

2ρ2
(Liφ(θ, ϕ))

2 +
m2

2
φ(θ, ϕ)2 +

g

4
φ(θ, ϕ)4

)

, (A.1)

where a derivative operator Li = −iǫijkxj∂k is related to the Laplacian on a unit S2 as

L2 = −∆S2 = −
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)

. (A.2)

The field φ(θ, ϕ) can be expanded by use of the spherical harmonics as

φ(θ, ϕ) =
∞
∑

l=0

l
∑

m=−l

φlmYlm(θ, ϕ) , (A.3)

14Note that the values of the masses for the quadratic terms are negative, and this is quite analogous to

the situation in usual φ4 theory in D < 4.
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and the action can be written in terms of the modes φlm. The reality condition implies that

φ∗
lm = φl−m. The spherical harmonics can be represented by use of symmetric traceless

tensor c
(lm)
i1···il

as

Ylm(θ, ϕ) = ρ−l
∑

i1···il

c
(lm)
i1···il

xi1 · · ·xil , (A.4)

where xi (i = 1, · · · , 3) are the standard flat coordinate of R3. Y ∗
lm = (−1)mYl−m implies

that c
(lm)∗
i1···il

= (−1)mc
(l−m)
i1···il

, and the parity property Ylm(π − θ, ϕ + π) = (−1)lYlm(θ, ϕ) is

obvious from this expression since it corresponds to xij → −xij for j = 1, · · · , l.
Now, we introduce a fuzzy sphere. Let Li (i = 1, 2, 3) be the generators of spin

L = (N − 1)/2 representation of SU(2). We define N ×N matrices x̂i = αLi, where α is

a parameter of length dimension. To retain the relation
∑

i(x̂
i)2 = ρ2, α is related to ρ by

ρ2 = α2(N2 − 1)/4. Notice that

[x̂i, x̂j ] = iαǫijkx̂
k, (A.5)

which implies that α parametrizes noncommutativity on the fuzzy sphere. Using these x̂i,

we can define N ×N matrices Tlm, which we call the fuzzy spherical harmonics, as

Tlm = ρ−l
∑

i1···il

c
(lm)
i1···il

x̂i1 · · · x̂il . (A.6)

Its hermitian conjugate is T †
lm = (−1)mTlm. Let |s〉 be an N dimensional representation

space of Tlm with −L ≤ s ≤ L. The matrix element of Tlm can be determined by Wigner-

Eckart theorem, up to a normalization. As in [1], we use the normalization of [41]

(Tlm)ss′ = 〈s|Tlm

∣

∣s′
〉

= (−1)L−s

(

L l L

−s m s′

)

√

(2l + 1)N , (A.7)

where the middle factor in the parenthesis is the Wigner’s 3j symbol. The orthogonality

and the completeness thus follow,

1

N
trN

(

TlmT †
l′ m′

)

= δll′δmm′ , (A.8)

1

N

∑

lm

(Tlm)s1s2(T
†
lm)s3s4 = δs1s4δs2s3 , (A.9)

and Tlm spans a complete basis for N×N matrices. Finally, corresponding to the Laplacian

operator on S2 (A.2), we have

−∆φ ≡ [Li, [Li, φ]] , where −∆Tlm = l(l + 1)Tlm . (A.10)

We thus define a mapping rule15 from a scalar field theory on S2 to N ×N matrix counter

part as

15Similar mapping rule for noncommutative superspace is given in [42].
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1. function → matrix:

φ(θ, ϕ) =
2L
∑

l=0

l
∑

m=−l

φlmYlm(θ, ϕ) → φ =
2L
∑

l=0

l
∑

m=−l

φlmTlm. (A.11)

2. integration → trace:

∫

dΩ

4π
φ(θ, ϕ) =

1

N
trNφ. (A.12)

Notice that this holds as equality.

3. Laplacian → double adjoint action:

−∆Ωφ(θ, ϕ) → [Li, [Li, φ]] . (A.13)

By following these rules, scalar field theory on a fuzzy sphere that corresponds to (A.1) is

defined as

S =
ρ2

N
trN

(

− 1

2ρ2
[Li, φ]

2 +
m2

2
φ2 +

g

4
φ4

)

. (A.14)

By putting the subscript N to ρ and m2 for convenience and replacing g with κ
(0)
N , we have

our starting action (1.1). Note that according to the mapping rule (A.11) and by using the

fusion of Tlm given in (A.21) later, the matrix product φ1φ2, with φi =
∑

limi
(φi)limi

Tlimi

(i = 1, 2), corresponds to a noncommutative product of fields on S2 given as

φ1(θ, ϕ) ∗ φ2(θ, ϕ) =
∑

li mi (i=1,··· ,3)

(

(φ1)l1m1Fl1m1 l2m2
l1,m3(φ2)l2m2

)

Yl3m3(θ, ϕ), (A.15)

where Fl1m1 l2m2
l1,m3 is shown in (A.21). From this expression, we recognize that this

star product is indeed noncommutative because the fusion Fl1m1 l2m2
l1,m3 is not symmetric

under interchange between (l1,m1) and (l2,m2).

A.2 Useful formulas of the fuzzy spherical harmonics

In this appendix useful formulas of the N ×N matrix Tlm defined in (A.7) are presented.

First, the orthogonality (A.8) and the completeness (A.9) lead to

1

N

∑

lm

trN (O1Tlm) trN

(

O2T
†
lm

)

= trN (O1O2) , (A.16)

1

N

∑

lm

trN

(

O1TlmO2T
†
lm

)

= trNO1 trNO2, (A.17)

for arbitrary N ×N matrices O1, O2. These properties are used to combine double traces

into single traces.
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By use of the formulas for the 3j, 6j, and 9j symbols [38], the traces of Tlm can be

evaluated as

trN (Tl1m1Tl2m2Tl3m3) = N
3
2

3
∏

i=1

(2li + 1)
1
2 (−1)2L+

∑3
i=1 li

(

l1 l2 l3
m1 m2 m3

){

l1 l2 l3
L L L

}

,

trN (Tl1m1Tl2m2Tl3m3Tl4m4) (A.18)

= N2
4
∏

i=1

(2li+1)
1
2

∑

lm

(−1)−m(2l+1)

(

l1 l4 l

m1 m4 m

)(

l l3 l2
−m m3 m2

){

l1 l4 l

L L L

}{

l l3 l2
L L L

}

(A.19)

= N2
4
∏

i=1

(2li+1)
1
2 (−1)l2+l3

∑

lm

(−1)l−m(2l+1)

(

l1 l3 l

m1 m3 m

)(

l l2 l4
−m m2 m4

)











l1 l3 l

L L l2
L L l4











.

(A.20)

The curly brackets with six and nine entries are the 6j and 9j symbols, respectively. The

relevant formulas are also summarized in [1].

From (A.8) and (A.18), we can derive the following useful fusion formula,

Tl1m1Tl2m2 =
∑

l3 m3

Fl1m1 l2m2
l3m3Tl3m3 ,

Fl1m1 l2m2
l3m3 = N

1
2

3
∏

i=1

(2li + 1)
1
2 (−1)2L+

∑3
i=1 li+m3

(

l1 l2 l3
m1 m2 −m3

){

l1 l2 l3
L L L

}

.

(A.21)

By using this twice, one can easily derive a “similarity transformation” property by

T2L−n m,

2L−n
∑

m=−2L+n

(−1)mT2L−n mTl1m1T2L−n −m = N(2N − 1− 2n)

{

L L l1
L L 2L− n

}

(−1)n+l1Tl1m1 .

(A.22)

If the matrix sandwiched by T2L−n m and T †
2L−n m is an identity (namely l1 = 0), one finds

2L−n
∑

m=−2L+n

(−1)mT2L−n m1NT2L−n −m = (2N − 1− 2n)1N . (A.23)

A.3 Properties of the antipode projection

In this appendix, we show that the antipode projection enjoys the following property:

(φ1φ2 · · ·φm)A = φA
m · · ·φA

2 φ
A
1 . (A.24)

Namely, the antipode of a string of operators is the string of the opposite ordering with

antipode operators.
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Proofs. For two operators (φψ)A, by using the fusion formula (A.21),

(φψ)A = N
1
2

3
∏

i=1

(2li+1)
1
2 (−1)2L+

∑3
i=1 li+m3

(

l1 l2 l3
m1 m2 −m3

){

l1 l2 l3
L L L

}

φl1m1ψl2m2T
A
l3m3

= ψAφA . (A.25)

Thus,

(φ1φ2 · · ·φm)A = (φ2 · · ·φm)A φA
1 = · · · = φA

m · · ·φA
2 φ

A
1 , (A.26)

which concludes the proof.

From trN (Tlm) = Nδl0δm0, it immediately follows that tr(φA) = tr(φ). This leads to

the following reflection property of the antipode projection inside a trace,

trN
(

φ1 · · ·φn

)

= trN
(

φA
n · · ·φA

1

)

. (A.27)

Namely, we can reverse the ordering of the fields inside a trace by putting the antipode

projection to all of them.

A.4 Useful formulas of 3nj-symbols

In this appendix, we summarize useful formulas we use our perturbative calculations. The

details require more formulas than collected here, but the readers may refer to the previous

paper [1], or the textbook [38]. Many of the asymptotic relations for the 6j symbols here are

derived by applying the Stirling’s formula to Racah’s exact expression of the 6j symbols.

A.4.1 Asymptotic formulas and shift relations of 6j symbols

asymptotic formulas Racah’s asymptotic formula: for a, b, c,≫ f ,
{

a b c

b a f

}

=

{

a a f

b b c

}

≃ (−1)a+b+c+f

√

(2a+ 1)(2b+ 1)
Pf (cos θ) , (A.28)

cos θ =
a(a+ 1) + b(b+ 1)− c(c+ 1)

2
√

a(a+ 1)b(b+ 1)
. (A.29)

Thus, for n, l ≪ L = (N − 1)/2,
{

L L l

L L 2L− n

}

=
(−1)n

2L+ 1

[

1− l(l + 1)(2n+ 1)

2L
+O(L−2)

]

=
(−1)n

N

[

1− l(l + 1)

N
(2n+ 1) +O(N−2)

]

. (A.30)

For n,m ≪ L, by use of the Racah formula and Stirling’s formula,
{

L L 2L− n

L L 2L−m

}

= 2−4L−2

√

2π

L
· 4n−mLn−2m

m
∑

t=0

(−1)t−m(16L3)tn!m!

[(t+ n−m)!]2(t!)2(m− t)!

(

1 +O
(

L−1
))

, (A.31)

– 38 –



J
H
E
P
0
6
(
2
0
1
5
)
0
6
2

where we have assumed n ≥ m without loss of generality due to the symmetry of the 6j

symbol. In the similar way, for m ≪ L, one can find
{

2L−m 2L 2L

L L L

}

=
(−1)2L−m3

3
4 (2π)

1
4

8
√
m!

L
m
2
− 3

4

(

3

4

)3L−m
2
(

1 +O(L−1)
)

. (A.32)

Shift of the argument. If R ≫ 1 and a, b, c are arbitrary,

(−1)2R

{

a b c

d+R e+R f +R

}

≃ (−1)c+d+e

√

2R(2c+ 1)
C

c(d−e)
a(f−e) b(d−f), (A.33)

where Ccγ
aα bβ is the Clebsch-Gordan coefficient16 whose relation to the 3j symbol is

Ccγ
aαbβ = (−1)a−b+γ

√
2c+ 1

(

a b c

α β −γ

)

. (A.34)

When a + b + c is an even number, the Clebsch-Gordan coefficient satisfies the following

shift property,

a+ b+ c = even : Cc0
a1b−1 = Cc0

a−1b1 =
c(c+ 1)− a(a+ 1)− b(b+ 1)

2
√

a(a+ 1)b(b+ 1)
Cc0
a0b0 . (A.35)

By using (A.33), one can derive the following relation
{

l l1 l2
L L L± 1

}

≃
C l20
l±1 l1∓1

C l20
l0l10

{

l1 l2 l3
L L L

}

. (A.36)

Since this is based on the asymptotic relation (A.33), it holds only to the leading order in

the large-L limit. When l + l1 + l2 is even, by (A.35), one finds
{

l l1 l2
L L L± 1

}

≃ l2(l2 + 1)− l(l + 1)− l1(l1 + 1)

2
√

l(l + 1)l1(l1 + 1)

{

l l1 l2
L L L

}

. (A.37)

A.4.2 Asymptotic formula for 9j symbols

We consider an asymptotic expansion formula for a 9j symbol,










l1 l2 l

L L 2L−m

L L 2L− n











, (A.38)

where l, l1, l2,m, n ≪ L. The symmetry of the 9j symbol suggests that this is invariant

under the simultaneous exchange of l1 ↔ l2 and n ↔ m. The basic strategy to derive a

formula is the same as [1], namely by use of the decomposition into 6j symbols,










l1 l2 l

L L 2L−m

L L 2L− n











=
∑

X

(−1)2X(2X+1)

{

l l1 l2
L L X

}{

L X l

2L−m 2L− n L

}{

L L l1
L X 2L−m

}

,

(A.39)

16The formula presented in [38] needs a phase factor given here.
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where the triangular relations of 6j symbols imposes the conditions,

L−min(l, l1,m) ≤ X ≤ L+min(l, l1) , |m− n| ≤ l ≤ 2L ≪ 4L−m− n ,

max(m− l, 0) ≤ n ≤ m+ l , max(n− l, 0) ≤ m ≤ n+ l , (A.40)

and the usual ones for l, l1, and l2. The last two 6j symbols are evaluated by use of the

exact expression à la the Racah and Stirling’s formula, as presented in appendix B in [1]. In

the previous study, we need only n = m = 0 case. In this case, we need to take care of the

range of the summation in Racah’s formula and the calculation is much more complicated.

We thus work out only for the case 0 ≤ n,m ≤ 1, and present the result,











l1 l2 l

L L 2L− n

L L 2L− n











(A.41)

=
(−1)N−1+l

√
2

2N

{

l l1 l2
L L L

}

[

1− 2n+1

4

2l1(l1+1)+2l2(l2+1)−l(l+1)− 1

N
+O(N−2)

]

,











l1 l2 l

L L 2L

L L 2L− 1











=
(−1)2L+l+1

√
2N

16L5/2

[

√

l(l + 1)

{

l l1 l2
L L L

}

+ 2
√

l1(l1 + 1)

{

l l1 l2
L L L+ 1

}

]

,

(A.42)

where n = 0, 1. The case with m = 1 and n = 0 can be obtained by exchanging l1 and l2
in the second formula. In the second formula, the shift relation (A.37) implies that these

two 6j symbols are of the same order. Thus, the second 9j with n = 1 and m = 0 itself is

subleading compared to the first one, namely n = m = 0, 1 cases.

B Calculations of the expectation values

In this appendix we evaluate generic forms of the expectation values that are necessary

to derive renormalization group equations. We first provide general expressions for expec-

tation values by integrating out 2L, 2L − 1, · · · , 2L − n̂ + 1 out modes as in (2.2). It is

convenient to define a part of the out modes with the angular momentum l = 2L− n as

φout
n =

∑

m

φout
2L−n mT2L−n m , (B.1)

where n ≪ N . Then the out mode field (2.3) can be written as φout =
∑n̂−1

n=0 φ
out

n. Note

that from the action (2.1) the propagator is still of diagonal form,

〈

φout
2L−n1m1

φout
2L−n2m2

〉

0
= δn1n2δm1+m2(−1)m1PN−n1 ,

PN−n =
1

(N−n)(N−n−1)[1+(−1)N−n−1ζN−n]+ρ2N−n[m
2
N−n+(−1)N−n−1m̃2

N−n]
.

(B.2)
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We first consider

〈

trN
(

O1 φ
out O2 φ

out
)〉

0
=

n̂−1
∑

n,m=0

〈

trN
(

O1 φ
out

n O2 φ
out

m

)〉

0
, (B.3)

where Oi (i = 1, 2) are generic polynomials of φin and φinA. It is sufficient to calculate the

following piece,
〈

trN
(

O1 φ
out

n O2 φ
out

n′

)〉

0

= δnn′PN−n

∑

m

(−1)mtrN (O1 T2L−n mO2 T2L−n −m)

= δnn′N(2N − 1− 2n) PN−n

∑

l,m

{

L L l

L L 2L− n

}

(−1)n+l(O2)lmtrN
(

O1Tlm

)

= δnn′(2N − 1− 2n) PN−ntrN

[

O1OA
2 − 2n+ 1

N
O1(−∆)OA

2 +O(N−2)

]

, (B.4)

where we have used (A.22) and (A.30). In the final form, OA
2 can be evaluated by use

of a property of the antipode projection (A.24). −∆O stands for [Li, [Li,O]] introduced

in (A.10).

Next we consider
〈

trN
(

O1φ
outO2φ

out
)

trN
(

φout
)4
〉

c

=

n̂−1
∑

n3,··· ,n8=0

〈

trN
(

O1φ
out

n3
O2φ

out
n4

)

trN
(

φout
n5
φout

n6
φout

n7
φout

n8

)〉

c
. (B.5)

We need to evaluate connected graphs, which are divided into
〈

trN
(

O1φ
out

n3
O2φ

out
n4

)

trN
(

φout
n5
φout

n6
φout

n7
φout

n8

)〉

c

= 4δn3n6δn4n5δn7n8

〈

trN
(

O1φ
out

n3
O2φ

out
n4

)

trN
(

φout
n4
φout

n3
φout

n5
φout

n5

)〉

c
(B.6)

+ 4δn3n5δn4n6δn7n8

〈

trN
(

O1φ
out

n3
O2φ

out
n4

)

trN
(

φout
n3
φout

n4
φout

n5
φout

n5

)〉

c
(B.7)

+ 4δn3n7δn4n5δn6n8

〈

trN
(

O1φ
out

n3
O2φ

out
n4

)

trN
(

φout
n4
φout

n5
φout

n3
φout

n5

)〉

c
, (B.8)

where the out modes with the same index ni are to be contracted. We evaluate them

separately. It is easy to see from the following calculation that (B.6) and (B.7) give the

same answer, and we evaluate it as
〈

trN
(

O1φ
out

n3
O2φ

out
n4

)

trN
(

φout
n4
φout

n3
φout

n5
φout

n5

)〉

c

= PN−n3PN−n4PN−n5

∑

m3,m4,m5

(−1)m3+m4+m5

× trN
(

O1T2L−n3 m3O2T2L−n4 m4

)

trN
(

T2L−n4 −m4T2L−n3 −m3T2L−n5 m5T2L−n5 −m5

)

= δn3n4

(

PN−n3

)2
PN−n5N

2(2N − 1− 2n5)(2N − 1− 2n3)

×
∑

l,m

{

L L l

L L 2L− n3

}

(−1)n+l(O2)lmtrN
(

O1Tlm

)

= δn3n4N
(

PN−n3

)2
(2N − 1− 2n3) · PN−n5(2N − 1− 2n5)

× trN

[

O1OA
2 − 2n3 + 1

N
O1(−∆)OA

2 +O(N−2)

]

, (B.9)
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where we have again used (A.22) and (A.30). On the other hand, the rest term (B.8) is

〈

trN
(

O1φ
out

n3
O2φ

out
n4

)

trN
(

φout
n4
φout

n5
φout

n3
φout

n5

)〉

c

= δn3n4

(

PN−n3

)2
PN−n5N

2(2N − 1− 2n5)
∑

m3

(−1)m3

×
{

L L 2L− n3

L L 2L− n5

}

(−1)2L−n3+n5trN
(

O1T2L−n3m3O2T2L−n3 −m3

)

. (B.10)

According to the asymptotic formula (A.31), this is exponentially small for large-N .

Finally, we consider

〈

trN
(

O1φ
outO2φ

out
)

trN
(

O3φ
outO4φ

out
)〉

c

=
n̂−1
∑

n5,··· ,n8=0

〈

trN
(

O1φ
out

n5
O2φ

out
n6

)

trN
(

O3φ
out

n7
O4φ

out
n8

)〉

c
. (B.11)

Again, the connected pieces are

〈

trN
(

O1φ
out

n5
O2φ

out
n6

)

trN
(

O3φ
out

n7
O4φ

out
n8

)〉

c

= δn5n8δn6n7

〈

trN
(

O1φ
out

n5
O2φ

out
n6

)

trN
(

O3φ
out

n6
O4φ

out
n5

)〉

c

+ δn5n7δn6n8

〈

trN
(

O1φ
out

n5
O2φ

out
n6

)

trN
(

O3φ
out

n5
O4φ

out
n6

)〉

c
. (B.12)

Due to the cyclic symmetry of the trace, the former is equal to the latter with O3 ↔ O4.

We evaluate the latter as

〈

trN
(

O1φ
out

n5
O2φ

out
n6

)

trN
(

O3φ
out

n5
O4φ

out
n6

)〉

c

= PN−n5PN−n6

∑

m5,m6

(−1)m5+m6
∑

li,mi

4
∏

i=1

(Oi)limi

× trN (Tl1m1T2L−n5m5Tl2m2T2L−n6m6) trN (Tl3m3T2L−n5 −m5Tl4m4T2L−n6 −m6)

= N4PN−n5PN−n6(4L−2n5+1)(4L−2n6+1)
∑

m5,m6

(−1)m5+m6
∑

li,mi

4
∏

i=1

(Oi)limi

√

2li+1

× (−1)2L−n5+l2+2L−n6+l4
∑

l̃,m̃,l̃′,m̃′

(−1)l̃−m̃+l̃′−m̃′

(2l̃ + 1)(2l̃′ + 1)

×
(

l1 l2 l̃

m1 m2 m̃

)(

l̃ 2L− n5 2L− n6

−m̃ m5 m6

)(

l3 l4 l̃′

m3 m4 m̃′

)(

l̃′ 2L− n5 2L− n6

−m̃′ −m5 −m6

)

×











l1 l2 l̃

L L 2L− n5

L L 2L− n6





















l3 l4 l̃′

L L 2L− n5

L L 2L− n6










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= N4PN−n5PN−n6(2N − 2n5 − 1)(2N − 2n6 − 1)
∑

li,mi

4
∏

i=1

(Oi)limi

√

2li + 1

× (−1)l2+l4
∑

l̃,m̃

(−1)l̃−m̃(2l̃ + 1)

(

l1 l2 l̃

m1 m2 m̃

)(

l3 l4 l̃

m3 m4 −m̃

)

×











l1 l2 l̃

L L 2L− n5

L L 2L− n6





















l3 l4 l̃

L L 2L− n5

L L 2L− n6











. (B.13)

As noted in appendix A.4.2, we do not have a general asymptotic formula for this 9j symbol

at hand. Only available ones are those with 0 ≤ n5, n6 ≤ 1; namely we can only evaluate

the n̂ = 2 case. As shown by (A.41) and (A.42), the leading order contributions are from

n5 = n6 = 0 and 1. The result is

〈

trN
(

O1φ
out

nO2φ
out

n

)

trN
(

O3φ
out

nO4φ
out

n

)〉

c

=
NB2(N−n)

2
trN

[

OA
1 O2OA

4 O3−
2n+1

2N

(

−
∑

i

∆(i)
(

OA
1 O2OA

4 O3

)

+OA
1 O2∆

(

OA
4 O3

)

)

+ (O3 ↔ O4) +O(N−2)

]

, (B.14)

where n = 0 and 1, and B2(N − n) = 2(2N − 2n− 1)
(

PN−n

)2
is used. Note that ∆(i) acts

only on Oi. n5 6= n6 case is 1/N suppressed compared to these contributions.

Finally, we cite the calculation of
〈

V(0)
3 V(0)

3

〉

0
from (C.16) of [1],

〈

trN (φinφout3)trN (φinφout3)
〉

c

= P 3
N (2N − 1)3N4

∑

(l1,m1),(l′1,m
′

1)∈Λin

φin
l1m1

φin
l′1 m

′

1

√

(2l1 + 1)(2l′1 + 1)

×
∑

l,l′

(2l + 1)(2l′ + 1)

{

l1 2L l

L L L

}{

l′1 2L l′

L L L

}{

l 2L 2L

L L L

}{

l′ 2L 2L

L L L

}

×
∑

m1,··· ,m3

∑

m,m′

(−1)m1+m2+m3−m−m′

(

l1 2L l

m1 m4 m

)(

l 2L 2L

−m m3 m2

)

×
[(

l′1 2L l′

m′
1 −m2 m′

)(

l′ 2L 2L

−m′ −m3 −m4

)

+ (permutations of m2, · · · ,m4)

]

. (B.15)

The triangular conditions for the first two 6j symbols impose l = 2L−m and l′ = 2L−n with

m ≤ l1 ≪ L and n ≤ l′1 ≪ L. According to the asymptotic formula of 6j symbols (A.32),

this contribution is indeed exponentially suppressed for large L, as argued in (2.28). We

can therefore drop this term from our perturbative calculation.
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