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The charged particles produced in nucleus-nucleus collisions are divided into two parts. One is from the hot and dense matter
created in collisions. The other is from leading particles. The hot and dense matter is assumed to expand according to unified
hydrodynamics and freezes out into charged particles from a space-like hypersurface with a fixed proper time of 𝜏FO. The leading
particles are conventionally taken as the particles which inherit the quantum numbers of colliding nucleons and carry off most
of incident energy. The rapidity distributions of the charged particles from these two parts are formulated analytically, and a
comparison is made between the theoretical results and the experimental measurements performed in Au-Au and Pb-Pb collisions
at the respective BNL-RHIC and CERN-LHC energies. The theoretical results are well consistent with experimental data.

1. Introduction

Since the elementary work of Landau in 1953 [1], relativistic
hydrodynamics has been applied to calculate a large number
of variables developed in the context of nucleon or nucleus
collisions at high energy. In particular, owing to the success-
ful description of elliptic flow measured at the Relativistic
Heavy-Ion Collider (RHIC) at Brookhaven National Labo-
ratory (BNL) [2] and recently at the Large Hadron Collider
(LHC) at CERN [3], the hydrodynamic research has entered
into a more active phase. It has now been widely accepted as
one of the best approaches for understanding the space-time
evolution of the matter created in such collisions [4–10].

Although at present there are powerful numerical
approaches to deal with certain hydrodynamic problems, this
will require a very large scale of calculation and skillful
sophisticated techniques to avoid instabilities. On the con-
trary, analytical solutions, since their simple and transparent
forms, usually providing uswith an invaluable insight into the
characteristics of matter created in collisions, are always our

pursuit of the goal though usually at the price of some ideal
assumptions.

Due to the tremendous complexity of hydrodynamic
equations, the progress in finding exact solutions is not going
well. Up till now, most of this work mainly involves 1 + 1

dimensional flows with simple equation of state [11–19]. The
3 + 1 dimensional hydrodynamics is less developed, and no
general exact solutions are known so far.

An important application of 1 + 1 dimensional hydro-
dynamics is the analysis of the pseudorapidity distributions
of the charged particles produced in nucleon or nucleus col-
lisions. In this paper, by taking into account the effect of
leading particles, we will discuss such distributions in the
context of unified hydrodynamics [14]. The main points
of this model are listed in Section 2. Its solution is then
exploited in Section 3 to formulate the rapidity distributions
of the charged particles frozen out from fluid at a space-like
hypersurface with a fixed proper time 𝜏FO. In Section 4, the
theoretical results are compared with the experimental data
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performed in nucleus-nucleus collisions at BNL-RHIC and
CERN-LHC energies. Section 5 is about conclusions.

2. A Brief Description of
the Unified Hydrodynamics

The 1 + 1 expansion of a perfect fluid follows the equations:
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where 𝑡 is the time, 𝑧 is the longitudinal coordinate along
beam direction, and
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is the energy-momentum tensor, and 𝑔
𝜇]

= diag(1, −1,
−1, −1), 𝑢𝜇, 𝜀, and 𝑝 are, respectively, the metric tensor, 4-
velocity, energy density, and pressure of fluid. For a constant
speed of sound, 𝜀 and 𝑝 are related by the equation of state:

𝜀 = 𝑔𝑝, (3)

where 1/√𝑔 = 𝑐
𝑠
is the speed of sound. Investigations have

shown that 𝑔 changes very slowly with energy and centrality
[20–23]. For a given incident energy, it can be well taken as a
constant.

Using (2) and (3), and noticing the light-cone compo-
nents of the 4-velocity
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where 𝜕
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The key ingredient of unified hydrodynamics is that it
generalizes the relation between 𝑦 and 𝜂ST by
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where𝐹
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) are a priori arbitrary function obeying equation
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where 𝐴 is a constant. In case of
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Equation (7) reduces to 𝑦 = 𝜂ST, returning to the boost-
invariant picture of Hwa-Bjorken. Otherwise, (7) describes
the nonboost-invariant geometry of Landau. Accordingly,
(7) unifies the Hwa-Bjorken and Landau hydrodynamics
together. It paves a way between these two models.

Substituting (7) into (6), we have
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where 𝑓
±
= 𝐹
±
/𝐻 and 𝐻 is an arbitrary constant. From the

above equations, we can get the entropy density of fluid:
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where, by definition
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and in terms of 𝑙
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where ℎ = 𝐻/𝐴.

3. The Rapidity Distributions of the Charged
Particles Frozen out from Fluid

By using (11), we can obtain the rapidity distributions of the
charged particles frozen out from fluid or hot and dense
matter created in collisions. To this end, we first evaluate the
entropy distributions of the fluid on a space-like hypersurface
with a fixed proper time 𝜏FO, from which the fluid will freeze
out into the charged particles. Such distributions take the
form
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where 𝑛
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Also d𝜆𝜇 = d𝜆𝑛𝜇, and d𝜆 is the space-like infinitesimal length
element along hypersurface
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Then, the expression on the right-hand side of (15) is
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Substituting it into (21) and then into (15), we have
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In the above equation, the right-hand side is evaluated at
the hypersurface with proper time 𝜏FO. Known from (18), this
hypersurface can be taken as
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Figure 1:The rapidity distributions of the specified charged particles
in central Au-Au collisions at √𝑠NN = 200GeV. The scattered
symbols are the experimental measurements [24–26]. The solid
curves are the results from unified hydrodynamics of (28).

Comparing the above equation with (19), we get
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Inserting it together with (11) into (25) and noticing the
proportional relation between entropy and the number of the
charged particles, we have
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where 𝐶(𝑏,√𝑠NN), independent of rapidity 𝑦, is an overall
normalization constant. 𝑏 is the impact parameter, and√𝑠NN
is the center-of-mass energy per pair of nucleons.

4. Comparison with Experimental
Measurements and the Rapidity
Distributions of Leading Particles

From (28), we can get the rapidity distributions of the
charged particles generated in collisions. Figure 1 presents
such distributions for 𝜋

+, 𝜋−, 𝐾+, 𝐾−, 𝑝, and 𝑝 resulting
from 5% most central Au-Au collisions at √𝑠NN = 200GeV.
The symbols are the experimental measurements given by



4 Advances in High Energy Physics

BRAHMS Collaboration at BNL-RHIC [24–26]. The solid
curves are the theoretical predictions from (28). From this
figure, we can see that (28) coincideswell with the experimen-
tal data of all the charged particles with the exception of 𝑝.
For proton 𝑝, an obvious discrepancy appears in the rapidity
interval of 𝑦 = 2.0 ∼ 3.0. This might be caused by the effects
of leading particles.

The leading particles are believed to be formed outside
the nucleus, that is, outside the colliding region [27, 28].
The generation of leading particles is therefore free from
fluid evolution. Accordingly, their rapidity distributions are
beyond the scope of hydrodynamics and should be treated
separately.

In our previous work [6], we once argued that the rapidity
distribution of leading particles takes the Gaussian form:
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where 𝑁Lead(𝑏, √𝑠NN), 𝑦0(𝑏, √𝑠NN), and 𝜎 are, respectively,
the number of leading particles, central position, andwidth of
distribution. This conclusion comes from the consideration
that, for a given incident energy, different leading particles
resulting from each time of nucleus-nucleus collisions have
approximately the same amount of energy or rapidity. Then,
the central limit theorem [29, 30] guarantees the rationality of
above argument. Actually, as one can see from the shapes of
the curves in Figure 1 any kind of charged particles resulting
in collisions forms a good Gaussian rapidity distribution.

Term 𝑦
0
(𝑏, √𝑠NN) in (29) is the average position of

leading particles. It should increase with incident energy and
centrality. The value of 𝜎 relies on the relative energy or
rapidity differences among leading particles. It should not, at
least not apparently, dependon the incident energy, centrality,
and even colliding system. The concrete values of 𝑦

0
and 𝜎

can be determined by tuning the theoretical predictions to
experimental data.

By definition, leading particles mean the particles which
carry on the quantumnumbers of colliding nucleons and take
away most of incident energy. Then, the number of leading
particles is equal to that of participants. For nucleon-nucleon,
such as p-p collisions, there are only two leading particles.
They are separately in projectile and target fragmentation
region. For an identical nucleus-nucleus collision, the num-
ber of leading particles is

𝑁Lead (𝑏, √𝑠NN) =
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where 𝑁Part(𝑏, √𝑠NN) is the total number of participants
equaling [31, 32]
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where the integral variable 𝑠 is the transverse coordinates
in the almond-shaped colliding region with respect to the

center of one nucleus. 𝑛Part(𝑏, √𝑠NN, 𝑠) is the total number of
participants in the flux tube with a unit bottom area, located
at position 𝑠 along beam direction. It takes the form
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where 𝜎inNN(√𝑠NN), the inelastic nucleon-nucleon cross sec-
tion, increases slowly with energy. For instance, for √𝑠NN =

200, 130, 62.4GeV and 2.76 TeV, 𝜎inNN = 42, 41, 36, and
64± 5mb [33, 34], respectively.The subscripts𝐴 and 𝐵 in the
above equation represent the projectile and target nucleus.
𝑇
𝐴
(𝑠) or 𝑇

𝐵
(𝑠 − 𝑏) is the nuclear thickness function with the

value equaling the nucleon number in the flux as defined
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is the well-known Woods-Saxon distribution of nuclear
density. 𝑎 and 𝑟

0
, taking somewhat different values in different

papers [31], are, respectively, the skin depth and radius of
nucleus. In this paper, we take the value of 𝑎 = 0.54 fm
and 𝑟

0
= 1.12𝐴

1/3
− 0.86𝐴

−1/3 fm, where 𝐴 is the mass
number of nucleus. Here, 𝜌
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Known from the investigations in [6], (31) can give a correct
result in different nucleus-nucleus collisions at different
centrality and energy from BNL-RHIC to CERN-LHC scales.

From rapidity distributions, we can get pseudorapidity
distributions by relation [35]
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Figure 2: The pseudorapidity distributions of the charged particles produced in different centrality of Au-Au collisions at √𝑠NN = 200GeV.
The solid dots are the experimental measurements [36]. The dashed curves are the results from unified hydrodynamics of (28). The dashed-
dotted curves are the results from leading particles of (29). The solid curves are the sums of the dashed and dashed-dotted ones.

Taking into account the contributions from both the freeze-
out of fluid and leading particles, the rapidity distributions in
(36) can be written as

d𝑁(𝑏,√𝑠NN, 𝑦)

d𝑦
=

d𝑁Fluid (𝑏, √𝑠NN, 𝑦)
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.

(38)

Inserting the above equation or the sum of (28) and
(29) into (36), we can get the pseudorapidity distributions
of the charged particles. The results are shown in Figures
2, 3, 4, and 5, which are, respectively, for distributions in
different centrality of Au-Au collisions at √𝑠NN = 200, 130,
and 62.4GeV and in different centrality of Pb-Pb collisions

at √𝑠NN = 2.76TeV. The solid dots are the experimental
data [36, 37].The dashed curves are the results obtained from
unified hydrodynamics of (28).The dashed-dotted curves are
the results got from leading particles of (29).The solid curves
are the results acquired from (38), that is, the sums of the
dashed and dashed-dotted curves. It can be seen that the
theoretical results are in good agreement with experimental
measurements.

In calculations, the parameter 𝑔 in (28) takes the values
of 𝑔 = 8.16 and 5.55 in the respective Au-Au and Pb-
Pb collisions at all of the concerned incident energy and
centrality [20]. The width parameter 𝜎 in (29) takes the
value of 0.85 and 0.90 in Au-Au and Pb-Pb collisions,
respectively, at different incident energy and centrality. As
the analyses given above, 𝜎 is independent of incident energy
and centrality and also not evidently dependent on colliding



6 Advances in High Energy Physics

0

200

400

600

800

0

200

400

0

100

200

300

0

50

100

150

0 2 4 6

0 2 4 0 2 4−6 −4 −2 −4 −2

−4 −2

6/−6 6/−6

𝜂

𝜂𝜂

0–3% 3–6% 6–10%

10–15% 15–20% 20–25%

25–30% 30–35% 35–40%

40–45% 45–50%

d
N

A
u-
Au

/d
𝜂

d
N

A
u-
Au

/d
𝜂

d
N

A
u-
Au

/d
𝜂

d
N

A
u-
Au

/d
𝜂

Figure 3: The pseudorapidity distributions of the charged particles produced in different centrality of Au-Au collisions at √𝑠NN = 130GeV.
The solid dots are the experimental measurements [36]. The dashed curves are the results from unified hydrodynamics of (28). The dashed-
dotted curves are the results from leading particles of (29). The solid curves are the sums of the dashed and dashed-dotted ones.

system. The center parameter 𝑦
0
in (29) takes the values of

2.64–2.89, 2.63–2.83, 2.61–2.82, and 3.40–3.97 for centrality
from small to large in Au-Au collisions at √𝑠NN = 200, 130,
and 62.4GeV and in Pb-Pb collisions at √𝑠NN = 2.76TeV,
respectively. As pointed out earlier, for a given colliding
system, 𝑦

0
increases with energy and centrality.

5. Conclusions

By generalizing the relation between ordinary rapidity 𝑦 and
space-time rapidity 𝜂ST, unified hydrodynamics integrates the
features of Hwa-Bjorken and Landau two famous hydrody-
namic models together. In case of linear equation of state,
this hydrodynamic model can be solved analytically. The
exact solutions can then be used to formulate the rapidity

distributions of the charged particles frozen out from the
fluid at the space-like hypersurface with a fixed proper time
𝜏FO. The unified hydrodynamics is successful in describing
the rapidity distributions of 𝜋±, 𝐾±, and 𝑝. However, it is
not as good in describing the corresponding distributions of
protons which might contain the leading particles.

In our previous work [6], we once discussed the same
distributions in the context of evolution-dominated hydro-
dynamics. This hydrodynamic model differs from the one
used in this paper in twoways. (1) Different initial conditions:
the former assumes that the fluid is initially at rest. Its
motion is totally dominated by the following evolution. The
latter, as mentioned above, employs the initial condition
of (7). It plays a connection between Hwa-Bjorken and
Landau hydrodynamics. (2) Different freeze-out conditions:
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Figure 4: The pseudorapidity distributions of the charged particles produced in different centrality of Au-Au collisions at √𝑠NN = 62.4GeV.
The solid dots are the experimental measurements [36]. The dashed curves are the results from unified hydrodynamics of (28). The dashed-
dotted curves are the results from leading particles of (29). The solid curves are the sums of the dashed and dashed-dotted ones.

the former assumes that the freeze-out of fluid occurs at the
space-like hypersurface with a fixed temperature 𝑇FO. The
latter, as stated above, takes such hypersurface as one with a
fixed proper time 𝜏FO.

As for leading particles, we argue that they possess the
Gaussian rapidity distribution normalized to the number
of participants. This is the same as that proposed in [6].
Here, for the purpose of completion and applications, we list
out the most points of this proposition. It is interesting to
notice that the investigations of the present paper once again
show that, for a given colliding system, the central position
𝑦
0
of Gaussian rapidity distribution increases with incident

energy and centrality, while the width 𝜎 of the distribution is
irrelevant to them and also almost independent of colliding
system. These are consistent with the conclusions arrived at
in [6].

Comparing with experimental data carried out by
BRAHMS and PHOBOS Collaboration at BNL-RHIC in
different centrality of Au-Au collisions at √𝑠NN = 200, 130,
and 62.4GeV and by ALICE Collaboration at CERN-LHC in
different centrality of Pb-Pb collisions at√𝑠NN = 2.76TeV, we
can see that, although the charged particles frozen out from
fluid play a dominant role, leading particles are also essential
in characterizing the measured distributions. Only after the
total contributions from both unified hydrodynamics and
leading particles are taken into account together can the
experimental measurements be matched up properly.
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