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We construct rotating boson stars and Myers–Perry black holes with scalar hair (MPBHsSH) as fully non-
linear solutions of five dimensional Einstein gravity minimally coupled to a complex, massive scalar field. 
The MPBHsSH are, in general, regular on and outside the horizon, asymptotically flat, and possess angular 
momentum in a single rotation plane. They are supported by rotation and have no static limit. Such hairy 
BHs may be thought of as bound states of boson stars and singly spinning, vacuum MPBHs and inherit 
properties of both these building blocks. When the horizon area shrinks to zero, the solutions reduce to 
(in a single plane) rotating boson stars; but the extremal limit also yields a zero area horizon, as for singly 
spinning MPBHs. Similarly to the case of equal angular momenta, and in contrast to Kerr black holes with 
scalar hair, singly spinning MPBHsSH are disconnected from the vacuum black holes, due to a mass gap. 
We observe that for the general case, with two unequal angular momenta, the equilibrium condition for 
the existence of MPBHsSH is w = m1�1 + m2�2, where �i are the horizon angular velocities in the two 
independent rotation planes and w, mi , i = 1, 2, are the scalar field’s frequency and azimuthal harmonic 
indices.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and motivation

Apart from vacuum and electro-vacuum, scalar-vacuum is the 
simplest model that may be considered in Einstein gravity. In its 
simplest form, this theory corresponds to couple (minimally) to 
gravity one or more real massless scalar fields with standard ki-
netic terms and without self-interactions. Unlike electro-vacuum, 
however, such scalar-vacuum does not yield any new stationary, 
asymptotically flat and regular black hole (BH) solutions, as com-
pared to pure vacuum. This conclusion is based on a four dimen-
sional no-scalar-hair theorem [1] (see [2] for a review). The physics 
rationale is twofold. Firstly, scalar fields do not have an associated 
Gauss law, albeit they may have a local conservation law, for in-
stance, if there is a global symmetry. Thus, if some amount of 
scalar field falls into a BH, then, at least classically, no memory 
of it is expected to be found in the exterior spacetime. Secondly, 
some amount of a free, minimally coupled scalar energy placed in 
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the neighbourhood of a BH is expected to either disperse to infin-
ity or be absorbed by the BH. And neither of these fates endows 
the BH spacetime with an eternally lingering scalar field in the 
vicinity of the event horizon.

A minimal addition to scalar-vacuum, however, produces a re-
markable change of affairs. Adding a mass term in a theory with 
two equally massive real scalar fields, or equivalently, with a sin-
gle massive complex scalar field, new regular, asymptotically flat 
BH solutions exist, both in four spacetime dimensions (D = 4) – 
Kerr BHs with scalar hair [3–5] – and in D = 5 – Myers–Perry BHs 
with scalar hair (MPBHsSH) [6] (see also the recent work [7] for 
a D = 4 generalization). The underlying physics justifying the ex-
istence of non-trivial scalar fields in these two examples has clear 
differences. In the Kerr case, the new solutions can be inferred 
at the linear level due to the existence of test field scalar clouds 
at the threshold of superradiant instabilities [8,9,3]. In the Myers–
Perry case, by contrast, there are no superradiant instabilities for 
a massive scalar field [10]; the scalar hair found in [6] is intrinsi-
cally non-linear and originates a mass gap between the hairy and 
the vacuum Myers–Perry BHs. But similarities exist: in both cases 
i) the gravitational theory admits asymptotically flat, everywhere 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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regular, solitonic solutions without a horizon, boson stars [11,12], 
for which the scalar field has a harmonic time dependence with 
frequency w; ii) the hairy BH solutions can be regarded as adding 
a rotating BH horizon within a spinning boson star [4], with the 
hairy BHs inheriting properties of both these building blocks; in 
particular whereas the D = 4 boson stars continuously connect to 
Minkowski spacetime, the D = 5 boson stars (with two equal rota-
tions) already possess a mass gap with respect to the Minkowski 
vacuum [13]; iii) a central condition for the existence of all known 
scalar hairy BHs relies on the identification of the horizon null 
generator with the Killing vector field that preserves the rotating 
boson star solution [14].

The D = 5 case studied in Ref. [6] pertained solutions with two 
complex scalar fields and two equal angular momenta parameters, 
as this choice leads to a co-dimension one problem and thus con-
siderable technical simplification. The corresponding D = 5 Myers–
Perry BHs are akin to the D = 4 Kerr solution; in particular they 
are both a two parameter family of solutions – characterized, say, 
by the ADM mass, M , and horizon angular velocity, �H – and 
have a regular, finite area, extremal limit. In both cases the hairy 
BHs, just as the boson stars, have (a) monochromatic scalar field(s) 
whose frequency w is fixed by �H and (in D = 4) an azimuthal 
winding number.

The single angular momentum D = 5 Myers–Perry solution, by 
contrast, is singular in the extremal limit, while the generic solu-
tion with two angular momenta is characterized by two different 
horizon angular velocities �1, �2. We would therefore like to un-
derstand if this more general case can still accommodate scalar 
hair and if so how the scalar field frequency relates the two angu-
lar velocities. In this paper we shall clarify both these issues. We 
show that the equilibrium condition for the general case with two 
non-vanishing angular momenta is:

w = m1�1 + m2�2 , (1.1)

where mi are the two azimuthal quantum numbers in the scalar 
field ansatz, cf. eq. (2.8) below. Actually to reach this conclu-
sion it is not necessary to solve the fully non-linear systems, 
as condition (1.1) can be derived from regularity at the hori-
zon. We will then focus our analysis of the fully non-linear sys-
tem on the case with a single angular momentum parameter, 
and we shall derive both the corresponding boson star solutions 
and the hairy BHs. The former solutions again show the prop-
erty of their cousins with two equal angular momenta in [6]: 
they do not trivialize in the limit of maximal allowed frequency 
and exhibit a mass gap with respect to Minkowski spacetime. 
The latter solutions have a domain of existence delimited, in par-
ticular, by extremal solutions which are singular, in agreement 
with the behaviour of the hairless singly spinning Myers–Perry 
BHs. This reinforces the picture of these hairy BHs as “horizons 
inside classical lumps”, the classical lumps being boson stars in 
this case, wherein such a bound state inherits properties of both 
the solitonic limit and of the corresponding vacuum BH solu-
tions.

This paper is organized as follows. In Section 2 we present a 
general model, including N complex scalar fields minimally cou-
pled to gravity and the general ansatz for a solution with two 
different angular momenta. Various quantities of interest are de-
scribed and the boundary conditions for the numerical implemen-
tation are presented. In particular, a near-horizon analysis immedi-
ately leads to condition (1.1), from regularity. In Section 3 we per-
form the analysis of single angular momentum solutions, starting 
with boson stars and addressing subsequently hairy BHs. Finally, in 
Section 4 we provide some final remarks.
2. The general model

2.1. Action and matter content

We shall consider a model with N complex scalar fields �(I)

coupled to Einstein gravity in D = 5,

S =
∫

d5x
√−g

(
1

16πG
R −

N∑
I=1

L(I)

)
, (2.2)

where G , that will be set to unity, is Newton’s constant and the 
Lagrangian density for each of the scalar fields is

L(I) = 1

2
gab

(
�

(I)∗
,a �

(I)
,b + �

(I)∗
,b �

(I)
,a

)
+ U (|�(I)|) . (2.3)

Thus, the scalar fields do not interact with one another. U (|�(I)|)
is the I-th scalar field potential. Variation of the action (2.2) with 
respect to the metric yields the Einstein equations:

Rab − 1

2
gab R = 8πG

N∑
I=1

T (I)
ab , where

T (I)
ab = �

(I)∗
,a �

(I)
,b + �

(I)∗
,b �

(I)
,a − gabL(I) , (2.4)

is the energy–momentum tensor of the I-th scalar field. There are 
also N Klein–Gordon equations, obtained by varying the action 
with respect to each of the scalar fields

∇2�(I) = dU (I)

d|�(I)|2 �(I) . (2.5)

2.2. The general ansatz

To better understand the metric ansatz, split five dimensional 
Minkowski space as M1,4 = Rt × R

2
ϕ1,ρ × R

2
ϕ2,σ . Thus, the four-

dimensional Euclidean space is split into two 2-planes each pa-
rameterized with polar coordinates. The corresponding coordinate 
transformation between Cartesian and bi-polar coordinates in R4

is x1 = ρ sinϕ1, x2 = ρ cosϕ1, x3 = σ sinϕ2, x4 = σ cosϕ2, where 
ρ, σ are polar radial coordinates in the 2-planes, 0 ≤ ρ, σ < ∞
and 0 ≤ ϕi < 2π are azimuthal angles. Rotations along ϕ1 and ϕ2
generate two independent angular momenta. The generic rotating 
solutions depend on both ρ and σ ; however, the numerics and the 
description of solutions simplify by introducing a (hyper-)spherical 
radial coordinate in R4, r, and an angle θ , such that the polar radii 
become projections of r into each of the two 2-planes: ρ = r sin θ , 
σ = r cos θ , with 0 ≤ r < ∞, 0 ≤ θ ≤ π/2. Then ∂ϕ1 (∂ϕ2 ) generates 
rotations in the plane θ = π/2 (θ = 0) and M1,4 is written

ds2
M1,4 = −dt2 + (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

= −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2
1 + cos2 θdϕ2

2) . (2.6)

The curved spacetimes we shall be considering contain cor-
rections to the metric tensor (2.6), which is only approached 
asymptotically. In general, we assume solely that the line element 
possesses three commuting Killing vectors, ξ = ∂t , η1 = ∂ϕ1 , and 
η2 = ∂ϕ2 . A suitable metric parametrization for a BH spacetime 
reads1

1 A version of this ansatz has been employed in the construction of D = 5 coun-
terparts of the Kerr–Newman solution [15], generalizing the one used in [16] to 
construct the first four dimensional spinning hairy BHs in the literature.
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ds2 = −F0(r, θ)N(r)dt2 + F1(r, θ)

(
dr2

N(r)
+ r2dθ2

)
+ F2(r, θ)r2 sin2 θ [dϕ1 − W1(r, θ)dt]2

+ F3(r, θ)r2 cos2 θ
[
dϕ2 − W2(r, θ)dt

]2

+ F4(r, θ)r2 sin2 θ cos2 θ [W2(r, θ)dϕ1 − W1(r, θ)dϕ2]2 ,

(2.7)

in terms of seven metric functions, F0, F1, F2, F3, F4, W1, W2 and 
also

N(r) ≡ 1 − r2
H

r2
,

where the parameter rH ≥ 0 corresponds to the position of the BH 
horizon in this coordinate system.

The particular parametrization just described for the line el-
ement is compatible with an ansatz for the matter fields of the 
form:

�(I) = φ(I)(r, θ)ei
(
m(I)

1 ϕ1+m(I)
2 ϕ2−w(I)t

)
, (2.8)

where m(I)
i ∈ Z are azimuthal harmonic indices in both planes 

of rotation and w(I) > 0 is the I-th scalar field frequency. Ob-
serve that the three aforementioned Killing vector fields, ξ = ∂t , 
η1 = ∂ϕ1 , and η2 = ∂ϕ2 , do not preserve, independently the scalar 
fields; rather, �(I) are only preserved by the 2-parameter family of 
helicoidal Killing fields ∂t + α1∂ϕ1 + α2∂ϕ2 with

w(I) = m(I)
1 α1 + m(I)

2 α2 . (2.9)

2.3. Global charges and other physical quantities

We shall now present a set of physical quantities and relations 
that apply to the boson stars and the MPBHsSH that shall be ob-
tained in the next section.

The solutions approach Minkowski spacetime at infinity. Then, 
as usual, the ADM mass M and the ADM angular momenta J i can 
be read off from the asymptotics of particular metric functions,

gtt = −1 + 8M

3πr2
+ . . . , gϕ1t = − 4 J1

πr2
sin2 θ + . . . ,

gϕ2t = − 4 J2

πr2
cos2 θ + . . . . (2.10)

For the line element (2.7), the event horizon H is a surface of 
constant radial coordinate, r = rH ; H is a Killing horizon of the 
Killing vector field

χ = ξ + �1η1 + �2η2 , (2.11)

which is null on H and orthogonal to it. Here, �1 = W1
∣∣
rH

and 
�2 = W2

∣∣
rH

denote the horizon angular velocities with respect to 
rotation in the θ = π/2 and θ = 0 plane, respectively.

MPBHsSH have Hawking temperature

T H = 1

2πrH

√
F0

F1

∣∣∣∣
rH

, (2.12)

and horizon area (related to the entropy by S = AH/4)

AH = (2π)2r3
H

π/2∫
0

dθ sin θ cos θ

×
√

F1

(
F2 F3 + F4(sin2 θ F2W 2

1 + cos2 θ F3W 2
2 )

) ∣∣∣∣
rH

.

(2.13)
The Lagrangian of each scalar field has a global U (1) symmetry 
which introduces N conserved currents ja(I) = −i(�(I)∗∂a�(I) −
�(I)∂a�(I)∗), with ja(I)

;a = 0. Thus the solutions carry also N con-
served Noether charges – in the sense of obeying local continuity 
equations, but not (global) Gauss laws – obtained by integrating 
the Noether charge density, jt , on a spacelike slice �,

Q (I) =
∫
�

drdθdϕ1dϕ2
√−g jt(I) . (2.14)

MPBHsSH satisfy a Smarr-type relation

M = M(ψ) + 3

2

(
T H S + �1 J1 + �2 J2

− �1

∑
I

m(I)
1 Q (I) − �2

∑
I

m(I)
2 Q (I)

)
, (2.15)

where M(ψ) measures the energy stored in the scalar field outside 
the horizon:

M(ψ) = −
∑

I

3

2

∫
�

d4x
√−g

(
T (I)t

t − 1

3
T (I)a

a

)
. (2.16)

A Smarr-type relation involving only horizon quantities also ex-
ists

2

3
MH = T H S + �1 J1,H + �2 J2,H , (2.17)

with

J i,H = J i −
∑

I

m(I)
i Q (I) . (2.18)

Finally, MPBHsSH satisfy the first law of thermodynamics

dM = T HdS + �1d J1 + �2d J2 . (2.19)

2.4. Boundary conditions

As for the case of Kerr BHs with scalar hair [3], and for the case 
of MPBHsSH with two equal angular momenta [6], there are no ex-
act solutions in closed form of the above system with a non-trivial 
scalar field. The problem can, however, be tackled numerically, by 
solving a set of elliptic equations with given boundary conditions.

To obtain asymptotically flat solutions with finite mass, we im-
pose the boundary conditions at infinity

F0 = F1 = F2 = F3 = F4 = 1, W1 = W2 = 0, φ(I) = 0 . (2.20)

At θ = 0, π/2 the metric functions satisfy Neumann boundary 
conditions. The boundary conditions for the scalar field ampli-
tude φ(I) are more complicated. In the generic case with m(I)

1 
=
0, m(I)

2 
= 0, φ(I) vanishes at θ = 0, π/2. However, for m(I)
1 
= 0, 

m(I)
2 = 0, the scalar field amplitude φ(I) vanishes at θ = 0 only, 

and satisfies Neumann boundary condition at θ = π/2; the case 
m1(I) = 0, m(I)

2 
= 0 follows immediately, mutatis mutandis.
The boundary conditions on the horizon take a simpler form 

in terms of a new radial variable x =
√

r2 − r2
H (which is also em-

ployed in numerics): ∂x Fi
∣∣
H = ∂xφ

(I)
∣∣
H = 0. Of central importance, 

regularity at the horizon implies that the following resonance con-
dition should be satisfied for each scalar field

w(I) = m(I)
�1 + m(I)

�2 . (2.21)
1 2
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Comparing with (2.9) this condition singles out a particular heli-
coidal Killing vector field within the family that preserves the full 
ansatz (2.7) plus (2.8), corresponding to αi = �i , in other words, 
the one that coincides with the BH horizon generator.

Finally, the metric functions should satisfy the elementary flat-
ness conditions, guaranteeing absence of conical singularities on 
the axes:

(F2 + F4W 2
2 − F1 = 0)|θ=0, (F3 + F4W 2

1 − F1 = 0)|θ=π/2.

(2.22)

3. Single angular momentum solutions

We shall now specify the general ansatz (2.7)–(2.8) and the 
general model (2.2), by focusing on the following special case:

i) We consider a single (N = 1) massive but non-self-interacting 
scalar field, such that U (|�(I)|) = μ2|�(I)|2, where μ is the 
scalar field mass and I = 1. Thus, from now on we shall drop 
the superscript I = 1, as there will only be a single complex 
scalar field.

ii) We focus on solutions with rotation on a single plane. Then, 
one can set

m1 
= 0, m2 = 0 (3.23)

in the scalar field ansatz (2.8), which in particular implies that 
T t
ϕ2

= 0, and thus one can consistently set F4 = W2 = 0 in the 
line-element (2.7). For simplicity of notation, in the following 
we shall drop the subscript 1 referring to the plane of rotation 
(e.g. m1 → m).

3.1. The vacuum limit: Myers–Perry BHs

Setting φ = 0 in (2.8), the model described in Section 2 ad-
mits as solutions MPBHs [17], which are exact solutions known in 
closed form. MPBHs with a singular angular momentum parameter 
(in D = 5) can be written in the form of our ansatz (2.7), with:

F1(r, θ) = 1 + a2

r2
cos2 θ ,

F2(r, θ) =
(

1 + a2

r2

)⎛
⎜⎝1 + a2 sin2 θ

(a2+r2)(r2+a2 cos2 θ)

(a2+r2
H )

⎞
⎟⎠ , F3(r, θ) = 1 ,

F0(r, θ) = 1

F2
, W1(r, θ) = 1

F2

a(r2
H + a2)

r2(r2 + a2 cos2 θ)
, (3.24)

which apart from rH , contains the extra parameter a associated 
with rotation. Some physical quantities are given, in terms of the 
parameters rH , a as

M = 3π

4
(a2 + r2

H ), J = π

2
a(a2 + r2

H ), T H = rH

2π(a2 + r2
H )

,

AH = 4π2rH (a2 + r2
H ), �H = a

a2 + r2
H

.

The properties of these solutions have been extensively discussed 
in the literature. Here we mention only that the spinning BHs 
are continuously connected to the Schwarzschild–Tangherlini so-
lution in the static limit; also, in contrast to the D = 4 Kerr met-
ric, the zero temperature limit (which corresponds to rH → 0 for 
nonzero a) is singular in this case, with AH → 0 [18].
Fig. 1. ADM mass vs. scalar field frequency diagram for boson stars, with m =
0, 1, 2, 3.

3.2. The solitonic limit: boson stars

Turning on the scalar field, we have found both solitonic (boson 
stars) and BH solutions. These cannot, however, be found in closed 
form and we have resorted to numerical methods. The numeri-
cal approach employed here is similar to that used in constructing 
D = 4 Kerr BHs with scalar hair described in [3]. As usual, dimen-
sionless variables and global quantities are introduced by using 
natural units set by μ (we recall G = 1), e.g. r → rμ, φ → φ/

√
8π

and w → w/μ. Then, the numerical treatment of the model relies 
on only four input parameters: the horizon radius rH (for BHs), 
the field frequency w , the winding number m and the scalar field 
node number n. In the following we shall only consider nodeless 
solutions (n = 0) corresponding to the fundamental state of boson 
stars and hairy BHs.

The equations for the F0, F1, F2, F3, W , φ are solved by using a 
professional finite difference solver [19], which provides an error 
estimate for each unknown function. Other numerical tests were 
provided by the Smarr relation (2.15) and the first law (2.19). Based 
on that, the typical numerical error for the solutions here is esti-
mated to be around 10−3.

Setting rH = 0 in (2.7) the horizon is replaced with a regular 
origin and one finds boson star solutions. Up to now, only co-
dimension one problems have been studied: boson star solutions 
have been reported both within spherical symmetry [20], and with 
two equal angular momenta [13]; the latter are, however found for 
a model with two complex scalar fields. The boundary conditions 
at the origin are similar to those described above, except for the 
metric function W , which satisfies now a Neumann boundary con-
dition ∂r W = 0.

The Noether charge and the angular momenta of these boson 
stars are not independent quantities; they are simply related by

J = mQ , (3.25)

while the Smarr relation and the first law read

M = M(ψ), dM = mwdJ . (3.26)

Taking the scalar field frequency w as a control parameter, the 
numerical results show that, for any m, boson stars exist for a lim-
ited range of frequencies, wmin < w < μ, with wmin(m) decreasing 
with m – Fig. 1. A striking property of the D = 5 boson stars is 
that these do not possess a true vacuum limit. That is, in con-
trast to the D = 5 Anti-de Sitter case [14], or to the case of D = 4
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Fig. 2. The T t
t -component of the energy momentum tensor is shown as a function 

of the coordinates ρ = r sin θ , σ = ρ cos θ , for a nodeless boson star with m = 1, 
w/μ = 0.93. Here, T t

t , ρ and σ are given in units of the scalar field mass μ.

spinning boson stars [21,22], D = 5 asymptotically flat solutions 
do not trivialize as w → μ. Indeed, as noticed in [13] for the spe-
cial case of D = 5 boson stars with two equal angular momenta, as 
the frequency tends to the upper bound set by μ, the scalar field 
spreads and tends to zero while the geometry becomes arbitrarily 
close to the Minkowski one. The global charges of the solutions, 
however, remain finite and nonzero as w → μ. Thus a mass (and 
charge) gap is found between the φ = 0 vacuum flat space ground 
state and the limiting configurations with a frequency w arbitrarily 
close to μ. This behaviour has been explained for spherically sym-
metric solutions and for the two equal angular momenta boson 
stars [13], observing the existence of a special scaling symmetry 
of the limiting solutions. It seems plausible that the results in [13]
can be extended to the case of boson stars with a single angular 
momentum.

The results of the numerical integration for several values of m
are displayed in Fig. 1. For completeness, we have included there 
also the case of spherically symmetric boson stars, which can also 
be studied within the general ansatz (2.7)–(2.8), by taking mi = 0, 
F1 = F2 = F3, W i = 0, and the surviving three independent func-
tions, F0, F1 and φ depending only on r (note also that in this case 
the scalar field does not vanish at r = 0).

From Fig. 1 we observe that the mass M decreases as w is de-
creased from the maximal value μ. After approaching the minimal 
value wmin , a backbending in w is observed. Then, one expects 
an inspiralling behaviour of the curves, towards a limiting config-
uration at the center of the spiral, for a frequency wcr/μ. This 
part of the diagram is difficult to explore numerically for spinning 
solutions, and so a second backbending is only clearly shown for 
m = 0, 1. This inspiralling pattern appears to be generic for boson 
star solutions,2 being found also for boson stars in D = 4 Einstein 
gravity and a scalar-tensor extension [7], for D = 5 solutions with 
Anti-de Sitter asymptotics [14] and for D = 5 asymptotically flat 
solutions [6]. A similar diagram is found for J (w), showing that 
boson stars do not possess a slowly rotating limit.

The T t
t -component of the energy–momentum tensor of a typ-

ical boson star is shown in Fig. 2. There one can notice the exis-
tence of a maximum in the plane of rotation, for some nonzero 
value of r.

3.3. Hairy black holes

In order to obtain MPBHsSH we consider rH 
= 0. Turning on 
this parameter, starting from any given boson star solution with 
frequency w , can be regarded as adding a small BH at the center of 
the boson star. For a given �H , the boson star with rH = 0 provides 
a good initial profile for hairy BHs with a small rH . By increasing 

2 This part of the diagram appears to change, however, for solutions with two 
equal angular momenta in the D = 5 Einstein-Gauss-Bonnet model [23,24].
Fig. 3. The (extrapolated) domain of existence of MPBHsSH (shaded blue region) 
with an azimuthal harmonic index m = 1 in (M, w)-space.

rH from zero, we obtain MPBHsSH with �H fixed by the scalar 
field frequency. It follows that the minimal frequency of the boson 
stars sets a lower bound on the horizon velocity of the hairy BHs, 
while the upper bound on the frequency is still set by μ, the scalar 
field mass.

Given this systematic construction technique, it is convenient to 
describe the domain of existence of the hairy BHs in terms of �H . 
The emerging picture shows that, when varying the horizon size 
(via the parameter rH ), there are two possible types of sequences 
of BH solutions with a fixed �H :

(S1) There are sequences of BH solutions that connect two dif-
ferent boson star solutions with the same frequency. Along these 
sequences, the BH solutions attain a maximal area at some point 
in between the two boson star solutions with the same scalar field 
frequency. Approaching these solutions, rH → 0, the horizon area 
vanishes, the temperature diverges and J → mQ . For m = 1, this 
occurs, for instance, for frequencies between the minimal boson 
star frequency wmin and w/μ � 0.936.

(S2) There are sequences of BH solutions that end in a zero 
temperature extremal BH with scalar hair. In contrast to both Kerr 
BHs with scalar hair [3] and the MPBHsSH studied in [6], these 
limiting configurations have vanishing horizon size and do not 
seem to possess a regular horizon. The global charges, however, 
are finite and nonzero in this case.

In Fig. 3 we show the domain of existence of MPBHsSH (the 
shaded blue region), for solutions with n = 0, m = 1, as a function 
of frequency w . This domain was obtained by extrapolating to the 
continuum the results from a set of around two thousand numer-
ical solutions. This can safely be done for most of the parameter 
space. We cannot exclude, however, a more complicated picture for 
a small region around the center of the boson star spiral, which is 
rather difficult to explore numerically within our approach. We fur-
ther remark that the set of extremal MPBHsSH which form a part 
of the boundary of the domain of existence have been obtained by 
extrapolation of the numerical results.3

3 Differently from the hairy BHs in [3,6], the direct construction of this set of ex-
tremal BHs presented unsurmountable difficulties, presumably due to their singular 
nature. Indeed, we observed that for the near extremal solutions, both the Ricci 
and the Kretschmann scalars take very large values on the horizon, in particular at 
θ = π/2.
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Fig. 4. (Left panel) Domain of existence of MPBHsSH (blue shaded area) in a horizon area AH vs temperature diagram. We have also plotted lines of constant horizon angular 
velocity �H (blue dotted curves). When �H = μ the line of vacuum MPBHs precisely coincides with that of the marginally bound MPBHsSH. (Right panel) Domain of existence 
in a horizon area vs frequency (equal to �H ) diagram. Vacuum MPBHs exist below the blue dotted line. For �H = μ, their domain of existence coincides precisely with the 
marginally bound MPBHsSH.
The domain of existence presented in Fig. 3 is delimited by 
three curves: the already discussed boson star curve (red solid 
line), the curve of extremal (i.e. zero temperature) MPBHsSH (black 
dashed line), and a vertical line segment with w = μ which cor-
responds to the limiting configurations dubbed marginally bound 
solutions (black dotted line) [6]. We remark that a similar diagram 
is found for J (w). Thus, we conclude that MPBHsSH with a singu-
lar angular momentum have a minimal mass and angular momen-
tum. In particular they have no static limit, analogously to Kerr 
BHs with scalar hair [3]. Fig. 3 focuses on m = 1; based on prelim-
inary numerical data, we are confident that a similar pattern for 
the domain of existence of MPBHsSH occurs for other values of m.

The line describing the extremal solutions starts at a non-zero 
ADM mass at the maximal frequency w/μ → 1, decreases until a 
minimal value of w/μ (with w/μ � 0.936 for m = 1), backbends 
and keeps decreasing, reaches a minimal value of the ADM mass 
and then, we conjecture, proceeds to inspiral towards a central 
value where it meets the endpoint of the boson star spiral in a 
singular solution.

Further features of singly spinning MPBHsSH are shown in 
Fig. 4, where we plot their domain of existence in a horizon area 
AH vs. temperature diagram (left panel), and in an AH vs. fre-
quency diagram (right panel). The results for vacuum MPBHs are 
also shown for comparison. As one can observe from the left panel, 
for a given frequency, the horizon area reaches a maximal value for 
some solution with nonzero T H . Let us consider two qualitatively 
distinct examples. For �H/μ = 0.945 the sequence of solutions in-
terpolates between infinite temperature (a boson star) and zero 
temperature (an extremal MPBHSH), corresponding to a sequence 
of type S2 above. By contrast, for �H/μ = 0.925 the sequence 
interpolates between two boson stars (hence two infinite temper-
atures), corresponding to a sequence of type S1 above. Note that 
for �H/μ = 0.945 we have also plotted a sequence of vacuum 
MPBHs. In the AH vs. w diagram, the set of critical configura-
tions with maximal area for fixed �H form a part of the boundary 
of the domain of existence.4 The remaining boundary is given by 
the set of boson stars, which have AH = 0, together with the ex-

4 This is the behaviour found also for MPBHs. For a given angular velocity �H , the 
horizon area of a MPBH approaches a maximal value for a = 3/(4�H ) where T H =

�H

2π
√

3
. The horizon area decreases for larger values of a, and approaches zero for the 

maximal value a → �H which corresponds to an extremal (singular) configuration.
Fig. 5. Extrapolated domain of existence (very thin shaded area) of the m = 1
MPBHsSH in the ( J , M) space. Vacuum MPBHs exist above the blue dotted line, 
thus overlapping with the former solutions. The colour coding here is similar to 
that used in Fig. 4.

tremal MPBHsSH, which have also zero horizon area and the set of 
marginally bound BHs.

From Fig. 4 it can also be observed that there is continuity be-
tween vacuum MPBHs and MPBHsSH in terms of horizon quantities, 
as was observed in [6] for the two equal angular momenta case. 
This occurs despite the mass gap between the two families of so-
lutions in terms of global charges.

Finally, in Fig. 5 we plot the phase space of MPBHsSH, i.e. the 
domain of existence of these BHs in the ( J , M)-plane. As it can be 
observed they exist in the region where vacuum MPBHs exist as 
well. As such there is non-uniqueness, when only the ADM mass 
and angular momentum are specified, in analogy to the case of 
Kerr BHs with scalar hair [3].

4. Further remarks

In this paper we have reported the first construction of higher 
dimensional (D > 4) boson stars and scalar hairy BHs with a single 
angular momentum parameter in the literature. One of the conclu-
sions of our study is the confirmation that the properties of scalar 
hairy BHs within this large family of solutions anchored on condi-
tions of type (1.1) are inherited from their “building blocks”, which 
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in the case considered herein are D = 5 singly spinning boson stars 
and Myers–Perry BHs. Thus, MPBHsSH have a mass gap with re-
spect to the vacuum MPBHs, as do boson stars with respect to 
Minkowski spacetime. Moreover, in the extremal limit, MPBHsSH 
yield a singular configuration as vacuum MPBHs do. This reinforces 
the picture that such hairy BHs can be viewed as bound states of 
“bald” BHs and solitonic configurations (boson stars) [4].

We have not considered here the general case with two non-
vanishing angular momenta. In Ref. [6], however, MPBHsSH with 
two equal angular momenta were studied in a model with N = 2
complex scalar fields. Therein a special ansatz is used, originally 
proposed in [13], such that the spacetime isometry group is en-
hanced from Rt × U (1)2 to Rt × U (2). This enhancement is ob-
tained by taking the same mass and frequency for both complex 
scalars, and requiring the fields to rotate with the lowest azimuthal 
harmonic index in different planes:

w(1) = w(2) = w, μ(1) = μ(2) = μ, and

m(1)
1 = m(2)

2 = 1, m(2)
1 = m(1)

2 = 0 , (4.27)

such that the resonance condition (2.21) is fulfilled by each scalar. 
Then the θ -dependence factorizes

φ(1) = φ(r) sin θ , φ(2) = φ(r) cos θ , (4.28)

while the metric functions Fi, W in (2.7) depend only on r, with 
W1 = W2 = W (r), F4(r) = F3(r) − F2(r), and the problem is effec-
tively co-dimension one.5 The general properties of these MPBHsSH 
with J1 = J2 are similar to those found in this work for MPBHsSH 
with a single J . The main difference concerns the extremal so-
lutions, which, therein – and similarly to the behaviour of vac-
uum MPBHs with two equal angular momenta – have finite (and 
nonzero) horizon size and global charges and possess a regular 
horizon.

Based on the results in this paper and those in [6] one can 
make an educated guess for the general case with two non-
vanishing and non-equal angular momenta. The domain of exis-
tence of such MPBHsSH will be bounded by the corresponding 
boson stars, by a set of marginally bound solutions – which have a 
mass gap with respect to the vacuum MPBHs – and the extremal 
limit will have the same properties as those of the corresponding 
vacuum MPBHs. A different state of affairs, however, will certainly 
be found in the asymptotically Anti-de Sitter case. Singly spinning 
MPBHs are afflicted by the superradiant instability of a massive 
scalar field and thus singly spinning MPBHsSH continuously con-
nected to MPBHs in Anti-de Sitter should also exist, similarly to 
the equal angular momentum case [14].

Finally we remark on two further possible generalizations. 
Firstly, as it is well known, D = 5 vacuum gravity admits other 
solutions with different horizon topologies, most notably black 
rings [26]. It seems plausible that black rings with scalar hair 
anchored to the condition (1.1) also exist, even if finding them nu-
merically may be challenging. Secondly, going to D > 5, MPBHs 
exhibit yet a qualitatively new feature: the existence of ultra-

5 An explanation of this fact is given in Ref. [25], together with a generalization 
of the ansatz to higher odd dimensions.
spinning BHs. It would certainly be interesting to construct both 
singly spinning boson stars and singly spinning MPBHsSH in D > 5
to see if/how this new possibility impacts on such solutions.
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