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1 Introduction

There are various naturalness problems of the Standard Model (SM), including the cosmo-

logical constant problem, the hierarchy problem, the hierarchies in the quark and lepton

mass matrices, and the strong CP problem. Of these, the last is special. Even modest

changes in the cosmological constant would drastically alter the world around us. Simi-

larly, the values of the weak scale and the light quark and lepton masses play critical roles

in a range of phenomena. But if the CP-violating parameter θ̄ were, say, 10−3, there would

be no appreciable change in nuclear physics.

Theorists may put forward complicated explanations for the smallness of θ̄, with many

additional degrees of freedom, complicated symmetries, and some amount of fine tuning,

but this activity is not particularly satisfying. More compelling would be a theory in

which the the smallness of θ̄ emerged as an accidental consequence of other structure in a

physical theory: an explanation of flavor or dark matter, for example. We will refer to this

(presently hypothetical) phenomenon as incidental CP conservation.

Most attention has focussed on three solutions to the strong CP problem: the possibil-

ity of a massless up quark, the Peccei-Quinn (PQ) solution with its associated axion [1, 2],

and spontaneous CP or P violation with a protection mechanism for θ̄ [3–13]. The first

two solutions require that the theory possess an approximate U(1) symmetry, the violation
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of which is primarily due to the QCD anomaly. If the symmetry is not spontaneously

broken at scales above the QCD scale, there must be one or more very light quarks. This

is usually stated as the requirement that the u quark mass vanishes, but the more precise

statement is that at scales beyond a few GeV, mu
md

< 10−10. Apart from any theoretical

issues, the possibility of a massless quark is strongly disfavored by lattice calculations [14].

If the chiral symmetry is nonlinearly realized, there is a light axion [1, 2]. The potential

for this axion determines θ̄.

The third proposed solution is that CP or P is spontaneously broken and θ̄ is protected

by extra structure [3–7], the most common example of which is the Nelson-Barr (NB)

mechanism [8–10] in the case of spontaneous CP violation.1 Since the underlying theory is

CP-conserving, the “bare” θ̄ parameter vanishes. CP must then be spontaneously broken

in a way that ensures a small effective θ̄ while allowing an order one phase in the CKM

matrix (and a mechanism for baryogenesis) [3–10]. The NB proposal is striking in that it

seeks to solve the strong CP problem with no low energy consequence, unlike the axion and

mu = 0 solutions. On the other hand, in this paper, we will see some relations between

these proposals.2

Setting aside the possibility that mu = 0 leaves the PQ and NB proposals. As currently

implemented in an array of models, neither is completely satisfactory from a theoretical

point of view; certainly neither is obviously incidental in the sense defined above. For the

PQ solution, the theoretical problems have been extensively discussed, and we will review

some of the issues. The primary focus of this paper will be the challenges to obtaining a

plausible implementation of the NB solution. In both PQ and NB, the inadequacies of cur-

rent proposals concern the structure of the microscopic, ultraviolet theory and particularly

the complexity and plausibility of the structures necessary for an effective solution.

1. The principal difficulty with the axion mechanism is that the PQ symmetry needs

to be of very high quality. If this symmetry is an accident, it must be a remarkably

good one. If the symmetry and its breaking are described by a conventional effective

field theory, the required quality can be achieved with a ZN symmetry, but requires

N ≥ 11 or so. This is hardly a compelling explanation for the smallness of an

inconsequential parameter of the Standard Model.3 In string theory, the situation

for light axions appears better, but a solution in this framework requires assumptions

about the stabilization of moduli which, while perhaps imaginable, at least at present

are impossible to verify. In the string framework, one must also hypothesize an

unconventional cosmology and typically some tuning of initial conditions, unless the

axion decay constant is surprisingly small.

1In the interesting alternative case of spontaneous parity violation, models and their criteria for success

were discussed in [11–13]. Another mechanism in the case of spontaneous CP violation, distinct from NB,

involves the introduction particular “shaping symmetries” in the underlying flavor structure [15].
2Other solutions [16–18] possess close similarities to the solutions with approximate U(1)s [16, 17] or

NB [18].
3In [19], the possibility that N is large in order to account for dark matter was considered. It was shown

that dark matter can account for a large value of N , but not large enough to solve the strong CP problem.
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2. As we will elaborate in this paper, the NB mechanism is generically on even weaker

theoretical ground. If the implementation is not massively fine-tuned, it requires

strong dynamics or supersymmetry (though not necessarily at scales of order a few

TeV). Strong dynamics are insufficient to protect small θ̄ in the simplest models, and

supersymmetric models require gauge mediation (m3/2 � splittings in supermulti-

plets). In addition, new discrete or gauge symmetries and strong coincidences of

scales are necessary, as well as a number of degrees of freedom beyond those required

by supersymmetry.

Instead of such speculative exercises, one can hope for an experimental resolution. The

discovery of an axion would, needless to say, answer the question. However, a large part

of the axion parameter space is currently inaccessible. For the NB solution, there is no

similar “smoking gun.” While we will argue that gauge mediation is a requirement, the

scale need not be particularly low.

This paper is organized as follows. In section 2, we review the basic structure of the

fermionic sector of NB models. In section 3, we discuss non-supersymmetric models. If

such models contain fundamental scalars, one would expect the scale of CP violation to be

high in order to limit the fine-tuning. However, constraints imposed by dangerous higher-

dimension couplings require a low scale of CP violation, implying enormous fine tuning.

Although compositeness can explain the required hierarchy, we argue that the simplest

models typically fail to retain the necessary NB structure. Setting the fine-tuning issue

aside, we discuss the sorts of symmetries which might ensure vanishing θ̄ at tree level,

and discuss the dangerous radiative corrections to θ̄ that can arise at one and two loop

order. In section 4 we turn to supersymmetry. In theories for which supersymmetry is

broken well below some “fundamental” ultraviolet scale (perhaps the Planck, string, or

compactification scale), we can pose more sharply the question of what it means for the

bare θ to vanish. We argue that in practice there is a heavy axion, and thus a sense

in which the supersymmetric NB and PQ models can be considered as different limiting

cases of axion models. We discuss how the expectation value of this axion might be fixed

and constraints on couplings of the axion to possible CP-violating sectors. We also note

that very simple landscape considerations suggest that vanishing of the “bare θ” in such

frameworks is extremely rare, and these is no obvious anthropic selection effect one might

invoke. Finally, we discuss the spontaneous breaking of CP and SUSY and the radiative

corrections to θ̄ in supersymmetric models with gravity and gauge mediation. In gravity

mediation, corrections are typically large and spoil the NB solution. In gauge mediation,

the corrections can be smaller, but there are upper bounds on the ratio of the susy-breaking

scale to the scale of CP violation. In section 6 we summarize and conclude.

2 The essence of the Nelson-Barr mechanism

The main challenge in solving the strong CP problem with spontaneous CP violation is to

understand why

Arg det mq < 10−10, (2.1)
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while there is a large phase in the CKM matrix. Nelson [8] and Barr [9, 10] obtained the

first simple, phenomenologically viable models which achieve this and elucidated the general

properties of renormalizable Lagrangians that can exhibit Arg det mq = 0 at tree level.

A model with minimal field and symmetry content was obtained by Bento, Branco, and

Parada (BBP) [20], and serves as a useful starting point for understanding the properties

of the NB mechanism. The BBP model introduces additional charge ±1/3 SU(2) singlet

quarks q, q̄, as well as a set of complex fields ηa neutral under the SM (we will comment

on real fields later). The down-type quark mass terms in the BBP model are given by

L = µq̄q + aafηad̄f̄q + yff̄HQf d̄f̄ + . . . . (2.2)

The ηa are assumed to have vevs with relative phases, breaking CP.4

At tree level, the Lagrangian in (2.2) automatically gives Arg det mq = 0 for the quark

masses. However, it is not the most general renormalizable Lagrangian allowed by the

symmetries of the SM. Couplings of the form ηaqq̄ and HQq̄ must be forbidden. Similarly,

we might like µ to be the expectation value of a CP-conserving field, which constrains its

interactions with the ηa. Discrete symmetries can provide the necessary structure, and we

return to this issue in the next section.

The CKM phase in the SM is generated by integrating out the heavy flavor from (2.2).

Defining the 4× 4 quark mass matrix as:

M =

(
µ B

0 md

)
; md ≡ yv; Bf = aafηa , (2.3)

we need to diagonalize the matrix

MM† =

(
µ2 +BB† BmT

d

mdB
† mdm

T
d

)
. (2.4)

If the left hand corner of this matrix is larger than the other entries, we can integrate out

the heavy state, leaving the 3 × 3 SM mass matrix:(
(mdm

T
d )ij −

(md)ikB
†
kB`(m

T
d )`j

µ2 +BfB
†
f

)
. (2.5)

The diagonalizing matrix is the CKM matrix. Note that this procedure is correct only in

the limit µ2 + |Bf |2 � m2
d; otherwise, the CKM matrix is not unitary.

Obtaining a large CKM phase strongly constrains the parameters. If there is only one

non-vanishing Bf , or if each Bf has the same phase, or if µ� |Bf |, then the CKM matrix

is real. However, if there are two distinct, non-vanishing Bf of comparable magnitude and

with a large relative phase, and µ . |Bf |, there is a non-trivial phase. For example, if

4In fact, in the original BBP model [20], only a single complex field is introduced with Yukawa couplings

(afη + a′fη
∗)d̄f̄q. This structure is sufficient as long as af and a′f are nonzero, af 6= a′f , and a required

discrete symmetry under which η, q, and q̄ transform is a Z2 instead of a more general ZN . We consider

the form of eq. (2.2), with multiple ηa and vanishing a′fa, anticipating possible ZN symmetries as well as

the extension of the BBP model to supersymmetry.
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B = (0, b, c), a phase of order Im(b/c) enters the CKM matrix. We see that a rather close

coincidence of scales is required between the real and imaginary parts of different fields.

The severe challenges for non-susy NB theories will be discussed in the next section.

3 Nonsupersymmetric Nelson-Barr models

In this section we consider nonsupersymmetric Nelson-Barr models. We begin with a survey

of the basic issues and challenges confronting such models already at tree level, and then

elaborate on two of the issues that arise when radiative corrections are included.

3.1 Basic challenges

Without supersymmetry, it is a simple matter to construct models of spontaneous CP

violation. We can, for example, introduce two real fields, σ and π, the first CP-even and

the second CP-odd, with appropriate NB-type couplings to fermions and a potential that

leads to a vev for each. Likewise with complex fields it is not difficult to spontaneously

break CP, if there is sufficient freedom in the specification of the scalar potential (for a

principled discussion of necessary and sufficient conditions, see [21].

However, NB models, to be viable, must confront several theoretical challenges:

1. Further symmetries are necessary to enforce the necessary structure of the mass

matrix, even at the renormalizable level. In the BBP model discussed in the previous

section, since µ . |〈ηa〉|, it is necessary suppress or forbid dimension-4 couplings of

the form ηaqq̄. Likewise we must suppress HQq̄. One possibility is to allow the new

scalars and fermions to transform under a ZN symmetry (if N > 2, then the scalars

must be complex, as in the model discussed above):

ηa → e
2πik
N ηa , qf → e−

2πik
N qf , q̄f → e

2πik
N q̄f . (3.1)

With other fields neutral, we obtain a Lagrangian of the desired form. It is not

difficult to write down models which spontaneously break both CP and the ZN .

We will discuss possible gauge symmetries when we consider supersymmetry in the

next section.

2. The scale of spontaneous CP breaking mCP should be low compared to the cutoff Λ.

Dimension-5 operators such as

η∗aηbq̄q , ηaHQq̄ (3.2)

for example, can induce θ̄ of order (mCP /Λ). Note that the ZN symmetry defined in

eq. (3.1) (or possible U(1) symmetries) does not help to suppress higher-dimension

operators like (3.2). Without further symmetries or fine-tuning, even if the cutoff is

Λ = Mp, suppression of such operators requires

mCP . 108 GeV . (3.3)
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3. As in any non-supersymmetric or non-composite model, light scalars are fine-tuned.

Here we require at least two such scalars at a scale mCP �Mp, and the fine-tuning

of each of these masses is much worse than just fine-tuning θ̄ by itself. It is difficult

to make sense of NB models outside of a broader framework in which mCP /Mp is

naturally small.

4. As we have seen in the previous section, to obtain a substantial CKM angle, it is

critical that the expectation values of different CP-odd and CP-even fields (times

suitable couplings) coincide to better than an order of magnitude.

5. We might want to account for µ dynamically, i.e. through the expectation value of a

fundamental or composite field S. Additional symmetries need to be introduced to

avoid inducing phases in S from couplings of S to the ηa.

6. Even when it vanishes at tree-level, θ̄ is often generated radiatively at the scale mCP .

Loop effects are particularly problematic. They cannot be suppressed simply by ad-

ditional (bosonic) symmetries or by lowering the scale of CP violation. These corrections

will be the subject of the next section.

3.2 Radiative corrections to θ in non-supersymmetric theories

Even if one closes one’s eyes to fine tunings, and one is willing to accept a low scale for

CP violation, loop corrections are quite problematic in NB models. Threshold corrections

to θ̄ have to be considered on a model-by-model basis, but certain operators are typically

problematic. BBP studied θ̄ at one loop in [20]. Below, we review and reinterpret their

result, and observe further problematic contributions at two loop order. We will see that

the one loop sensitivity of mCP to the UV cutoff requires us to add structure, such as

supersymmetry or a dynamical origin for the scalars, and then to consider all of the other

issues in that larger framework. In the subsequent section we discuss composite models

and see that while the fine-tuning of mCP can be resolved, simple cases will either have

difficulty maintaining θ̄ = 0 at tree level, or will have one loop corrections to θ̄ similar to

non-composite models. This will lead us to consider NB in the supersymmetric context.

In the BBP model, dangerous contributions to θ̄ arise at one loop from the Higgs portal

operators

(γijη
†
i ηj + λijηiηj + cc)H†H . (3.4)

λij can be forbidden by a ZN symmetry with N > 2, so we consider the effects of γij .

Unless the γs are very small, these couplings make a large contribution to the Higgs mass.

In the context of a solution to the mCP hierarchy problem, there might or might not be

a principled reason why the couplings are small, but a priori they indicate only another

contribution of many to the tuning of m2
H . At one loop, the diagram of figure 1 gives

a complex correction to the SM down-type Yukawa coupling, contributing to a shift in θ̄

of order

∆θ̄ ' Im Tr y−1∆y ' ηaaafabfγbcη
∗
c

16π2m2
CP

. (3.5)

Adequately suppressing θ̄ requires the a and/or γ couplings to be small.
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〈H〉 〈ηa〉

〈ηb〉

Qi
d̄ q

H η

d̄j

Figure 1. Example threshold correction to Arg det md.

The authors of [20] took the viewpoint that whatever solves the SM hierarchy problem

might suppress the portal couplings. Such suppressions can occur in supersymmetric or

composite theories (both of which solve the m2
CP hierarchy problem, but not necessarily

the full m2
H one). These theories involve significant extra structure beyond the minimal

BBP model, and the radiative corrections to θ̄ must be considered in the full theories.

Without supersymmetry or extra dynamics, the Higgs mass is simply tuned, and small θ

is problematic.

At two loop order, there are additional contributions which must be suppressed. In

particular, insertions of the operator

Lη4 = γijklηiηjη
∗
kη
∗
` (3.6)

can contribute phases to the operators µq̄q and QHd̄. The relevant Feynman diagrams

contain a loop of gauge bosons and an η loop, with insertions of Lη4 ; an example is given

in figure 2 (this contribution is similar to the “dead duck” graph noted in [8]). The

contribution to θ̄ is of order

∆θ̄ ' g2aafacfη
∗
bηdγabcd

(16π2)2m2
CP

(3.7)

Again, unless the couplings are surprisingly small, the correction is several orders of mag-

nitude to large. In the supersymmetric case, we will see that these contributions can be

suppressed, but new issues will arise.

3.3 Models with strong dynamics

The low scale of CP violation may be protected by strong dynamics. For example, the

CP-odd scalars could be pseudogoldstone mesons Π of an SU(N) gauge theory in which

condensates spontaneously break approximate chiral flavor symmetries,

〈ψ̄iψj〉 = Bf2
Πexp(iΠata/fΠ) , (3.8)
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q̄ q
µ

〈η∗a〉 〈ηb〉

Figure 2. Example two-loop contribution to the phase of µ.

in analogy with the pions of QCD. The Π fields can obtain nonzero vevs naturally from a

particular pattern of chiral symmetry breaking (as in, e.g., Dashen’s model [22]). In this

case, BBP-type couplings to the Standard Model and the q,q̄ messengers (assumed for now

to be fundamental fermions) might arise from higher-dimensional operators of the form

1

Λ2
κfijψ̄iψj d̄fq/Λ

2 → B
f2

Π

Λ2
Tr
[
κfeiΠ

ata/fΠ

]
d̄fq + . . . . (3.9)

If the hierarchy between the scale of the gauge theory ∼ fΠ and the UV cutoff Λ is large,

the effective couplings aaf in eq. (2.2) may be very small, and the effective scale of CP

violation much smaller than fΠ. We can see from the form of eq. (2.5) that the CKM

phase can still be large if µ is sufficiently small. Furthermore, the one loop BBP radiative

correction — generated here by couplings of the form H†Hψ̄ψ/Λ — is suppressed when

the effective aaf couplings are small.

Unlike in the fundamental scalar case, however, it is difficult to implement discrete

symmetries needed to keep µ real. Permitting (3.9) while forbidding the similar 4-fermi

operator ψ̄ψq̄q requires the discrete symmetry to act chirally on ψ,ψ̄ (and, for example,

on q,q̄), but explicit chiral symmetry breaking is necessary to generate the spontaneous

CPV potential when the CP-odd scalars are pseudogoldstones. This breaking might be

soft, as in a set of masses m for the ψ,ψ̄, and thus the coefficient of ψ̄ψq̄q/Λ2 might be

suppressed by m/Λ. But if m is not too different from fΠ, then fΠ/Λ must be less than

10−10, resulting in an unacceptably low value for mCP .

It is even more difficult to understand the NB structure and the reality of the effective

µ if the messenger fields q,q̄ are baryons of the gauge theory. In this case the baryon

mass is expected to arise principally from spontaneous chiral symmetry breaking, which

by construction breaks CP.

We stress that it is not impossible to build NB-type models with strong dynamics, but

it requires more complicated structures. A minimal example was constructed in ref. [23],

consisting of a BBP-type model in which the ψ̄ψq̄q operator is forbidden by a gauged sub-

group of the chiral flavor symmetry. This symmetry might also be discrete. The Dashen

mass terms are forbidden by the symmetry, but the potential can still break CP with suit-

able dimension-6 operators (ψ̄ψ)2. Ref. [23] also showed that models with acceptably small

radiative corrections to θ̄ could be distinguished by the flavor transformation properties of

the CPV spurions present in the low-energy theory. BBP-type models with generic cou-

plings possess CPV spurions in the infrared in both the fundamental and anti-fundamental
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representations of SU(3)d, and as such they fail the criteria of [23]. This is reflected in

the large one loop correction to θ̄. However, when the couplings aaf are small, as can

arise in strongly-coupled models as discussed above, the low-energy theory contains only

an SU(3)d-fundamental spurion and the criteria for small corrections to θ̄ are met.

4 CP in supersymmetric theories: axions, moduli, and θ at tree level

Supersymmetry, with SUSY breaking at scales well below the scale of CP violation, can

significantly ameliorate the Nelson-Barr fine-tuning problem. In addition, SUSY can for-

bid some of the problematic higher-dimension operators and quantum corrections to θ̄

encountered in the non-SUSY case. In this section, we consider supersymmetric Nelson-

Barr models and their symmetries. We first review some of the problematic aspects of the

Peccei-Quinn solution of the strong CP problem and their possible resolution. Then we

consider more carefully the underlying premise that CP can naturally be a good symmetry,

and as a result that the bare θ̄ vanishes. In both cases the questions are ultraviolet-sensitive

and the resolutions depend on the structure of the microscopic theory. In particular, if there

is an underlying landscape, small bare θ̄ is implausible.

We first review some aspects of the axion solution, with and without supersymmetry.

The most challenging aspect of the Peccei-Quinn solution of the strong CP problem is

understanding why the global symmetry is so good. Global symmetries should arise only

as accidents of gauge symmetry and the structure of low dimension terms in an effective

action. It was quickly recognized that this is a challenge for the PQ mechanism [24]. From

a PQ-violating potential Vpqv, we can define an axion quality factor,

Qa ≡
fa

∂Vpqv(a)
∂a

m2
πf

2
π

. (4.1)

Solving the strong CP problem requires

Qa < 10−10 . (4.2)

In a conventional effective field theory analysis (i.e. finite number of degrees of freedom

above fa), small Qa is highly non-generic. If the axion arises as the phase of a field Φ,

〈Φ〉 = fae
ia/fa , (4.3)

symmetry violating operators like

Φn+4

Mn
p

(4.4)

spoil the PQ mechanism even for fa = 1011 GeV unless n > 7. Such suppression can be

obtained with a discrete ZN symmetry, with N ≥ 11, but such a model appears contrived.

Witten pointed out early on that string theory provides a possible resolution to the

problem of the quality of the PQ symmetry [25]. This is most easily understood in the

– 9 –
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framework of supersymmetry. Typically string models possess moduli, Φ, whose imaginary

component obeys a discrete shift symmetry:

Φ = x+ ia; a→ a+ 2π . (4.5)

This symmetry guarantees that any superpotential is a function of e−Φ at large x. Here x

might be 8π2

g2 , for some gauge coupling g.

In this setting, the primary question is why the theory sits in an asymptotic region of

the moduli space where e−x is very small. It is consistent at least with the fact that the

observed gauge couplings are small, but a detailed connection is not possible at present,

much less reliable computations [26].

We turn now to theories where CP is a symmetry of the microscopic dynamics. Here we

can make a connection with string axions discussed above. In known string theories, CP is

a good symmetry [27–29]. For typical string compactifications, this statement means that

there is a subspace of the moduli space on which CP is conserved, and CP is spontaneously

broken on the rest. In supersymmetric theories, the moduli fields include both a CP-even

and a CP-odd scalar, as in eq. (4.5), and we will refer to them as saxions xi and axions

ai, respectively. We can define ai = 0 as the CP conserving point. CP is spontaneously

broken if some of these axions are stabilized at ai 6= 0. Generally one or moduli couple to

each of the gauge groups in the classical theory, providing candidate axions. The question

of whether there is a non-zero θ is then a question of whether the relevant axions are heavy

and fixed at CP conserving points.

If the moduli are stabilized supersymmetrically, the CP-even and CP-odd states are

fixed together. Suppose that we have a single modulus, with

W = −αe−Φ/b +W0; K = − log(Φ + Φ†) , (4.6)

with W0 small, as in the KKLT scenario [30]. Then

Φ ≈ b log(W0/α) . (4.7)

Provided W0 and α are real, Φ is real. If Φ couples to the QCD gauge fields as ΦW 2
α, it

generates no tree-level contribution to θ. Plausibly, if W0 is large, CP remains unbroken,

and Φ is very heavy.

Should W0 be real? If we assume W0 results from CP-conserving dynamics, it is

automatically real. On the other hand, flux landscapes provide a model where complex W0

appears more likely. In such cases W0 is the sum of many contributions associated with

many different fluxes, of which we expect about half to be CP-even and half to be CP-odd.

CP preservation amounts to requiring half of the of the fluxes to vanish. In other words,

given 10500 states, only 10250 conserve CP and have vanishing W0, and correspondingly

CP-conservation appears very non-generic. Moreover, as noted earlier, it is hard to see

what might select for small θ. However, absent a sharp UV prediction for W0, we can

simply take its reality as a requirement of the NB setup.

We can ask what may happen when we introduce a sector in which CP is spontaneously

broken with characteristic scale µ. If this sector does not break supersymmetry, we might
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expect additional, CP-violating terms in the superpotential of order µ3e−S . These terms

will shift the minimum of the axion field, but their contribution is suppressed if b is large.

If, for example, e−S < 10−15 and b = 5, then θ < 10−12. Alternatively, if b = 1, the

contribution to θ is suppressed by at least ten order orders of magnitude provided the scale

µ is at least three orders of magnitude below Mp. In non-supersymmetric models (e.g. cases

where the scale of SUSY-breaking is � µ) with axions, one would expect the difficulties to

be at least as severe; it is not clear in such contexts that terms violating the Peccei-Quinn

symmetry must be exponentially small.

The assumption that W0 is real constrains a combination of the supersymmetry break-

ing and CP violating scales. In particular, we might expect CP violation to generation a

complex term in the superpotential, W0 ∼ µ3
CP . If there is no suppression of the phase,

the requirement of cancellation of the cosmological constant yields the constraint:

µ3
CP < M3/2M

2
p . (4.8)

5 SUSY Nelson-Barr models

In this section, we assume that any would-be axions are massive and fixed in a CP con-

serving manner. We then ask what are the requirements on SUSY NB models required to

account for a very small θ̄. The Lagrangian of (2.2) naturally extends to a superpotential:

W = µq̄q + λafηaqd̄f + yff̄HdQf d̄f + . . . . (5.1)

For the moment we continue to treat µ as a dimensionful constant. While the absence of

undesirable renormalizable interactions like ηqq̄ and HdQq̄ can be technically natural due

to nonrenormalization theorems, they can be forbidden in a more principled way with, for

example, discrete symmetries like (3.1). Again a coincidence in scales among the ηa vevs

is required, as well as µ . |λafηa|.
As emphasized above, putting NB into a larger and more natural framework incurs new

challenges. The prime example in SUSY models is that the ηa must be sequestered from

the supersymmetry breaking sector to avoid, e.g., giving phases to the gluino mass, among

other problems [31]. We might expect the SUSY breaking theory to exhibit either an exact

(discrete) R symmetry, or at least approximate accidental one. If there is an identifiable

Goldstino field, Z (assumed chiral), then couplings of the ηa to Z must be suppressed.

Replacing µ by a dynamical field S may be desirable and requires further symmetries.

For example, it is critical to forbid renormalizable couplings between S and the ηa.

5.1 Breaking of CP and ZN in SUSY

If CP is violated at or below the scale of supersymmetry breaking, the low-energy theory

can be studied in the non-supersymmetric framework of the previous section. Therefore,

we focus on CP violation at scales much higher than those of supersymmetry breaking.

We will not attempt to be exhaustive, but we consider models that illustrate some of the

challenges. We consider two classes of models:

1. Models in which the CP violating fields are fixed supersymmetrically. Here there is

a discrete set of vacua and all fields have mass of order the scale of CP violation.
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2. Models in which the CP violating fields are fixed by SUSY breaking dynamics. We

take the scale of CP violation to be much larger than the scale of SUSY breaking; in

this situation, CP is broken by fields in approximate flat directions.

5.1.1 CP broken by supersymmetry-conserving dynamics

To write a simple model that breaks CP in isolated vacua, we introduce two fields η1 and

η2, odd under a Z2 symmetry, and fields X and Y that are even. We can also suppose an

R symmetry (for simplicity we will take it to be continuous, but it can also be a discrete

subgroup) under which X and Y have R charge 2 and the ηi are neutral. Then we can

take the superpotential to have the form, without loss of generality:

W = Xµ2 +X(aη2
1 + bη1η2 + cη2

2) + Y (a′η2
1 + b′η1η2 + c′η2

2). (5.2)

This superpotential typically has minima in which η1 and η2 have phases, breaking CP. If

q, q̄ are both odd under the Z2, with R charge 1, and d̄f is even, with R charge 1, then we

obtain the NB superpotential at the renormalizable level.

There are a number of issues with models of this type. In particular, if supersymmetry

breaking is associated with a Goldstino superfield in a hidden sector, Z, these symmetries

will not forbid Zη1η2 couplings, leading to CP violating phases in ordinary soft break-

ing terms. ZN symmetries with larger N , while forbidding these couplings, require more

structure in order to obtain a superpotential that is both ZN invariant and spontaneously

breaks CP (and ZN ).

Another model for spontaneous CP violation has been presented in [32]. In addition

to a discrete symmetry, the model relies on a continuous global symmetry to suppress

couplings which would induce θ at tree level. If the U(1) is replaced by a discrete subgroup,

at least a Z3 × Z5 symmetry is needed to suppress dangerous renormalizable operators.

5.1.2 Theories with flat directions

String theory constructions suggest another possibility which can lead rather naturally

to the NB structure. There are two elements. First, string models often possess U(1)

symmetries beyond those of the Standard Model, as well as additional fields, which can

yield the required superpotential for the NB models. Second, there are often approximate

flat directions in which CP-odd fields can obtain large expectation values. Under suitable

conditions, these vevs may spontaneously break CP.

In particular, the gauge group E6, familiar in Calabi-Yau compactifications of the

heterotic string, suggests the possibility of two additional U(1)s at some energy scale as

well as several additional fields. In terms of O(10)×U(1) ⊂ E6, the 27 of E6 decomposes as

27 = 16−1/2 + 101 + 1−2 . (5.3)

We will treat the theory as if this symmetry is broken to the Standard Model ×U(1)×U(1).

Then we can list the fields and their charges under the two U(1)s:

Q, ē, ū = (−1/2, 1); L, d̄ = (−1/2,−3); q̄ = (1, 2); q = (1,−2); η = (−1/2, 5);

H = (1, 2) H̄ = (1,−2) S = (−2, 0). (5.4)
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Note that the η is essentially the right-handed neutrino of O(10), while the S is the field in

E6 outside of the 16 or 10. q, q̄, and `, ¯̀ arise from the 10 of O(10). Anomaly cancellation is

readily satisfied by including an additional q, q̄, `, ¯̀, η, S for each generation. In addition,

we assume that there is one additional S, S̄ pair and one additional η, η̄ pair (and allow

the possibility of other incomplete multiplets, particularly for the Higgs field).

With these charge assignments, the most general cubic superpotential involving S, η, q,

q̄ and the ordinary matter fields is precisely that of eq. (5.1). Moreover, at the renormal-

izable level, the classical theory possesses flat directions with non-zero ηi, η̄, Si, S̄.

The flat directions may be lifted by supersymmetry-breaking effects and dimension-5

operators. If some of the soft masses in the flat directions are negative, some of the fields

will receive large expectation values. If there are quartic superpotential couplings, e.g.
1
Mp
ηiηj η̄

2 and 1
Mp
SiSjS̄

2, then these expectation values are of the order

S2, η2 ∼ msusyMp. (5.5)

With several fields, there will typically be CP violating minima of the potential.

Many problematic higher-dimension operators are forbidden by holomorphy and the

U(1)s. However, a surviving class of dimension-5 operators, SiS̄ηj η̄, must be forbidden to

avoid large phases in S. These couplings can be forbidden by discrete symmetries. One

virtue of this type of model is that it is compatible with the existence of a (discrete) R

symmetry, which can suppress couplings of the η fields to any would-be supersymmetry-

breaking sector and possible messengers.

Another potential difficulty is the large size of the ηi expectation values. These are suf-

ficiently large that, depending on the scale of supersymmetry breaking and the suppression

scale, they have the potential to induce θ̄ through dimension-6 operators.

5.2 Breaking of supersymmetry

We have already noted that supersymmetry breaking introduces new potential contribu-

tions to θ̄. Many of these contributions do not decouple, even as the supersymmetry

breaking scale is taken arbitarily large. As a result, a successful supersymmetric solution

to strong CP requires suppression of phases in the gluino mass, as well as a high degree of

degeneracy, proportionality, and suppression of phases in squark masses and A-terms [31],

regardless of the scale of supersymmetry breaking.

We distinguish two classes of models: those, like gravity-mediated models, where the

soft breaking terms of the SM fields are of order m3/2, and those, like gauge mediated

models, where m3/2 is parametrically smaller.

Consider first gravity-mediated models. In these models, one general issue is 〈W 〉 ∼
m3/2M

2
p . If 〈W 〉 is complex, this feeds into θ through phases, for example, at one loop in

the gaugino mass (this is the familiar anomaly-mediated contribution). In section 4, we

raised general questions about the reality of 〈W 〉, and argued that in flux landscapes, at

least, real 〈W 〉 is unlikely. More generally, apart from some sort of anthropic selection, no

convincing mechanism has been put forward to account for the value of the cosmological

constant. So the failure of landscape models to account for small phases is troubling.
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In gauge-mediated models, the situation can be significantly better. Comparing the

anomaly-mediated to the gauge-mediated gluino mass, we require

αs
4π

m3/2

msusy
< 10−10 . (5.6)

This constraint places a loose upper bound on the underlying scale of supersymmetry

breaking if W possesses an order one phase.

In both gravity and gauge mediation, there may be other strong constraints, depending

on the nature of supersymmetry breaking. If supersymmetry is broken in a hidden sector

through a gauge-singlet chiral field, Z, with FZ = f , then any phase in f can feed into

soft breaking terms, yielding phases for the gluino, for example, as well as squark mass

matrices. These, in turn, contribute to θ. In the models we have studied, these might arise

from couplings such as

Wη−Z = ληiηjZ (5.7)

at dimension three in W , or even through terms of dimension 2. Such undesirable terms

can be forbidden if Z is charged under some symmetry (as in some models of dynamical

supersymmetry breaking), or by combinations of continuous and discrete symmetries in

the models of CP breaking by pseudomoduli of the sort discussed in the previous section.

For example, couplings of combinations like ηiη̄ to Z can be forbidden by R symmetries.

In the models with discrete vacua, this problem is more challenging. In gauge-mediated

models, it is also necessary to forbid couplings of the η fields to messengers. This can again

arise from the R symmetries consistent with the flat direction models.

If non-renormalizable terms coupling CP-breaking fields to Z are permitted by sym-

metries, these will constrain the scale of CP violation. Certain Kahler potential terms are

difficult to suppress by symmetries. However, one can contemplate higher scales of CP

violation than in the non-supersymmetric case.

Overall, then, both in gravity and gauge mediation, it appears possible to avoid dan-

gerous new sources of phases at tree level, without large arrays of new fields or excessively

complicated new symmetry structures. Gravity mediation requires stronger constraints on

the reality of W .

5.3 Loop corrections in supersymmetric theories

Supersymmetric theories are immunized against many of the types of corrections found in

non-supersymmetric theories as a consequence of holomorphy and non-renormalizations.

In particular, large terms of the form H∗Hη∗i ηj and ηiηjη
∗
kη
∗
l need not arise (the corre-

sponding superpotential terms can be suppressed by symmetries and the smallness of the

µ term). There are, however, new possible sources of corrections to θ. We divide our dis-

cussion between gravity mediated and gauge mediated models. Loop corrections in gravity

mediated models, as discussed in [31], are quite problematic. Gauge mediated models are

better controlled [18].

We assume that tree level contributions to phases of gaugino masses are highly sup-

pressed. Beyond this, we require, as discussed above, suppression of phases in the under-

lying supersymmetry breaking f term and the superpotential. But there are still potential
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difficulties. As discussed in [31], already at one loop, there are contributions to gaugino

masses arising from loops involving heavy fields in the CP violating sector. In the simplest

model, the heavy field is a Dirac particle, of mass mD, consisting of a charge 1/3 field,

D̄ =
∑

Bf d̄f + µq̄ (5.8)

and a field of charge −1/3, D = q. There is a soft breaking term,

LqD̄ = ADmDD̄D . (5.9)

The gluino mass receives contributions proportional to A∗D. In general, there is no reason

for the phase of A to vanish; this requires a very specific alignment of expectation values

and couplings. It could arise in the presence of an SU(4) symmetry acting on d̄ and q̄ —

something clearly not present in this structure. The phase must be smaller than 10−8 or so.

Similarly, there are potential contributions proportional to Fηa . In supergravity models,

these may naturally be suppressed by (m3/2/Mp)
1/2, so they become problematic if the

scale of supersymmetry breaking is greater than 104 GeV or so.

As discussed in [31], there are additional contributions arising from phases in soft

scalar mass terms. Suppressing these requires a remarkably high degree of degeneracy and

proportionality. Overall, then, there is a set of issues similar to, but more severe than, the

usual flavor problems of supergravity theories.

Gauge mediated models are characterized by features which ameliorate the problems

noted above.5 First and foremost, new sources of flavor violation are absent, and A terms

are highly suppressed.

In addition, insertions of Fηa , which also enter in loop corrections to gaugino masses,

are small if SUSY breaking does not couple to the ηa at tree level. SUSY-breaking F -terms

for the ηa are generated radiatively from Kahler potential operators such as Z†Zη†aηb/m
2
CP ,

but in the minimal model they appear only at three loop order. These statements need

not hold in theories where messengers mix with other fields so as to gain large A terms, or

where there are “µ-terms” for some of the η fields.

At higher loop order, complex A-terms and flavor-violating soft masses can be gen-

erated in gauge mediation. Such terms can give a weak upper bound on the hierarchy

FZ/m
2
CP . For example, in minimal gauge mediation, a Kahler potential operator of the

form Z†Zqd̄fηa/m
3
CP is generated at 3-loop order from loops of the η fields connected to

ordinary gauge mediation loops. This operator provides a phase to the gluino mass in a

manner similar to a complex A-term of the form Aγηqd̄ (although the operator involves

heavy fields and cannot be written as an A-term at the scale mCP ). Because of the high

loop suppression, the bound from θ̄ is weak: FZ/m
2
CP . 10−2.

Furthermore, all non-minimal flavor violation among the light fields comes from the

coupling aafηad̄fq and the mixing of light right-handed fields with aaf 〈ηa〉d̄f . If µ �
aaf 〈ηa〉, the light field is mostly q̄, and the mixing is small. Since µ� aaf 〈ηa〉 is in conflict

with the large CKM phase, and there is no obvious reason for the scales to be coincident,

contributions to θ̄ in gauge-mediated NB models can be even further suppressed by µ/mCP .

5See also the discussion in [32] for the possibility of suppression through alignment.
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6 Conclusions

We have argued that solving the strong CP problem is not necessarily an arena for model

building cleverness; rather, ideally, the smallness of an inconsequential parameter should

emerge as a consequence of features of a theory which explains a range of other phenomena.

No currently known model for solving strong CP is completely satisfactory from this point

of view.

The shortcomings of the axion solution are well-known. Perhaps the most credible

realization is in string theory, where plausible assumptions about moduli fixing may lead

to a solution, albeit with a relatively high-scale axion.

In the case of the Nelson-Barr solution, we have argued that non-supersymmetric

models are at best very complicated, with intricate symmetries required to suppress higher-

dimension operators. If these operators are simply suppressed by a low scale of CP vio-

lation, models without strong dynamics or supersymmetry require a degree of fine-tuning

higher than if θ̄ were simply set to zero by hand. Furthermore, we have argued that dy-

namical models based on vevs for pseudo-Goldstones are nontrivial to construct. Loop

corrections in generic non-SUSY models are even more problematic, making further de-

mands on the theories.

Supersymmetric Nelson-Barr fares somewhat better. Coincidences of scales are still

required, but light scalars can be technically natural, and holomorphy greatly restricts the

higher-dimension operators that can contribute to θ̄. We described a specific structure in

which the NB mechanism is operative and CP is broken in approximate flat directions by

fields carrying new gauge symmetries. Additional discrete symmetries can suppress dan-

gerous couplings of the CP-violating fields to the hidden sector fields and also couplings

to messengers. Loop corrections are known to be highly problematic in generic gravity-

mediated models, but in gauge-mediated models, these effects are under control. So super-

symmetric models with additional symmetries and gauge mediation provide a setting in

which the Nelson-Barr mechanism is plausible, at least as viewed at relatively low scales.

We have also studied the underlying premise of models that aim to solve the strong CP

problem through spontaneous CP violation: that in such theories, the bare θ parameter

naturally vanishes. We stressed that this is a question of the nature of the ultraviolet

theory. In string theory, the value of θ is generally controlled by the value of an axion

field, so the basic assumption is that there are massive axions whose expectation values

conserve CP. Perhaps most problematic for the idea of small θ, however, is the possibility

of a landscape. We noted that in flux landscapes, in particular, where the heavy axion

expectation value is determined by superpotential parameters, these parameters are likely

to be complex in an overwhelming majority of states.

So the current status of the strong CP problem can be described by saying we possess

three solutions, each with significant flaws. The reader is free to develop his or her own

view as to which solution, is any, is most plausible. Unless there are systematic problems

with lattice computations which are common to disparate approaches to QCD, the light

u quark solution is ruled out. The axion solution requires either very complicated sym-

metry structures, or some assumptions about moduli stabilization and an unconventional
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cosmological history. The spontaneous CP solution requires supersymmetry, a variety of

additional symmetries, something like gauge mediation, and, perhaps most problematic,

an explanation of why moduli are stabilized in a CP-conserving way.
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