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We suggest an effective field theory framework to discuss deviations from the minimal supersymmetric 
Standard Model (MSSM) which is based on an alternative arrangement of the gauge-Higgs sector. In this 
effective MSSM (EffMSSM) nonlinearly realised SU(2) × U (1) gauge sector is described by an SU(2) ×
U (1)-valued massive vector superfield, which contains a neutral CP-even and charged Higgs fields, while 
another neutral CP-even Higgs and the neutral CP-odd Higgs fields are residing in an SU(2) × U (1)-singlet 
chiral superfield. Although the new theory contains the same particle content as the conventional MSSM, 
the unconventional representation of superfields allows for new type of interactions, which may lead 
to a significant modification of the phenomenology. As an illustrative example we consider EffMSSM 
with modified Higgs and electroweak gauge sector augmented by gaugino soft supersymmetry breaking 
masses, Mi (i = 1, 2, 3) and the Standard Higgs soft-breaking masses, mHu = mHd and Bμ , and point out 
distinct features in the Higgs and gaugino sectors as compared to MSSM. In particular, we show that the 
lightest neutral CP-even Higgs boson with mass ∼ 125 GeV can be easily accommodated within EffMSSM.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The null results of LHC searches for supersymmetric (SUSY) 
particles during Run I have significantly constrained the simplest 
supersymmetric models of particle physics and the minimal su-
persymmetric Standard Model (MSSM) in particular. Furthermore, 
the discovery of the Higgs-like particle with mass mh ≈ 125 GeV, 
which in MSSM is associated with the lightest CP-even Higgs bo-
son, essentially excludes natural versions of MSSM, except the case 
of compressed sparticle spectrum [1]. Indeed, 125 GeV Higgs bo-
son can be accommodated within MSSM providing stops are suffi-
ciently heavy, but then substantial tuning of parameters is required 
to obtain the correct masses for the electroweak gauge bosons. 
Furthermore, Higgs coupling measurements already started to con-
straint scenarios with relatively light stops and large stop-Higgs 
trilinear coupling [2]. Nevertheless, at this stage it is still prema-
ture to attribute this problem to SUSY. In fact, the problem of Higgs 
mass and naturalness is specific for MSSM and may be avoided 
in extended theories, such as the next-to-minimal supersymmetric 
Standard Model (NMSSM) [3] or SUSY models with an extra gauge 
symmetry [4].
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In this paper we would like to suggest a framework within 
which deviations from the MSSM can be conveniently parametrised 
and thus possible deviations from the minimal model can be 
discussed in a model-independent way. We dubbed this frame-
work effective MSSM (EffMSSM). It is based on an alternative ar-
rangement of superfield representations in the gauge-Higgs sector 
within the SU(2) × U (1) electroweak symmetry being nonlinearly 
realised.1 Namely, the SU(2) × U (1) gauge sector is described by 
an SU(2) × U (1)-valued massive vector superfield, beside massive 
electroweak gauge fields and corresponding gauginos, contains also 
H0, H± Higgs fields. In addition, we introduce SU(2) ×U (1)-singlet 
chiral superfield where h0 CP-even and A0 CP-odd Higgs fields are 
residing. Thus, the particle content is exactly the same as in the 
MSSM. However, due to the unconventional superfield represen-
tation many new types of interactions become possible. MSSM is 
attained as a particular case of EffMSSM. A similar model with 
different emphases has been considered previously in [7].

We note that existing large uncertainties in Higgs couplings 
measurements precludes from the definite conclusion on the na-
ture of the electroweak symmetry. If nonlinearly realised, the 
electroweak gauge theory becomes strongly interacting at high 
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energies, the famous example being W W → W W scattering in the 
Higgsless Standard Model (SM). It is expected that at high energies 
new resonances show up, which unitarise rapid, power-law growth 
of scattering amplitudes with energy in perturbation theory. How-
ever, the scale where new physics is expected to emerge crucially 
depends on the specific process considered. For example, in the SM 
with anomalous top-Yukawa couplings perturbative unitarity is vi-
olated in the tt̄ → W W at energies ∼ 10 TeV. New physics at such 
high energies may escape the detection at LHC, and, in situations 
like these, precision measurements of deviations from SM physics 
parametrised within the effective theories based on nonlinear re-
alisation become imperative.

In the next section we set up the EffMSSM framework. In 
Section 3 we discuss the electroweak symmetry breaking within 
MSSM and calculate the mass spectrum in the following section. 
We conclude in Section 5.

2. Description of the model

We describe the broken phase of the electroweak SU(2) ×U (1)Y
gauge theory with an residual unbroken U (1)EM in a model-
independent way by introducing nonlinear chiral superfield

U = e
i
2 ξiσi , detU = 1, (1)

where σi (i = 1, 2, 3) are the three Pauli matrices. The chiral su-
perfields ξi contain the three Goldstone bosons spanning SU(2) ×
U (1)Y /U (1)EM coset space and their SUSY counterparts, which are 
pseudo-Goldstone bosons. The first three represent longitudinal 
degrees of freedom of the electroweak W and Z vector particles, 
while the pseudo-Goldstones complete the electroweak massive 
vector supermultiplets. The superfield U transforms as the follow-
ing under the electroweak gauge group:

U → e
i
2 �iσi Ue− i

2 �σ3 , (2)

where �i and � are chiral superfields for SU(2) and U (1)Y su-
pergauge transformation parameters, respectively. In addition, we 
introduce a singlet chiral superfield S , such that the two Higgs su-
perfields of the conventional MSSM, Hu and Hd , can be identified 
with the composite superfield SU as follows:

� ≡ SU =
(

H0
u H−

d
H+

u H0
d

)
(3)

It is easy to see, that

det� = S2 = Hu Hd , (4)

and

H0
u(d) = S cos

(√
ξiξi

2

)
± i S

ξ3√
ξiξi

sin

(√
ξiξi

2

)
, (5)

H+(−)

u(d)
= i S

ξ±√
ξiξi

sin

(√
ξiξi

2

)
, (6)

ξ± = 1√
2
(ξ1 ± iξ2).

The most general, normalisable Lagrangian for the gauge-Higgs 
sector comprises then of the following D-terms:

LHG =
[

Tr
(
�†eW �eB

)]
D

+ κ2
[

Tr
(

U †eW UeB
)]

D

+
[
αTr

(
�†eW UeB

)
+ α∗Tr

(
U †eW �eB

)]
D

+ β
[

S̄ S
]

D , (7)

where W = gW iσi and B = g′Yσ3 are, respectively, SU(2) and 
U (1)Y gauge superfields in the adjoint representation of the elec-
troweak gauge group:
eW → e+i�†
eW e−i�, eB → ei/2�σ3 eB e−i/2�†σ3 . (8)

The extra parameters κ and α have mass dimension one, while 
β is dimensionless. They parametrise deviations from the MSSM 
gauge-Higgs sector, which is represented by the first term on the 
rhs of (7).

The Higgs–Yukawa sector of the theory is described by the F-
term of the following superpotential:

WHY = ū
(
yu� + y′

uU
)
χu Q − d̄

(
yd� + y′

dU
)
χd Q

− ē
(
ye� + y′

eU
)
χd L , (9)

where χu = (1 0)T and χd = (0 1)T, and ū, d̄, ē, Q and L are quark 
and lepton chiral superfields, all 3-vectors in the flavour space. The 
3-by-3 matrices yu,d,e with dimensionless entries are the conven-
tional Higgs–Yukawa couplings, while y′

u,d,e are extra non-linear 
mass matrices. The y′

u,d,e → 0 limit reproduces the MSSM Higgs–
Yukawa superpotential.

Finally, the normalisable Higgs superpotential involving the su-
perfield S takes the form:

WH = λ

3
S3 + μ

2
S2 − τ S . (10)

Note that, because of the relation (4), the quadratic S2 term in the 
above equation reproduces (up to a normalisation related factor 
1/2, see below) the usual MSSM μ-term. The dimensionless cubic 
coupling λ and the τ parameter of (mass)2 dimension parametrise 
deviations from the MSSM Higgs superpotential.

Augmented by the SUSY soft breaking terms, Eqs. (7), (9)
and (10), describes the general EffMSSM, which involves new in-
teractions, while having the same particle content as the MSSM. 
As a result, the model becomes significantly more complicated 
and phenomenologically richer, but also more flexible to accom-
modate experimental constraints. However, our aim here does not 
include a comprehensive study of phenomenological consequences 
of EffMSSM. Instead, in what follows, we concentrate on the elec-
troweak symmetry breaking and the related mass spectrum within 
a simplified version of the general model, which is realistic and, at 
the same time, tractable analytically.

3. Electroweak symmetry breaking in EffMSSM

To avoid notational clutter, in this section we denote the scalar 
components by the same letters as their corresponding chiral su-
perfields, e.g. S|θ=0 = S , etc. Also, for phenomenological reasons 
we assume that squarks and sleptons do not develop vacuum 
expectation values, and, hence, for the purpose of this section 
we concentrate on terms for the scalar potential stemming from 
Eqs. (7) and (10). To further simplify the matter, we can use the 
gauge freedom to remove the electrically neutral would be Gold-
stone boson from the scalar potential by setting Re(ξ3) = 0.

As usually, supersymmetry at low energies is broken by a set of 
soft breaking parameters. For discussion of the electroweak sym-
metry breaking in the tree-level approximation it is sufficient to 
consider soft scalar masses for S and ξi fields:

V soft =
(

1

2
m2

S S2 + h.c.

)
+ A

2
Tr

(
�†�

)
+ B

2
Tr

(
�†�σ3

)
(11)

In the MSSM limit, the above soft breaking masses correspond to:

A = m2
Hu

+ m2
Hd

, B = m2
Hu

− m2
Hd

, m2
S = 4Bμ . (12)

We note that other gauge invariant soft breaking terms in the 
Higgs sector can also be introduced within the EffMSSM such as, 
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S∗ S , Tr
(
U †U

)
, Tr

(
U †Uσ3

)
. The relation to the MSSM soft parame-

ters become more complicated, and we do not consider them here.

V H =
∣∣∣λS2 + μS − τ

∣∣∣2

+
(

S S̄ + α S̄ + α∗ S + κ2
)2

V D + V soft , (13)

where the D-term contribution can be written in exact form as:

V D = g2 + g′ 2

2

[
iξ3√
ξiξi

cos

(√
ξ∗

i ξ∗
i

2

)
sin

(√
ξiξi

2

)

−
¯iξ3√

ξ∗
i ξ∗

i

cos

(√
ξiξi

2

)
sin

(√
ξ∗

i ξ∗
i

2

)

+ ξ∗+ξ+ − ξ∗−ξ−√
ξiξiξ

∗
j ξ

∗
j

sin

(√
ξiξi

2

)
sin

(√
ξ∗

i ξ∗
i

2

)]2

+ g′ 2

∣∣∣∣∣ iξ+√
ξiξi

sin

(√
ξiξi

2

)
cos

(√
ξ∗

i ξ∗
i

2

)

− i ¯ξ−√
ξ∗

i ξ∗
i

sin

(√
ξ∗

i ξ∗
i

2

)
cos

(√
ξiξi

2

)

+ ξ∗−ξ3 − ξ+ξ∗
3√

ξiξiξ
∗
j ξ

∗
j

sin

(√
ξiξi

2

)
sin

(√
ξ∗

i ξ∗
i

2

)∣∣∣∣∣
2

(14)

As in the MSSM, the vanishing charged fields minimise the po-
tential, so ξ+ = ξ− = 0 in the vacuum. Hence, Eq. (13) takes the 
simpler form:

V H =
∣∣∣λS2 + μS − τ

∣∣∣2

+ g2 + g′ 2

2

(
S S∗ + αS∗ + α∗ S + κ2

)2
sinh2 ξ

+ A

2
S S∗ cosh ξ − B

2
S S∗ sinh ξ +

(
1

2
m2

S S2 + h.c.

)
, (15)

where ξ ≡ Im(ξ3). Analysing the above potential, first we note that, 
unlike the MSSM, the electroweak symmetry breaking in EffMSSM 
can also be achieved in the supersymmetric limit, A = B = mS = 0. 
Indeed, the D- and F-flatness conditions,

ξ = 0 , λS2 + μS − τ = 0 , (16)

respectively, lead to a non-zero vacuum expectation value for the 
singlet field. Using the relations for the vacuum expectations in the 
linear realisation,

e〈ξ 〉 ≡ tanβ, 〈S〉2 = vu vd , (17)

we then have in this case vu = vd , that is, 〈S〉2 = v2/2, where 
v =

√
v2

u + v2
d .

Note that, the expectation value 〈S〉 can be complex, thus 
breaking CP spontaneously. To simplify the matter we only con-
sider the case of real λ, μ and τ parameters. Inspecting the 
F-flatness condition (16), we find that for λτ < 0 and |μ| <
2
√−λτ , the expectation value is complex with the phase angle θ

and modulus |v| given as:

cos θ = − μ

2
√−λτ

, |v| =
√

−2τ

λ
. (18)

If, however, λτ > 0, the expectation value is real and for θ = 0
there are 2 degenerate solutions for v:
v = − μ

2
√

2λ

(
1 ±

√
1 + 16λτ

μ2

)
. (19)

For θ = π , v → −v , and the above two solutions are simply 
swapped. Obviously, each of them can be associated with the elec-
troweak vacuum.

The soft breaking masses in (15) lift the flatness of the Higgs 
potential. However, unlike the MSSM case, in the limit of van-
ishing B , we can still maintain D-flatness, ξ = 0 [tanβ = 1] for 
non-zero 〈S〉. Again, 〈S〉 can be complex, but we focus on real CP-
conserving solutions θ = 0, π in what follows. The vacuum expec-
tation value is then a solution to the following extremum equation:

2λv3 +
(

2μ2 + m2
S − 4λτ

)
v ± √

2μ
(

3λv2 − 2τ
)

= 0 , (20)

where ± signs correspond to θ = 0 and π , respectively. Note that 
for μτ �= 0 all the solutions of the above equation are non-trivial.

To compute physical quantities, we need to canonically nor-
malise kinetic terms for physical fields. This can be achieved by 
the following rescaling of S and ξi chiral superfields:

S → √
2 + β S, ξi → ρξi , (21)

where

ρ ≡ v2

4
+ Re(α)v√

2
+ κ2

2
(22)

In this framework, the Z and W bosons are expressed as:

m2
Z =

(
g2 + g′ 2

) �

2
, m2

W = g2 �

2
(23)

where

� = 4κ2 + 4
√

2Re(α)v√
2 + β

+ 2v2

2 + β
≈ (174 GeV)2 (24)

It is easy to see that one can recover the standard expressions for 
Z and W masses when the non-minimal parameters, κ , α and β
are set to zero, � = v2.

4. Mass spectrum

In this section we compute tree-level mass spectrum of the 
Higgs sector particles of the EffMSSM described above.

4.1. Scalar masses

For the pair of neutral CP-even scalar fields (Re(S), Im(ξ3)) we 
find that the mass matrix is diagonal,⎛
⎝ 4m2

S+4μ2−8λτ

2+β
+ 12

√
2λμv

(2+β)3/2 + 12λ2 v2

(2+β)2 0

0
(

g2+g′ 2
)

8
�2

ρ + Av2

ρ

⎞
⎠ ,

(25)

and hence there is no mixing between these states. For the MSSM 
gauge-Higgs sector, κ = α = β = 0, the masses of these states read:

m2
H0

1
= 2μ2 + 2λ

(
3μv + 3λv2 − 2τ

)
+ A + 2m2

S (26)

and

m2
H0

2
= m2

Z + 4A . (27)

The second state H0
2 is a partner of the Z gauge boson within 

the massive gauge supermultiplet, as it becomes degenerate with 
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Z boson in the limit A → 0. A priori, each of this states can be 
identified with the LHC Higgs boson. E.g., in [8] Z -boson part-
ner state H0

2 has been identified with the observed boson. Within 
the given framework, however, it would be more natural to iden-
tify the first state H0

1 with the observed resonance, as in the limit 
κ = α = β = 0 its interactions with the electroweak gauge bosons 
would exactly coincide with those of the Standard Model Higgs.

The pair of neutral pseudo-scalars (Im(S), Re(ξ3)) has the fol-
lowing mass matrix:( −4m2

s +4μ2+4λτ
2+β

+ 4
√

2λμv
(2+β)3/2 + 4λ2 v2

(2+β)2 + 2A
2+β

0

0 0

)
(28)

As has been noted before Re(ξ3) is the neutral would-be Goldstone 
state ‘eaten up’ by the Z boson. Another pseudo-scalar state is an 
equivalent of A0 of MSSM. For κ = α = β = 0 its mass reads:

m2
A0 = 2μ2 + λ

(
λv2 + 2μv + 2τ

)
+ A − 2m2

S (29)

Finally, two pairs of charged states (Re(ξ+),Re(ξ−)) and
(Im(ξ+), Im(ξ−)) have identical degenerate mass matrices:( g2

16
�2

ρ + Av2

2ρ − g2

16
�2

ρ − Av2

2ρ

− g2

16
�2

ρ − Av2

2ρ
g2

16
�2

ρ + Av2

2ρ

)
(30)

The massless eigenstates are identified with the longitudinal states 
of W ± gauge bosons. The mass of the physical charged Higgs is 
given by (κ = α = β = 0):

m2
H± = m2

W + 4A (31)

We observe that this charged scalars are degenerate with W ± in 
the limit A → 0, as they represent supersymmetric partners of the 
W ± gauge bosons within the massive gauge supermultiplet.

4.2. Neutralinos and charginos

In the basis of fermionic eigenstates (B̃, W̃0, ξ̃3, ̃S) one can 
compute the mass matrix for the neutralinos in the non-linear 
framework:

MÑ =

⎛
⎜⎜⎜⎜⎝

M1 0 ig′√
2v

� 0

0 M2 − ig√
2v

� 0
ig′√
2v

� − ig√
2v

� 0 0

0 0 0 μ + √
2λv

⎞
⎟⎟⎟⎟⎠ (32)

First, we note that the singlino state S̃ is decoupled from the 
rest of the neutral fermionic states. Also, in the limit of restored 
supersymmetry, M1,2 → 0, there is one massless neutralino, a su-
persymmetric partner of the would-be Goldstone states. The two 
other neutralino states are degenerate with the Z gauge boson. 
This is of course due to the fact that these states furnish the neu-
tral massive vector supermultiplet. Supersymmetry breaking re-
moves this degeneracy. Indeed, for the sake of simplicity, let us 
consider the case M1 = M2 ≡ M and �/v � M . The neutralino 
spectrum is then given as:

m2
Ñ1

≈ m4
Z �2

M2 v4
(33)

m2
Ñ2

=
∣∣∣μ + √

2λv
∣∣∣2

(34)

m2
Ñ3

≈ M2 − m4
Z �2

M2 v4
(35)

m2
˜ = M2 (36)
N4
Hence, the LSP in this framework can be quite light and the two 
heaviest states are nearly degenerate, m2

Ñ4
− m2

Ñ3
≈ m2

Ñ1
. This may 

imply interesting phenomenological consequences for dark matter.
For the chargino states (W̃+, ˜ξ+, W̃−, ˜ξ−) we obtain the follow-

ing 4 × 4 symmetric mass matrix:

MC̃ =
(

0 C
C 0

)
(37)

C =
(

M2 − 2ig
v �

− 2ig
v � 0

)
(38)

The doubly degenerate eigenvalues of the 4 × 4 matrix are:

m2
C̃1,

m2
C̃2,

= M2
2

2
+ 4g2�2

v2
∓

√
4g2M2

2�2

v2
+ M4

2

4
(39)

where as usual the subscripts order increasingly heavy states. In 
the supersymmetric limit M2 → 0 one chargino is massless and 
represent the supersymmetric partner of the charged would-be 
Goldstone boson, while another is degenerate with W ± gauge 
bosons. We see again that these state furnish massive charged vec-
tor supermultiplet. Assuming again �/v � M the above masses 
reduce to:

m2
C̃1

≈ 64m4
W �2

M2
2 v4

(40)

m2
C̃2

≈ M2
2 + 64m4

W �2

M2
2 v4

(41)

Hence, one chargino eigenstate can be relatively light.

5. Conclusion

In this paper we have constructed a supersymmetric extension 
of the Standard Model, which is based on the non-linear realisa-
tion of SU(2) × U (1)Y supergauge symmetry, the EffMSSM. The 
gauge-Higgs sector of EffMSSM comprises of massive electroweak 
vector superfields and the electroweak singlet chiral superfield and 
no new states have been introduced. We also have established the 
relation between EffMSSM and MSSM, the later being a particular 
case of the former one.

Despite the fact the particle content of EffMSSM is the same 
as in MSSM, non-linearly realised electroweak gauge invariance al-
lows new interactions, which significantly impact the phenomenol-
ogy of the model. In particular, the electroweak symmetry breaking 
exhibits several new features, such as the possibility to develop a 
non-zero electroweak vacuum expectation value in the supersym-
metric limit and along the D-flat direction when supersymmetry 
is broken. The mass spectrum of sparticles and Higgs bosons is 
altered correspondingly, and the 125 GeV LHC resonance can be 
comfortably accommodated.

Since the nature of the electroweak symmetry breaking is not 
fully understood yet, one should explore wider possibilities beyond 
the simplest MSSM. The approach described in this paper provides 
a model-independent framework for such phenomenological stud-
ies.
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