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We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a
mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled
to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform
the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the
acceleration phase of universe.

1. Introduction

The universe is known to be experiencing an accelerating
expansion by astrophysical observations such as Supernova
Ia [1, 2], large scale structure [3, 4], the baryon acoustic
oscillations [5], and cosmicmicrowave background radiation
[6–9].

In order to explain the late-time accelerated expansion
of universe, an unknown form of energy, called dark energy,
is proposed. This unknown component of energy possesses
some interesting properties; for instance, it is not clustered
but spread all over the universe and its pressure is negative for
driving the current acceleration of the universe. Observations
show that the dark energy occupies 70% of our universe.

What is the constitution of the dark energy? One can-
didate for the answer of this question is the cosmological
constant Λ having a constant energy density filling the space
homogeneously [10–13]. But cosmological constant is not
well accepted since the cosmological problem [14] and the
age problem [15]. For this reason, many other dark energy
models have been proposed instead of the cosmological
constant. Other candidates for dark energy constitution are
quintessence, phantom, and tachyon fields. We can briefly
classify the dark energymodels in terms of themost powerful

quantity of dark energy; its equation of state parameter𝜔DE =
𝑝DE/𝜌DE, where 𝑝DE and 𝜌DE are the pressure and energy
density of the dark energy, respectively. For cosmological
constant boundary 𝜔DE = −1, but for quintessence the
parameter 𝜔DE ≥ −1, for phantom 𝜔DE ≤ −1, and for
nonminimally coupled tachyon with gravity both 𝜔DE ≤ −1
and 𝜔DE ≥ −1 [16–18].

The scenario of 𝜔DE crossing the cosmological constant
boundary is referred to as a “Quintom” scenario. The explicit
construction of Quintom scenario has a difficulty, due to a
no-go theorem. The equation of state parameter 𝜔DE of a
scalar field cannot cross the cosmological constant boundary
according to no-go theorem, if the dark energy described by
the scalar field is minimally coupled to gravity in Friedmann-
Robertson-Walker (FRW) geometry. The requirement for
crossing the cosmological constant boundary is that the dark
energy should be nonminimally coupled to gravity; namely, it
should interact with the gravity [19–24]. There are also mod-
els in which possible coupling between dark energy and dark
matter can occur [25, 26]. In this paper, we consider a mixed
dark energy model constituted by tachyon, quintessence, and
phantom scalar fields nonminimally coupled to gravity.

The mixed dark energy model in this study is considered
in the framework of teleparallel gravity instead of classical
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gravity. The teleparallel gravity is the equivalent form of
the classical gravity, but in place of torsion-less Levi-Civita
connection, curvature-less Weitzenbock one is used. The
Lagrangian of teleparallel gravity contains torsion scalar 𝑇
constructed by the contraction of torsion tensor, in contrast
to the Einstein-Hilbert action of classical gravity in which
contraction of the curvature tensor 𝑅 is used. In teleparallel
gravity, the dynamical variable is a set of four tetrad fields
constructing the bases for the tangent space at each point of
space-time [27–29]. The teleparallel gravity Lagrangian with
only torsion scalar 𝑇 corresponds to the matter-dominated
universe; namely, it does not accelerate. Therefore, to obtain
a universe with an accelerating expansion, we can either
replace 𝑇 with a function 𝑓(𝑇), the so-called 𝑓(𝑇) gravity
(teleparallel analogue of 𝑓(𝑅) gravity) [30–32], or add an
unknown form of energy, so-called dark energy, to the
teleparallel gravity Lagrangian that allows also nonminimal
coupling between dark energy and gravity to overcome the
no-go theorem.The interesting feature of 𝑓(𝑇) theories is the
existence of second or higher order derivatives in equations.
Therefore, we prefer the second choice; adding extra scalar
fields of the unknown energy forms as dark energy.

As different dark energy models, interacting teleparallel
dark energy studies have been introduced in the literature; for
instance, Geng et al. [33, 34] consider a quintessence scalar
field with a nonminimal coupling between quintessence and
gravity in the context of teleparallel gravity. The dynamics of
thismodel has been studied in [35–37]. Tachyonic teleparallel
dark energy is a generalization of the teleparallel quintessence
dark energy by introducing a noncanonical tachyon scalar
field in place of the canonical quintessence field [18, 38–40].

In this study, the main motivation is that we consider
a more general dark energy model including three kinds
of dark energy models, instead of taking one dark energy
model as in [16, 18, 38–40]. In order to explain the expansion
of universe by adding scalar fields as the dark energy
constituents, there has never been assumed a cosmological
model including three kinds of dark energy models. We
assume tachyon, quintessence, and phantom fields as a
mixed dark energy model which is nonminimally coupled to
gravity in the framework of teleparallel gravity. We make the
dynamical analysis of the model in FRW space-time. Later
on, we translate the evolution equations into an autonomous
dynamical system. After that the phase-space analysis of the
model and the cosmological implications of the critical (or
fixed) points of the model will be studied from the stability
behavior of the critical points. Finally, we will make a brief
summary of the results.

2. Dynamics of the Model

Our model consists of three scalar fields as the three-
component dark energy domination without background
dark matter and baryonic matter. These are the canonical
scalar field, quintessence 𝜙, and two noncanonical scalar
fields, tachyon𝜓 and phantom 𝜎, and all these scalar fields are
nonminimally coupled to gravity. Since we consider only the
dark energy dominated sector without the matter content of
the universe, the action of the mixed teleparallel dark energy

with a nonminimal coupling to the gravity can be written as
[16, 38, 39]
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where 𝑖, 𝑗 run over 0, 1, 2, and 3 for the tangent space at each
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Here𝑇𝜌
𝜇] is the torsion tensor constructed by theWeitzenbock

connection Γ𝜌
𝜇], such that [41]

𝑇
𝜌

𝜇] = Γ
𝜌

]𝜇 − Γ
𝜌

𝜇] = 𝑒
𝜌

𝑖
(𝜕
𝜇
𝑒
𝑖

] − 𝜕]𝑒
𝑖

𝜇
) . (4)

All the information about the gravitational field is con-
tained in the torsion tensor 𝑇𝜌

𝜇] in teleparallel gravity. The
Lagrangian of the theory is set up according to the condi-
tions of invariance under general coordinate transformations,
global Lorentz transformations, and the parity operations
[42].

Furthermore, 𝜅2 = 8𝜋𝐺 in (1) and 𝑓(𝜓), 𝑔(𝜙), and
ℎ(𝜎) are the functions responsible for nonminimal coupling
between gravity 𝑇 and tachyon, quintessence, and phantom
fields, respectively. 𝜉

1
, 𝜉
2
, and 𝜉

3
are the dimensionless

coupling constants and 𝑉
𝜓
(𝜓), 𝑉

𝜙
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𝜎
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potentials for tachyon, quintessence, and phantom fields,
respectively.

We consider a spatially flat FRWmetric
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and a tetrad field of the form 𝑒
𝑖

𝜇
= diag(1, 𝑎, 𝑎, 𝑎). Then the

Friedmann equations for FRWmetric read as
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where𝐻 = �̇�/𝑎 is the Hubble parameter, 𝑎 is the scale factor,
and dot represents the derivative with respect to cosmic time
𝑡. 𝜌 and 𝑝 are the energy density and the pressure of the
corresponding scalar field constituents of the dark energy.

Conservation of energy gives the evolution equations for
the dark energy constituents, such as
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(7)

The total energy density and the pressure of dark energy read

𝜌tot = 𝜌DE = 𝜌𝜓 + 𝜌𝜙 + 𝜌𝜎,

𝑝tot = 𝑝DE = 𝑝𝜓 + 𝑝𝜙 + 𝑝𝜎,
(8)

with the total equation of state parameter
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quintessence, and phantom fields, respectively.Then the total
density parameter is defined as
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𝜅
2
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= 1, (10)

where we assume that three kinds of scalar fields constitute
the dark energy with an equal proportion of density parame-
ter such thatΩ
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= Ω
𝜙
= Ω
𝜎
= 1/3.

The Lagrangian of the scalar fields is reexpressed from the
action in (1), as
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(11)

Then the energy density and pressure values for three scalar
fields can be found by the variation of the total Lagrangian
in (1) with respect to the tetrad field 𝑒𝜇

𝑖
. After the variation

of Lagrangian, there come contributions from the geometric
terms so the (0, 0)-component and (𝑖, 𝑖)-component of the
stress-energy tensor give the energy density and the pressure,
respectively. Accordingly the energy density and pressure

values for the tachyon, quintessence, and phantom fields read
as
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respectively. Here we have used the relation 𝑇 = −6𝐻2, and
prime denotes the derivative of related coupling functions
with respect to the related field variables. Now,we can find the
equation of motions for three scalar fields from the variation
of the field Lagrangians (11) with respect to the field variables
𝜓, 𝜙, and 𝜎, such that
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These equations of motions are for the tachyon, quintessence,
and phantom constituents of dark energy, respectively. Here,
the prime of potentials denotes the derivative of related field
potentials with respect to the related field variables. All these
evolution equations in (18) can also be obtained by using the
relations (12)–(17) in the continuity equations (7).

We now perform the phase-space analysis of the model
in order to investigate the late-time solutions of the universe
considered here.

3. Phase-Space and Stability Analysis

We study the properties of the constructed dark energy
model by performing the phase-space analysis. Therefore
we transform the aforementioned dynamical system into its
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autonomous form [38, 39, 43–46]. To proceed we introduce
the auxiliary variables
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together with 𝑁 = ln 𝑎 and for any quantity 𝐹, the time
derivative is �̇� = 𝐻(𝑑𝐹/𝑑𝑁).

We rewrite the density parameters for the fields 𝜓, 𝜙, and
𝜎 in the autonomous system by using (10), (12), (14), and (16)
with (19)
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and the total density parameter is
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2
𝑦
2

𝜎

+ 𝜉
3
𝑢
𝜎
[2√6𝛼

𝜎
𝑥
𝜎
+ 𝑢
𝜎
(3 − 2𝑠)] ,

𝑠 = {
3

2
−
3

2
𝜇
−1
𝑦
2

𝜓
+ 𝜉
1
𝑢
𝜓
[2√3𝛼

𝜓
𝑥
𝜓
𝑦
𝜓
+ 3𝑢
𝜓
]

+
3

2
𝑥
2

𝜙
−
3

2
𝑦
2

𝜙
+ 𝜉
2
𝑢
𝜙
[2√6𝛼

𝜙
𝑥
𝜙
+ 3𝑢
𝜙
] −

3

2
𝑥
2

𝜎

−
3

2
𝑦
2

𝜎
+ 𝜉
3
𝑢
𝜎
[2√6𝛼

𝜎
𝑥
𝜎
+ 3𝑢
𝜎
]} [1 + 2𝜉

1
𝑢
2

𝜓

+ 2𝜉
2
𝑢
2

𝜙
+ 2𝜉
3
𝑢
2

𝜎
]
−1

.

(24)
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Here 𝑠 is only a jerk parameter used in other equations of
cosmological parameters. Then the deceleration parameter 𝑞
is

𝑞 = −1 −
�̇�

𝐻2
=
1

2
+
3

2
𝜔tot

=
1

2
−
3

2
𝜇
−1
𝑦
2

𝜓
+ 𝜉
1
𝑢
𝜓
[2√3𝛼

𝜓
𝑥
𝜓
𝑦
𝜓
+ 𝑢
𝜓
(3 − 2𝑠)]

+
3

2
𝑥
2

𝜙
−
3

2
𝑦
2

𝜙
+ 𝜉
2
𝑢
𝜙
[2√6𝛼

𝜙
𝑥
𝜙
+ 𝑢
𝜙
(3 − 2𝑠)]

−
3

2
𝑥
2

𝜎
−
3

2
𝑦
2

𝜎
+ 𝜉
3
𝑢
𝜎
[2√6𝛼

𝜎
𝑥
𝜎
+ 𝑢
𝜎
(3 − 2𝑠)] .

(25)

Now we transform the equations of motions (6) and
(18) into the autonomous system containing the auxiliary
variables in (19) and their derivativeswith respect to𝑁 = ln 𝑎.
Thus we obtain 𝑋󸀠 = 𝑓(𝑋), where 𝑋 is the column vector
including the auxiliary variables and 𝑓(𝑋) is the column
vector of the autonomous equations. After writing𝑋󸀠, we find
the critical points 𝑋

𝑐
of 𝑋, by setting 𝑋󸀠 = 0. We expand

𝑋
󸀠
= 𝑓(𝑋) around𝑋 = 𝑋

𝑐
+𝑈, where𝑈 is the column vector

of perturbations of the auxiliary variables, such as 𝛿𝑥, 𝛿𝑦, and
𝛿𝑢 for each scalar field. Thus, we expand the perturbation
equations up to the first order for each critical point as 𝑈󸀠 =
𝑀𝑈, where 𝑀 is the matrix of perturbation equations. For
each critical point, the eigenvalues of perturbation matrix𝑀
determine the type and stability of the critical points [47–50].

Particularly, the autonomous form of the cosmological
system in (6) and (18) is [51–60]

𝑥
󸀠

𝜓
=
√3

2
[𝜆
𝜓
𝑥
2

𝜓
𝑦
𝜓
+ 𝜆
𝜓
(2 − 3𝑥

2

𝜓
) 𝑦
𝜓

− 4𝛼
𝜓
𝜉
1
𝑢
𝜓
𝜇
−3
𝑦
−1

𝜓
− 2√3𝑥

𝜓
𝜇
−2
] ,

𝑦
󸀠

𝜓
= [−

√3

2
𝜆
𝜓
𝑥
𝜓
𝑦
𝜓
+ 𝑠] 𝑦

𝜓
,

𝑢
󸀠

𝜓
=
√3

2
𝛼
𝜓
𝑥
𝜓
𝑦
𝜓
,

𝑥
󸀠

𝜙
= −3𝑥

𝜙
[1 + 𝑥

2

𝜎
− 𝑥
2

𝜙
+
2

3
𝜉
2
(𝑠𝑢
𝜙
− √6𝛼

𝜙
𝑥
𝜙
) 𝑢
𝜙

+
2

3
𝜉
3
(𝑠𝑢
𝜎
− √6𝛼

𝜎
𝑥
𝜎
) 𝑢
𝜎
−
𝜇

2
𝑥
2

𝜓
𝑦
2

𝜓

+
2

3
𝜉
1
(𝑠𝑢
𝜓
− √6𝛼

𝜓
𝑥
𝜓
) 𝑢
𝜓
] + 𝜆
𝜙

√6

2
𝑦
2

𝜙

− √6𝜉
2
𝛼
𝜙
𝑢
𝜙
,

𝑦
󸀠

𝜙
= 3𝑦
𝜙
[
𝜇

2
𝑥
2

𝜓
𝑦
2

𝜓
−
2

3
𝜉
1
(𝑠𝑢
𝜓
− √6𝛼

𝜓
𝑥
𝜓
) 𝑢
𝜓
+ 𝑥
2

𝜙

−
2

3
𝜉
2
(𝑠𝑢
𝜙
− √6𝛼

𝜙
𝑥
𝜙
) 𝑢
𝜙
− 𝑥
2

𝜎

−
2

3
𝜉
3
(𝑠𝑢
𝜎
− √6𝛼

𝜎
𝑥
𝜎
) 𝑢
𝜎
− 𝜆
𝜙

√6

6
𝑥
2

𝜙
] ,

𝑢
󸀠

𝜙
=
√6

2
𝛼
𝜙
𝑥
𝜙
,

𝑥
󸀠

𝜎
= −3𝑥

𝜎
[1 + 𝑥

2

𝜎
− 𝑥
2

𝜙
+
2

3
𝜉
2
(𝑠𝑢
𝜙
− √6𝛼

𝜙
𝑥
𝜙
) 𝑢
𝜙

+
2

3
𝜉
3
(𝑠𝑢
𝜎
− √6𝛼

𝜎
𝑥
𝜎
) 𝑢
𝜎
−
𝜇

2
𝑥
2

𝜓
𝑦
2

𝜓

+
2

3
𝜉
1
(𝑠𝑢
𝜓
− √6𝛼

𝜓
𝑥
𝜓
) 𝑢
𝜓
] + 𝜆
𝜎

√6

2
𝑦
2

𝜎

+ √6𝜉
3
𝛼
𝜎
𝑢
𝜎
,

𝑦
󸀠

𝜎
= 3𝑦
𝜎
[
𝜇

2
𝑥
2

𝜓
𝑦
2

𝜓
−
2

3
𝜉
1
(𝑠𝑢
𝜓
− √6𝛼

𝜓
𝑥
𝜓
) 𝑢
𝜓
+ 𝑥
2

𝜙

−
2

3
𝜉
2
(𝑠𝑢
𝜙
− √6𝛼

𝜙
𝑥
𝜙
) 𝑢
𝜙
− 𝑥
2

𝜎

−
2

3
𝜉
3
(𝑠𝑢
𝜎
− √6𝛼

𝜎
𝑥
𝜎
) 𝑢
𝜎
− 𝜆
𝜎

√6

6
𝑥
2

𝜎
] ,

𝑢
󸀠

𝜎
=
√6

2
𝛼
𝜎
𝑥
𝜎
,

(26)

where 𝜆
𝜓
= −𝑉

󸀠

𝜓
/𝜅𝑉
𝜓
, 𝜆
𝜙
= −𝑉

󸀠

𝜙
/𝜅𝑉
𝜙
, and 𝜆

𝜎
= −𝑉

󸀠

𝜎
/𝜅𝑉
𝜎
.

Henceforth, we assume the nonminimal coupling functions
𝑓(𝜓) ∝ 𝜓

2, 𝑔(𝜙) ∝ 𝜙
2, and ℎ(𝜎) ∝ 𝜎

2; thus 𝛼
𝜓
, 𝛼
𝜙
, and

𝛼
𝜎
are constant. Also the usual assumption in the literature

is to take the potentials 𝑉
𝜓
= 𝑉
𝜓0
𝑒
−𝑘𝜓𝜆𝜓𝜓, 𝑉

𝜙
= 𝑉
𝜙0
𝑒
−𝑘𝜙𝜆𝜙𝜙,

and 𝑉
𝜎
= 𝑉
𝜎0
𝑒
−𝑘𝜎𝜆𝜎𝜎 [43, 61–63]. Such potentials give also

constants 𝜆
𝜓
, 𝜆
𝜙
, and 𝜆

𝜎
.

Nowwe perform the phase-space analysis of themodel by
finding the critical points of the autonomous system in (26).
To obtain these points, we set the left hand sides of (26) to
zero. After some calculations, four critical points are found by
assuming 𝜔tot and 𝑞 as −1 for each critical point. The critical
points are listed in Table 1 with the existence conditions.

Then we insert linear perturbations 𝑥 → 𝑥
𝑐
+ 𝛿𝑥, 𝑦 →

𝑦
𝑐
+ 𝛿𝑦, and 𝑢 → 𝑢

𝑐
+ 𝛿𝑢 about the critical points for three

scalar fields 𝜓, 𝜙, and 𝜎 in the autonomous system (26). Thus
we obtain a 9 × 9 perturbation matrix𝑀 whose elements are
given as

𝑀
11
= −3,

𝑀
12
= √3𝜆

𝜓
+ 2√3𝛼

𝜓
𝜉
1
𝑦
−2

𝜓
𝑢
𝜓
,

𝑀
13
= −2√3𝛼

𝜓
𝜉
1
𝑦
−1

𝜓
,

𝑀
21
=

2√3𝛼
𝜓
𝜉
1

𝑃
𝑢
𝜓
𝑦
2

𝜓
−
√3

2
𝜆
𝜓
𝑦
2

𝜓
,

𝑀
22
= −

3

𝑃
𝑦
2

𝜓
,

𝑀
23
=
6𝜉
1

𝑃
𝑢
𝜓
𝑦
𝜓
,

𝑀
24
=

2√6𝛼
𝜓
𝜉
2

𝑃
𝑢
𝜙
𝑦
𝜓
,
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Figure 1: Two-dimensional projections of the phase-space trajectories for 𝜉
1
= 𝜉
2
= −𝜉
3
= 0.5, 𝛼

𝜓
= 𝛼
𝜙
= −𝛼
𝜎
= 1.5. All plots begin from

the critical point 𝐴 being a stable attractor.

Table 1: Critical points and existence conditions.

Label 𝑥
𝜓

𝑦
𝜓

𝑢
𝜓

𝑥
𝜙

𝑦
𝜙

𝑢
𝜙

𝑥
𝜎

𝑦
𝜎

𝑢
𝜎

𝜔tot 𝑞 Existence

𝐴 0
1

√3
0 0

1

√3
0 0

1

√3
0 −1 −1 𝜆

𝜓
= 𝜆
𝜙
= 𝜆
𝜎
= 0

𝐵 0
−1

√3
0 0

−1

√3
0 0

−1

√3
0 −1 −1 𝜆

𝜓
= 𝜆
𝜙
= 𝜆
𝜎
= 0

𝐶 0 0
1

√6
󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

0 0
1

√6
󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

0 0
1

√6
󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

−1 −1

𝛼
𝜓
= 𝛼
𝜙
= 𝛼
𝜎
= 0

and
𝜉
1
, 𝜉
2
, 𝜉
3
< 0,

𝜆
𝜓
, 𝜆
𝜙
, 𝜆
𝜎
< 0

𝐷 0 0
−1

√6
󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

0 0
−1

√6
󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

0 0
−1

√6
󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

−1 −1

𝛼
𝜓
= 𝛼
𝜙
= 𝛼
𝜎
= 0

and
𝜉
1
, 𝜉
2
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1
= 𝜉
2
= −𝜉
3
= 0.5, 𝛼

𝜓
= 𝛼
𝜙
= −𝛼
𝜎
= 1.5. All plots begin from

the critical point 𝐵 being a stable attractor.
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and all the other matrix elements except those given above
in (27) are zero. Here also 𝑃 = 1 + 2𝜉

1
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+ 2𝜉
2
𝑢
2

𝜙
+
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3
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𝜎
. Then we calculate the eigenvalues of perturbation

matrix 𝑀 for four critical points given in Table 1 with the
corresponding existing conditions. We obtain four sets of
eigenvalues for four perturbationmatrices for each of the four
critical points. To determine the type and stability of critical
points, we examine the sign of the real parts of eigenvalues.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Two-dimensional projections of the phase-space trajectories for 𝜉
1
= 𝜉
2
= 𝜉
3
= −0.5, 𝛼

𝜓
= 𝛼
𝜙
= 𝛼
𝜎
= −1.5. All plots begin from

the critical point 𝐶 being a stable attractor.

Table 2: Eigenvalues of the perturbation matrix for each critical
point.

Critical points Eigenvalues

𝐴 and 𝐵

1

2
√9 − 12𝜉1𝛼

2

𝜓
−
3

2
,

−
1

2
√9 − 12𝜉1𝛼

2

𝜓
−
3

2
,

1

2
√9 − 12𝜉2𝛼

2

𝜙
−
3

2
,

−
1

2
√9 − 12𝜉2𝛼

2

𝜙
−
3

2
,

1

2
√12𝜉

3
𝛼2
𝜎
+ 9 −

3

2
,

−
1

2
√12𝜉

3
𝛼2
𝜎
+ 9 −

3

2
,

−1

𝐶 and𝐷 −3

Thecritical point is stable for negative real part of eigenvalues.
The physical meaning of negative eigenvalue is always a late-
time stable attractor; namely, if the universe reaches this
solution, it keeps its state forever and thus it can attract the
universe at a late-time. Accelerated expansion occurs here,
because 𝜔tot = −1 < −1/3. If a convenient condition is
provided, an accelerated contraction can even exist for 𝜔tot =
−1 < −1/3 value. Eigenvalues of thematrix𝑀 are represented
in Table 2 for each of the critical points 𝐴, 𝐵, 𝐶, and𝐷.

As seen in Table 2, the first two critical points 𝐴 and 𝐵
have the same eigenvalues as𝐶 and𝐷 have same eigenvalues.
The stability conditions of each critical point are listed in
Table 3, according to the sign of the eigenvalues.

Table 3: Stability of the critical points.

Critical points Stability

𝐴 and 𝐵

Stable point, if 0 < 3

4𝛼2
𝜓

< 𝜉
1
,

0 <
3

4𝛼
2

𝜙

< 𝜉
2
,

and 𝜉
3
<
−3

4𝛼2
𝜎

< 0

Saddle point, if 𝜉
1
, 𝜉
2
< 0

𝐶 and𝐷 Stable point for all 𝜉, 𝛼, and 𝜆

In order to analyze the cosmological behavior of each
critical point, the attractor solutions in scalar field cosmology
should be noted [64]. In modern theoretical cosmology it is
common that the energy density of one or more scalar fields
exerts a crucial influence on the evolution of the universe
and some certain conditions or behaviors naturally affect this
evolution.The evolution and the affecting factors on this evo-
lution meet in the term of cosmological attractors: the scalar
field evolution approaches a certain kind of behavior by the
dynamical conditions without finely tuned initial conditions
[65–77], either in inflationary cosmology or in late-time dark
energy models. Attractor behavior is a situation in which a
collection of phase-space points evolve into a certain region
and never leave.

Critical Point A. This point exists for all values of 𝜉
1
, 𝜉
2
, 𝜉
3
,

𝛼
𝜓
, 𝛼
𝜙
, and 𝛼

𝜎
while 𝜆

𝜓
= 𝜆
𝜙
= 𝜆
𝜎
= 0 which means the

potentials𝑉
𝜓
,𝑉
𝜙
, and𝑉

𝜎
are constant. Acceleration occurs at

this point since 𝜔tot = −1 < −1/3 and this is an expansion
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Figure 4: Continued.
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Figure 4: Two-dimensional projections of the phase-space trajectories for 𝜉
1
= 𝜉
2
= 𝜉
3
= −0.5, 𝛼

𝜓
= 𝛼
𝜙
= 𝛼
𝜎
= −1.5. All plots begin from

the critical point𝐷 being a stable attractor.

phase because 𝑦
𝜓
, 𝑦
𝜙
, and 𝑦

𝜎
have positive values; therefore

𝐻 is positive, too. Point 𝐴 is stable (meaning that universe
keeps its evolution), if 0 < 3/(4𝛼2

𝜓
) < 𝜉
1
, 0 < 3/(4𝛼2

𝜙
) < 𝜉
2
and

𝜉
3
< −3/(4𝛼

2

𝜎
) < 0, but it is a saddle point (meaning that the

universe evolves between different states) for values 𝜉
1
, 𝜉
2
< 0.

In Figure 1, we represent the 2-dimensional projections of 9-
dimensional phase-space trajectories for the values of 𝜉

1
=

𝜉
2
= −𝜉
3
= 0.5, 𝛼

𝜓
= 𝛼
𝜙
= −𝛼
𝜎
= 1.5 and three auxiliary 𝜆

values for each field 𝜓, 𝜙, and 𝜎. This state corresponds to a
stable attractor starting from the critical point𝐴, as seen from
the plots in Figure 1.

Critical Point B. Point 𝐵 also exists for any values of 𝜉
1
, 𝜉
2
, 𝜉
3
,

𝛼
𝜓
, 𝛼
𝜙
, and 𝛼

𝜎
while 𝜆

𝜓
= 𝜆
𝜙
= 𝜆
𝜎
= 0 which means the

potentials 𝑉
𝜓
, 𝑉
𝜙
, and 𝑉

𝜎
are constant. Acceleration phase is

again valid here since 𝜔tot = −1 < −1/3, but this point refers
to contraction phase because 𝑦

𝜓
, 𝑦
𝜙
, and 𝑦

𝜎
have negative

sign. Stability of the point 𝐵 is same with the point 𝐴 for
same conditions. Therefore the stable attractor behavior for
contraction is represented in Figure 2.We plot 2-dimensional
projections of phase-space trajectories for same values as
point 𝐴, 𝜉

1
= 𝜉
2
= −𝜉
3
= 0.5, 𝛼

𝜓
= 𝛼
𝜙
= −𝛼
𝜎
= 1.5, and

auxiliary 𝜆 values.

Critical Point C. Critical point 𝐶 occurs for 𝜉
1
, 𝜉
2
, 𝜉
3
< 0 and

𝜆
𝜓
, 𝜆
𝜙
, 𝜆
𝜎
< 0 while 𝛼

𝜓
= 𝛼
𝜙
= 𝛼
𝜎
= 0 meaning constant

coupling functions 𝑓(𝜓), 𝑔(𝜙), and ℎ(𝜎). The cosmological
behavior is again an acceleration phase since 𝜔tot < −1/3.
Point 𝐶 is stable for any values of 𝜉, 𝛼, and 𝜆 of fields 𝜓,
𝜙, and 𝜎. Two-dimensional projections of phase-space are
represented in Figure 3 for 𝜉

1
= 𝜉
2
= 𝜉
3
= −0.5, 𝛼

𝜓
= 𝛼
𝜙
=

𝛼
𝜎
= −1.5, and three auxiliary 𝜆 values for each field𝜓, 𝜙, and

𝜎. A stable attractor starting from the critical point 𝐶 is seen
from the plots in Figure 3.

Critical Point D. This point exists for 𝜉
1
, 𝜉
2
, 𝜉
3
< 0 and

𝜆
𝜓
, 𝜆
𝜙
, 𝜆
𝜎
> 0 while 𝛼

𝜓
= 𝛼
𝜙
= 𝛼
𝜎
= 0 implying constant

𝑓(𝜓), 𝑔(𝜙), ℎ(𝜎) coupling functions. Acceleration phase is
valid due to 𝜔tot < −1/3. Point 𝐷 is also stable for all 𝜉, 𝛼,
and 𝜆 values of fields 𝜓, 𝜙, and 𝜎. Two-dimensional plots of
phase-space trajectories are shown in Figure 4 for 𝜉

1
= 𝜉
2
=

𝜉
3
= −0.5, 𝛼

𝜓
= 𝛼
𝜙
= 𝛼
𝜎
= −1.5, and three auxiliary 𝜆 values

for each field 𝜓, 𝜙, and 𝜎. This state again corresponds to a
stable attractor starting from the point 𝐶, as in Figure 4.

All the plots in Figures 1–4 have the structure of stable
attractor, since each of them evolves to a single point which
is in fact one of the critical points in Table 1.These evolutions
to the critical points are the attractor solutions in mixed dark
energy domination cosmology of our model which imply an
expanding universe.

4. Conclusion

Mixed dark energy is a generalized combination of tachyon,
quintessence, and phantom fields nonminimally coupled to
gravity [33, 34, 38, 39]. These three scalar fields are the
constituents of mixed dark energy. Firstly, the action integral
of nonminimally coupled mixed dark energy model is set
up to study its dynamics. Here we consider that our dark
energy constituents interact only with the gravity. There
could also be chosen some interactions between the dark
constituents, but in order to start from a pedagogical order we
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prefer to exclude the dark interactions.We obtain the Hubble
parameter and Friedmann equations of model in spatially
flat FRW geometry. Energy density and pressure values
with the evolution equations for tachyon, quintessence, and
phantom fields are obtained from the variation of action
and Lagrangian of model. Then we translate these dynam-
ical expressions into the autonomous form by introducing
suitable auxiliary variables in order to perform the phase-
space analysis. We find the critical points of autonomous
system by setting each autonomous equation to zero. By
constructing the perturbation equations, we find four per-
turbation matrices for each critical point. The eigenvalues of
four perturbation matrices are determined to examine the
stability of critical points. We also calculate some important
cosmological parameters, for instance, the total equation of
state parameter and deceleration parameter to see whether
the critical points correspond to an accelerating universe
or not. There are four stable attractors of model depending
on the nonminimal coupling parameters 𝜉

1
, 𝜉
2
, 𝜉
3
and 𝛼

𝜓
,

𝛼
𝜙
, 𝛼
𝜎
values. All of the stable solutions correspond to an

accelerating universe due to 𝜔tot < −1/3. For constant
potentials 𝑉

𝜓
, 𝑉
𝜙
, and 𝑉

𝜎
the critical points 𝐴 and 𝐵 are late-

time stable attractors for 0 < 3/(4𝛼2
𝜓
) < 𝜉
1
, 0 < 3/(4𝛼2

𝜙
) < 𝜉
2
,

and 𝜉
3
< −3/(4𝛼

2

𝜎
) < 0. While point 𝐴 refers to an expansion

with a stable acceleration, point 𝐵 refers to a contraction.
However, for constant coupling functions 𝑓(𝜓), 𝑔(𝜙), and
ℎ(𝜎) the critical points 𝐶 and 𝐷 are stable attractors for any
values of 𝜉

1
, 𝜉
2
, 𝜉
3
, 𝛼
𝜓
, 𝛼
𝜙
, and 𝛼

𝜎
. The behavior of the model

at each critical point being a stable attractor is demonstrated
in Figures 1–4. In order to plot the graphs in Figures 1–4,
we use adaptive Runge-Kutta method of 4th and 5th order
to solve differential equations (26) in Matlab. Solutions for
the equations with stability conditions of critical points are
plotted for each pair of the solution being the auxiliary
variables in (19).

These figures show that, by choosing parameters of the
model depending on the existence conditions of critical
points𝐴,𝐵,𝐶, and𝐷, we obtain the attractors of themodel as
𝐴, 𝐵, 𝐶, and 𝐷. Then depending on the stability conditions,
suitable parameters give stable behavior for each attractor
of the model. The results are consistent with the observed
and expected behavior of the universe in which some epochs
correspond to an accelerating expansion phase, and somewill
correspond to an accelerating contraction in future times [1–
9, 76, 77].
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[66] L. A. Ureña-López and M. J. Reyes-Ibarra, “On the dynamics
of a quadratic scalar field potential,” International Journal of
Modern Physics D, vol. 18, no. 4, pp. 621–634, 2009.

[67] V. A. Belinsky, L. P. Grishchuk, I. M. Khalatnikov, and Y. B.
Zeldovich, “Inflationary stages in cosmological models with a
scalar field,” Physics Letters B, vol. 155, no. 4, pp. 232–236, 1985.

[68] T. Piran and R. M. Williams, “Inflation in universes with a
massive scalar field,” Physics Letters B, vol. 163, no. 5-6, pp. 331–
335, 1985.

[69] B. Ratra and P. J. E. Peebles, “Cosmological consequences of a
rolling homogeneous scalar field,” Physical ReviewD, vol. 37, no.
12, pp. 3406–3427, 1988.

[70] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-
Scale Structure, Cambridge University Press, Cambridge, UK,
2000.

[71] V. V. Kiselev and S. A. Timofeev, “Quasiattractor dynamics of
𝜆𝜙
4-inflation,” http://arxiv.org/abs/0801.2453.

[72] S. Downes, B. Dutta, and K. Sinha, “Attractors, universality, and
inflation,” Physical Review D, vol. 86, no. 10, Article ID 103509,
14 pages, 2012.

[73] J. Khoury and P. J. Steinhardt, “Generating scale-invariant
perturbations from rapidly-evolving equation of state,” Physical
Review D, vol. 83, no. 12, Article ID 123502, 2011.

[74] S. Clesse, C. Ringeval, and J. Rocher, “Fractal initial conditions
and natural parameter values in hybrid inflation,” Physical
Review D, vol. 80, no. 12, Article ID 123534, 2009.

[75] V. V. Kiselev and S. A. Timofeev, “Quasiattractor in models of
new and chaotic inflation,” General Relativity and Gravitation,
vol. 42, no. 1, pp. 183–197, 2010.

[76] G. F. R. Ellis, R.Maartens, andM. A. H.MacCallum, Relativistic
Cosmology, Cambridge University Press, Cambridge, UK, 2012.

[77] Y.Wang, J.M. Kratochvil, A. Linde, andM. Shmakova, “Current
observational constraints on cosmic doomsday,” Journal of
Cosmology and Astroparticle Physics, vol. 2004, no. 12, article
006, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


