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We argue that due to parity constraints, the helicity combination of the purely momentum space
counterparts of the Wigner distributions – the generalized transverse momentum distributions –
that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon can
enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final
state interaction. The relevant matrix elements in turn involve light-cone operators projections in the
transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three.
Orbital angular momentum or the spin structure of the nucleon was a major reason for these various
distributions and amplitudes to have been introduced. We show that the twist three contributions
associated with orbital angular momentum are related to the target-spin asymmetry in deeply virtual
Compton scattering, already measured at HERMES.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Considerable attention has been devoted to the partons’
Transverse Momentum Distributions (TMDs), to the Generalized
Parton Distributions (GPDs), and to finding a connection between
the two [1–3]. TMDs are distributions of different spin configura-
tions of quarks and gluons within the nucleon whose longitudinal
and transverse momenta can be accessed in Semi-Inclusive Deep
Inelastic Scattering (SIDIS). GPDs are real amplitudes for quarks
or gluons being probed in a hard process and then returning to
reconstitute a scattered nucleon. They are accessed through exclu-
sive electroproduction of vector bosons along with the nucleon.
In each case there is a nucleon matrix element of bilinear, non-
local quark or gluon field operators. In principle both TMDs and
GPDs are different limits of Wigner distributions, i.e. the phase
space distributions in momenta and impact parameters. The purely
momentum space form of those are the Generalized TMDs (GT-
MDs). GTMDs correlate hadronic states with same parton longi-
tudinal momentum, x (assuming zero skewness), different relative
transverse distance, zT = bin − bout , between the struck parton’s
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initial and final (out) states, and same average transverse distance,
b = (bin + bout)/2, of the struck parton with respect to the center
of momentum [4] (Fig. 1a).

Understanding the angular momentum or spin structure of the
nucleon is a major reason for these various distributions and am-
plitudes to have been introduced.

Recently, specific GTMDs and Wigner distributions were stud-
ied that are thought to be related to the more elusive component
of the angular momentum sum rule, which is partonic Orbital
Angular Momentum (OAM) [5–8]. Such theoretical efforts have
been developing in parallel with the realization that the leading
twist contribution to the angular momentum sum rule comes from
transverse spin [9], while longitudinal angular momentum, and
consequently orbital angular momentum, can be associated with
twist three partonic components. The GTMD that was proposed to
describe OAM appears in the parametrization of the (leading order)
vector, γ + , component of the unintegrated quark–quark correlator
for the proton given in [3] as

ū
(

p′,Λ′) iσ i jk̄i
T �

j
T

2
u(p,Λ)F14 ∝ 〈SL · k̄T × �T 〉, (1)
M
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Fig. 1. (a) (left) Correlation function for a GTMD; (b) (right) quark–proton scattering in the u-channel.
where (p,Λ), (p′,Λ′) are the proton’s initial and final momentum
and helicity, kT and �T are the quarks’ average and relative mo-
menta, respectively, and F14 is the GTMD defined according to the
classification scheme of [3]. Eq. (1) appears to represent the distri-
bution of an unpolarized quark in a longitudinally polarized proton
(ρLU in Ref. [7]). However, we notice that its observability is incon-
sistent with several physical properties, namely:

(i) It drops out of the formulation of both GPDs and TMDs, so
that it cannot be measured;

(ii) It is parity-odd. Notice, in fact, how this structure is at vari-
ance with the more familiar 〈ST × k̄T 〉 term, defining the TMD
Sivers function [10], which is a parity-even observable with
an analogous asymmetry but for transverse spin. It also dif-
fers from the definition of OAM based on the TMD h⊥

1T [11,
12], in that the latter also exhibits a transverse spin structure;

(iii) It is non-zero only for imaginary values of the quark–proton
helicity amplitudes.

In order to develop a more concrete understanding of OAM that
could lead to the definition of specific observables, it is impor-
tant to examine the newly proposed partonic configurations and
their connection with the quark–proton helicity or transverse spin
amplitudes. In this Letter, after showing the constraints on the
recently studied GTMDs from the invariance under parity trans-
formations, we perform a thorough analysis of their helicity/trans-
verse spin structure. We suggest that the helicity structure giving
rise to OAM is described by twist three distributions only. Our find-
ings corroborate the interpretation of the spin sum rule including
OAM originally given in [13] (see also [14,15]). Using the formalism
proposed in Refs. [3,16], we identify the integrals over transverse
momentum of the twist three GTMDs with twist three GPDs. The
latter enter the sin 2φ modulation of the target-spin asymmetry,
AUL , in DVCS which has already been measured at both HER-
MES [17] and JLab [18]. We present here predictions for Asin 2φ

UL
using the GPD set of Refs. [19,20]. This is the first proposal for a
direct experimental access to orbital angular momentum.

2. In Ref. [3] it was found that with parity invariance, time
reversal invariance, and Hermiticity there are 16 independent com-
plex GTMDs for the quark–nucleon system, corresponding to 16
helicity amplitudes for quark–nucleon elastic scattering. However,
we know that for elastic 2-body scattering of two spin 1/2 par-
ticles there will only be 8 independent amplitudes. This follows
from implementing parity transformations on the helicity ampli-
tudes in the 2-body Center of Mass (CM) frame [21] where all
the incoming and outgoing particles are confined to a plane. In
this plane the parity transformation flips all momenta but it does
not change the relation among the momentum components. In any
other frame there will still be 8 independent amplitudes, although
they may be in linear combinations with kinematic factors that
appear to yield 16. The counting of helicity amplitudes in polar-
ization dependent high energy scattering processes was addressed
e.g. Ref. [22]. In order to explain this point, and to investigate its
consequences on the off-forward matrix elements of QCD correla-
tors, we first start by reviewing the helicity structure of the GTMDs
from Ref. [3].

To describe quark–proton scattering as a u-channel two-body
scattering process (Fig. 1b)

q′(k′) + N(p) → q(k) + N ′(p′),
we choose a light-cone (LC) frame, where the average and relative
4-momenta P = (p + p′)/2, k̄ = (k + k′)/2, � = p′ − p = k′ − k,
respectively have components specified by,

P ≡
(

P+,
�2

T + 4M2

8P+ ,0

)
, (2a)

k̄ ≡ (
xP+,k−, k̄T

)
, (2b)

� ≡ (0,0,�T ), (2c)

where v ≡ (v+, v−,vT ), v± = 1/
√

2(vo ±v3), and for simplicity we
have taken the skewness variable, ξ = 0 since this will not enter
our discussion.

The connection between the unintegrated matrix elements
defining the GTMDs and the quark–proton helicity amplitudes
is obtained by considering the quark–proton helicity amplitude
(Fig. 1 and Ref. [23]),

AΛ′λ′,Λλ =
∫

dz− d2zT

(2π)3
eixP+z−−ik̄T ·zT

× 〈
p′,Λ′∣∣Oλ′λ(z)

∣∣p,Λ
〉∣∣

z+=0, (3)

where in the chiral even sector,

O±±(z) = ψ̄

(
− z

2

)
γ +(1 ± γ5)ψ

(
z

2

)
. (4)

Following the definitions in Ref. [3], and making use of the Gordon
decomposition,

U
(

p′,Λ′)γ μU (p,Λ)

= U
(

p′,Λ′) Pμ

M
U (p,Λ) + U

(
p′,Λ′) iσ iμ�i

2M
U (p,Λ), (5)

we obtain for the vector case,

W γ +
ΛΛ′ = 1

2P+

[
U

(
p′,Λ′)γ +U (p,Λ)F11

+ U
(

p′,Λ′) iσ i+�i
T

2M
U (p,Λ)(2F13 − F11)

+ U
(

p′,Λ′) iσ i+k̄i
T

2M
U (p,Λ)(2F12)

+ U
(

p′,Λ′) iσ i jk̄i
T �

j
T

M2
U (p,Λ)F14

]

= δΛ,Λ′ F11 + δΛ,−Λ′
−Λ�1 − i�2

2M
(2F13 − F11)

+ δΛ,−Λ′
−Λk̄1 − ik̄2

(2F12)

2M
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+ δΛ,Λ′ iΛ
k̄1�2 − k̄2�1

M2
F14, (6)

and for the axial-vector case,

W γ +γ5
ΛΛ′

= 1

2P+

[
−U

(
p′,Λ′) iε i j

T k̄i
T �

j
T

M2

2P+

2M
U (p,Λ)G11

+ U
(

p′,Λ′) iσ i+γ5�
i
T

2M
U (p,Λ)(2G13)

+ U
(

p′,Λ′) iσ i+γ5k̄i
T

2M
U (p,Λ)(2G12)

+ U
(

p′,Λ′)iσ+−γ5U (p,Λ)G14

]

= δΛ,Λ′ΛG14 + δΛ,−Λ′
�1 + iΛ�2

2M
2G13

+ δΛ,−Λ′
k̄1 + iΛk̄2

2M
2G12 − δΛ,Λ′ i

k̄1�2 − k̄2�1

M2
G11. (7)

By summing and subtracting the two equations, one obtains the
following expressions for the quark–proton helicity amplitudes,

AΛ′+,Λ,+

= δΛ,Λ′
(

F11 + ΛG14 + iΛ
k̄1�2 − k̄2�1

M2
F14

− i
k̄1�2 − k̄2�1

M2
G11

)

+ δΛ,−Λ′
[−Λ�1 − i�2

2M
(2F13 − F11) + �1 − iΛ�2

2M
2G13

+ −Λk̄1 − ik̄2

2M
2F12 + k̄1 − iΛk̄2

2M
2G12

]
, (8a)

AΛ′−,Λ,−

= δΛ,Λ′
(

F11 − ΛG14 + iΛ
k̄1�2 − k̄2�1

M2
F14

+ i
k̄1�2 − k̄2�1

M2
G11

)

+ δΛ′,−Λ

[−Λ�1 − i�2

2M
(2F13 − F11) − �1 − iΛ�2

2M
2G13

+ −Λk̄1 − ik̄2

2M
2F12 − k̄1 − iΛk̄2

2M
2G12

]
. (8b)

We now examine the new contributions, F14, and G11,

i
k̄1�2 − k̄2�1

M2
F14

= A++,++ + A+−,+− − A−+,−+ − A−−,−−, (9a)

−i
k̄1�2 − k̄2�1

M2
G11

= A++,++ − A+−,+− + A−+,−+ − A−−,−−. (9b)

F14 describes an unpolarized quark in a longitudinally polarized
proton, while G11 describes a longitudinally polarized quark in an
unpolarized proton.

We reiterate, however, that parity, imposes limits on the possi-
ble polarization asymmetries that can be observed in two body
scattering: because of 4-momentum conservation and on-shell
conditions, k2 = m2, p2 = M2, there are eight variables. Four of
those describe the energy and 3-momentum of the CM relative
to a fixed coordinate system, while the remaining four give the
energy and the 3-vector orientation and magnitude of the scatter-
ing plane in the CM. In the CM frame or, equivalently in the “lab”
frame with the p direction chosen as the z-direction, the net lon-
gitudinal polarization defined in Eq. (1), is clearly a parity-violating
term (pseudoscalar) under space inversion. This implies that a
measurement of single longitudinal polarization asymmetries would
violate parity conservation in an ordinary two body scattering pro-
cess corresponding to tree level, twist two amplitudes. Releasing
the partons’ on-shell condition implies introducing higher twists
in the description of the process [24]. We can therefore anticipate
that similarly to the TMDs g⊥, f ⊥

L , . . . , in SIDIS, single longitudinal
polarization asymmetries are higher twist objects.

On the other hand, notice that polarization along the normal
to the scattering plane is parity-conserving (scalar) under spatial
inversion, thus giving rise to SSAs at leading twist [25].

To be explicit regarding parity constraints consider again the
helicity amplitudes for the 2-body process,

AΛ′,λ′;Λ,λ : q′(k′, λ′) + N(p,Λ) → q(k, λ) + N ′(p′,Λ′). (10)

Such amplitudes can be written in any Lorentz frame, but in the
Center of Momentum frame the parity relations are simple,

A−Λ′,−λ′;−Λ,−λ = (−1)η A∗
Λ′,λ′;Λ,λ, (11)

where η = Λ′ − λ′ − Λ + λ, the net helicity change. Hence of 16
possible helicity amplitudes, 8 are independent. For chiral even,
non-flip nucleon amplitudes there are 2 independent. These de-
terminations are made in the CoM frame. By Lorentz covariance
and 4-momentum conservation, the number of independent am-
plitudes cannot change. In other frames, e.g. the light-cone frame
or the target rest frame, there may appear to be more, yet the
extra amplitudes must be linear combinations of the independent
ones. In particular

AΛ̃′,λ̃′;Λ̃,λ̃ =
∑
Λ′,...

D1/2
Λ̃′,Λ′

(
Ω ′

N

) · · · AΛ′,λ′;Λ,λ, (12)

where the D functions are the rotation matrices for the Wigner
rotations, Ω ′

N , etc.
We see that for F14 in Eq. (9a) and G11 in Eq. (9b) to be non-

zero there must be an imaginary part to either A++;++ or A+−;+− .
This will not be the case in the CoM frame, wherein the momenta
are coplanar. In order to have a non-vanishing helicity amplitude
combination there must be another independent direction. That is
provided by twist three amplitudes and corresponding GTMDs, as
we show below.

Note also that in the parametrization of the generalized corre-
lation function of Ref. [3],

W γ +
Λ′,Λ = U

(
p′,Λ′)

×
[ type 1︷ ︸︸ ︷

P+

M

(
A F

1 + xA F
2 − 2ξ A F

3

)+

type 2︷ ︸︸ ︷
iσ+k

M
A F

5 + iσ+�

M
A F

6

+

type 3︷ ︸︸ ︷
P+iσ k�

M3

(
A F

8 + xA F
9

)

+ P+iσ kN

M3

(
A F

11 + xA F
12

) + P+iσ�N

M3

(
A F

14 − 2ξ A F
15

)
︸ ︷︷ ︸

type 4

]

× U (p,Λ)

= A[γ +]
′ + A[γ +]

′ (13)

Λ +;Λ+ Λ −;Λ−
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the Dirac structure reduces to the four distinct groups selected
above, of which types 1, 2 and 4 are parity-even, while type 3,
which composes F14, is parity-odd [26] (details of the calculation
will be given in [27]). Because of the parity constraints [3] F14
can therefore be non-zero only if its corresponding helicity ampli-
tudes combination is imaginary. Hence it cannot have a straightfor-
ward partonic interpretation. Integrating over kT gives zero for F14
meaning that this term decouples from partonic angular momen-
tum sum rules. The vector GPDs can, in fact, be written in terms
of GTMDs as [3],

H =
∫

d2k̄T F11, (14)

E =
∫

d2k̄T

[
−F11 + 2

(
k̄T · �

�2
F12 + F13

)]
. (15)

We conclude that type 3 should not be included in the leading
twist parametrization in Eq. (6). A similar argument is valid for the
axial vector component (Eq. (7)).

3. In the presence of final state interactions parity relations ap-
ply differently. We will show that the combination

A++,++ + A+−,+− − A−+,−+ − A−−,−−,

gets replaced by a similar helicity structure where now the longi-
tudinal spin is crossed into �, namely, 〈SL × �T 〉. Notice that this
produces a transverse angular momentum component rather than
the longitudinal component appearing in Eq. (1).

The chiral-even twist three components were also parametrized
in Ref. [3],

W γ i

Λ′Λ = 1

2P+ U
(

p′,Λ′)[ k̄i
T

M
F21 + �i

T

M
(F22 − 2F26) + iσ jik̄ j

T

M
F27

+ γ i(2F28) + Miσ i+

P+ F23 + k̄i
T

M

iσ k+k̄k
T

P+ F24

+ �i
T

M

iσ k+k̄k
T

P+ F25 + �i
T

P+ γ +(2F26)

]
U (p,Λ), (16)

where we used the Gordon identity (5) in order to connect the
helicity structure of the twist three tensor to the approaches in
[13,16]. The first four terms in Eq. (16) conserve the proton helic-
ity, while the last four terms flip the proton helicity. Furthermore,
we used the identity

U
(

p′,Λ′)γi U (p,Λ) = U
(

p′,Λ′) iσ ji�
j
T

M
U (p,Λ) → 〈SL × �T 〉.

Using the notation of Eq. (4), we now consider the matrix elements
of the quark twist three operators,

Oq
±∓(z) = ψ̄

(
− z

2

)
(γ1 ± iγ2)(1 ± γ5)ψ

(
z

2

)
, (17)

which lead to the following expression for the helicity amplitude,

At w3
Λ′λ′,Λλ =

∫
dz−d2zT

(2π)3
eixP+z−−ik̄T ·zT

× 〈
p′,Λ′∣∣Oλ′−λ(z)

∣∣p,Λ
〉∣∣

z+=0, (18)

where now

Oq
±∓(z) = φ

†
±
(

− z

2

)
χ±

(
z

2

)
± χ

†
±
(

− z

2

)
φ±

(
z

2

)
. (19)

For the good spinor components, φλ , helicity and chirality are the
same since (1 ± γ 5) projects out both ± helicity and chirality. For
the bad components helicity and chirality are opposite as it follows
from the fact that χλ describes a composite system of a trans-
verse gluon and φλ . Since the gluon carries helicity but no chirality,
by imposing angular momentum conservation one obtains the op-
posite chirality [28,29]. The net effect of this distinction between
helicity and chirality is that the helicity conserving quark corre-
lator at twist three will behave like the chirality odd operator at
twist two – the latter flips helicity. That is interpreted as if the
genuine twist three correlator has the helicity of the returning
quark flipped (±1/2 → ∓1/2), while the collinear gluon field is
transverse and with compensating helicity (±1) [29]. The implica-
tion for the parity relations, unlike Eq. (11), is that the reversed
helicities are not directly related to the initial set. The twist three
correlator does not map directly onto a 2-body process. For this
reason there are twice as many vector and axial vector twist three
GPDs and TMDs.

As we have noted, for the non-flip quark–proton helicity am-
plitudes at twist three one finds that the chiral even structures
correspond to what would be chiral odd at twist two,

At w3
Λ′±,Λ± → At w2

Λ′±,Λ∓. (20)

By using the operators in Eq. (19), the non-flip helicity amplitudes
(Λ = Λ′) can be read off from the hadronic tensors parametriza-
tions as

At w3
Λ+,Λ+ = k̄1

T + ik̄2
T

P+ F21 + �1 + i�2

P+ F22 − Λ
k̄1

T + ik̄2
T

P+ F27

− Λ
�1

T + i�2
T

P+ F28 + k̄1
T + ik̄2

T

P+ G21 + �1 + i�2

P+ G22

+ Λ
k̄1

T + ik̄2
T

P+ G27 + Λ
�1

T + i�2
T

P+ G28, (21a)

At w3
Λ−,Λ− = k̄1

T − ik̄2
T

P+ F21 + �1 − i�2

P+ F22 + Λ
k̄1

T − ik̄2
T

P+ F27

+ Λ
�1

T − i�2
T

P+ F28 + k̄1
T − ik̄2

T

P+ G21 + �1 − i�2

P+ G22

+ Λ
k̄1

T − ik̄2
T

P+ G27 + Λ
�1

T − i�2
T

P+ G28. (21b)

Only two independent combinations of the At w3
Λλ,Λλ can be formed,

namely,

4

P+

[
k̄T · �T

�T
F21 + �T F22 +

(
k̄T · �T

�T
G21 + �T G22

)]

= At w3++,++ + At w3+−,+− + At w3−+,−+ + At w3−−,−−, (22a)

− 4

P+

[
k̄T · �T

�T
F27 + �T F28 −

(
k̄T · �T

�T
G27 + �T G28

)]

= At w3++,++ + At w3+−,+− − At w3−+,−+ − At w3−−,−−, (22b)

where we have taken �T along the x-axis without loss of gen-
erality. Notice that Eq. (22a) corresponds to the unpolarized case
yielding the twist two GPD H , while Eq. (22b) gives the distribu-
tion of an unpolarized quark in a longitudinally polarized proton.
Owing to the helicity structure of the twist three quark operators
discussed above, this combination is now allowed by parity con-
servation [28,29].

Integrating over k̄T , one obtains the twist three GPDs,

2H̃2T + E2T =
∫

d2kT

[(
kT · �T

�2
T

)
F21 + F22

]
, (23)

Ẽ2T = −2
∫

d2kT

[(
kT · �T

�2

)
F27 + F28

]
, (24)
T



A. Courtoy et al. / Physics Letters B 731 (2014) 141–147 145
Table 1
Comparison of notations for different twist 3 GPDs.

Polyakov et al. [13] 2G1 G2 G3 G4

Meissner et al. [3] 2H̃2T Ẽ2T E2T H2T

Belitsky et al. [16] E3+ H̃3− H3+ + E3+
1

ξ
Ẽ3−

2H̃ ′
2T + E ′

2T =
∫

d2kT

[(
kT · �T

�2
T

)
G21 + G22

]
, (25)

Ẽ ′
2T = −2

∫
d2kT

[(
kT · �T

�2
T

)
G27 + G28

]
, (26)

in agreement with Ref. [3]. In order to proceed, it is important
to connect the various notations for the twist three GPDs which
appear classified in the literature in the three main publications,
Refs. [3,13,16], respectively. By using the Gordon relation and [30]

iε+iαβ U
(

p′,Λ′)γα�βγ5U (p,Λ)

= iU
(

p′,Λ′)(� jγ
+ − �+γ j)γ5U (p,Λ)

= 2P+U
(

p′,Λ′)γ j U (p,Λ),

which follows from the Dirac equation, we find that all notations,
as reported in Table 1, are equivalent.

4. We now turn to the interpretation of the OAM term in the
proton’s angular momentum sum rule [31,32] which requires, as
we show below, the twist three helicity amplitudes combination
corresponding to Ẽ2T , Eq. (24). While the derivation of the sum
rule was carried out along similar lines in both Refs. [31] and [32],
the two approaches essentially differ in that in Ref. [31] (JM) one
has1

1

2
= 1

2
�Σ +Lq + �G +Lg, (27)

where Lq(g) → r × i∂ , i.e. corresponds to canonical OAM, while in
Ref. [32] (Ji),

1

2
= Jq + J g = 1

2
�Σ + Lq + J g, (28)

where Lq → r× iD includes dynamics through the covariant deriva-
tive. J g , the gluons total angular momentum contribution to
Eq. (28) was originally not split into its separate intrinsic and or-
bital components, in order to satisfy gauge invariance. We note,
however, that in Ref. [36] a separation into all four parts (the or-
bital angular momenta and intrinsic spins of quarks and gluons)
was proposed that is gauge invariant for the longitudinal nucleon
spin. This question, and similarly the feasibility of a gauge invari-
ant separation into all four components for the transverse nucleon
spin, are still a matter of debate and beyond the scope of this Let-
ter.

In Ref. [32] the quarks and gluons angular momentum com-
ponents were identified with observables obtained from Deeply
Virtual Compton Scattering (DVCS) type experiments. Both Jq(g)

and Lq can therefore be measured owing to the well known rela-
tion involving twist two GPDs,

1

2

1∫
−1

dx x
(

Hq(g)(x,0,0) + Eq(g)(x,0,0)
) = Jq( g)

1 We do not discuss here the alternative decompositions of angular momentum.
For an extensive discussion of this issue see e.g. Ref. [36].
→ Lq = 1

2

1∫
−1

dx x
(

Hq(x,0,0) + Eq(x,0,0)
)

− 1

2

1∫
−1

dx H̃(x,0,0) (29)

(the arguments of the GPDs are (x, ξ = 0, t = 0). What is crucial
here is that in a subsequent development Polyakov et al. [13] de-
rived a sum rule for the twist three vector components,∫

dx xGq
2(x,0,0)

= 1

2

[
−

∫
dx x

(
Hq(x,0,0) + Eq(x,0,0)

) +
∫

dx H̃q(x,0,0)

]

(30)

from which it appears that the second moment of G2 ≡ Ẽ2T (see
Table 1) represents the quarks’ OAM.

By unraveling the helicity structure of Ẽ2T (or equivalently, G2)
in Eqs. (22b) and (24) we were able to show that OAM is measured
by a twist three contribution which corresponds to the Lorentz
structure σ i j� j [2], or, in terms of 3-vectors, to a transverse di-
rection (SL × �T ). This is at variance with the distribution of an
unpolarized quark in a longitudinally polarized proton appearing
at twist two in [7,8].

Our finding is in line with the recent observation that the same
twist three contribution is fundamental for solving the issue of
defining the quarks and gluons angular momentum decomposition
within QCD [9,15]. An important question remains to be explained
of whether G2 is related to the distribution of canonical angular
momentum, Lq . In order to address this question we notice that,

Lq(x) = LWW
q (x) + Lq(x), (31)

Lq(x) = LWW
q (x) +Lq(x), (32)

where LWW
q (x) is the Wandzura–Wilczek (WW) contribution, Lq(x)

and Lq(x) are the genuine twist three terms. Eqs. (31,32) are con-
sistent with the observation that Lq(x) and Lq(x) admit the same
WW part, while they differ in their genuine twist three contribu-
tion [15]. In other words, while in the WW limit the two OAM
distributions coincide, their differences depend on final state in-
teractions contained in this case in the genuine twist three terms
(notice, in particular, that

∫
dx Lq(x) = 0).

Only the WW contribution to G2 and Lq , obtained by taking the
forward limit of the twist three GPDs [15,16,30], contributes to the
sum rule in Eq. (30). One has

LWW
q (x,0,0) = x

1∫
x

dy

y

(
Hq(y,0,0) + Eq(y,0,0)

)

− x

1∫
x

dy

y2
H̃q(y,0,0). (33)

An alternative argument was given in [9,15], and demonstrated
with a specific physical example in [33], where, by treating OAM
in a similar way to Single Spin Asymmetries (SSAs), the difference
between Lq and Lq has been attributed, within the TMD factoriza-
tion picture, to final state interactions via the specific behavior of
the gauge links in the two cases. We remind that this approach re-
lies on Wigner distributions, whereas the issue of its connection to
OPE needs further discussion.
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Fig. 2. (Color online.) Unintegrated OAM for the u quark calculated in the
Wandzura–Wilczek approximation Eq. (33), compared to the integrand in Ji’s sum
rule, Eq. (28), evaluated using the reggeized diquark model of Refs. [19,20]. Results
are compared to Lu obtained using the same input wave functions from Refs. [19,
20] in the partonic picture given in Ref. [34] (labeled LC in the graph).

In order to illustrate the feasibility of OAM measurements, in
Fig. 2 we show the unintegrated OAM for the u quarks, within the
WW approximation, Eq. (33). We show for comparison the inte-
grand in Ji’s sum rule, Eq. (28), and an evaluation obtained in a
partonic picture following Ref. [34]. All curves were obtained us-
ing the same parametrization for the GPDs H, E, H̃ of Refs. [19,
20]. The WW and Ji-integrand curves integrate to the same value
of Lq = 0.13. The curve from Ref. [34] integrates to Lq = 0.11.

Next we propose an observable that gives a direct experimental
access to the quark OAM. The GPDs contributions to the ampli-
tudes for Deeply Virtual Compton Scattering (DVCS) experiments
were computed up to twist three in Refs. [16,30] (see also [35]).
By referring to the notation of Ref. [16] for the CFFs we see that
the contribution of G2 is found in the singularity free combination
given by

H̃eff = −2ξ

(
1

1 + ξ
H̃+ H̃+

3 − H̃−
3

)
, (34)

where (Table 1),

H̃ = C+ ⊗ H̃, H̃+
3 = C+ ⊗ Ẽ ′

2T , H̃−
3 = C− ⊗ Ẽ2T , (35)

and,

C± = − 1

x − ξ + iε
± 1

x + ξ − iε
. (36)

In order to extract G2 ≡ Ẽ2T from experiment one needs to first
of all single out the observables sensitive to H̃eff . These are the
azimuthal asymmetries for DVCS on a longitudinally polarized pro-
ton, namely, the single spin asymmetry averaged over all beam
polarizations, AUL , and the double spin asymmetry where both
beam and target are polarized, ALL . Both AUL , and ALL have been
recently measured [17,18].

In this Letter we show our calculation of the twist two and
twist three contributions to AUL [16],

AUL = Nsz=+ − Nsz=−
Nsz=+ + Nsz=−

(37)

where Nsz=± is a measure of the number of scatterings on a pro-
ton with longitudinal spin, sz = ±1/2. The dependence of AUL on
the angle φ, or the azimuthal angle between the lepton plane and
the plane of the virtual and real photons can be written keeping
terms up to twist three as
Fig. 3. (Color online.) The asymmetry AUL twist two (sinφ) and twist three (sin 2φ)
modulations plotted vs. the momentum transfer squared −t , compared to HERMES
data [17] at the Bjorken x and scale Q 2 of the data. The blue bands represent the
predictions from the GPD model of [19,20] denoted by GGL in the legend, including
the error from the model’s parameters variations calculated in WW approximation.

AUL = a sinφ + b sin 2φ

c0 + c1 cosφ + c2 cos 2φ
, (38)

where the coefficients for the total unpolarized cross section in
the denominator, c0, c1, and c2 are given by combinations of the
Bethe–Heitler (BH), DVCS, and BH–DVCS interference terms [16].
The coefficients in the numerator, also displayed in [16] contain
the GPDs of interest in our study, namely,

a ≈ sI1,LP ∝ F1(t)�m H̃
and

b ≈ sI2,LP ∝ F1(t)�m H̃eff ,

where F1(t) is the Dirac form factor.
In Fig. 3 we show the asymmetry values plotted vs. the mo-

mentum transfer squared −t , compared to HERMES data [17] at
the Bjorken x and scale Q 2 of the data. Both the twist two (sinφ)
and twist three (sin 2φ) modulations are shown. The blue bands
represent the predictions from the GPD model of [19,20] includ-
ing the error from the model’s parameters variations calculated
in WW approximation. As we can see from the figure the sin 2φ

modulation, dominated by the H̃ Compton form factor, is sizable:
an extraction of G2 is then possible. More accurate data analyses
that will allow us to better single out this term will be available
soon [18].

Finally, we notice that, as shown recently in [15], both the
canonical [31] and Ji’s OAM admit the same WW approximated
form, while their genuine twist three contributions differ.

5. In conclusion, we have proposed the first experimental ac-
cess to the quark OAM, through twist three GPDs. With the cor-
responding data from HERMES and the soon available data from
JLab, Lq could be extracted.

Our suggestion for a direct OAM measurement originates from
an interpretation of the helicity structure of GTMDs and GPDs that
identifies the relevant spin projections for this quantity. In par-
ticular we show that OAM is determined by a transverse spin
correlation at twist three.

The non-zero F14, G11 cannot directly be related to the sin-
gle longitudinal polarizations of either the quarks or the nucleons
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within the transverse momentum distributions, and final state in-
teractions should be introduced. Efforts to extract dynamical in-
formation from model calculations of these will lead to deceptive
results. Because the quarks are off their mass shell before imposing
any particular model, the counting of independent helicity am-
plitudes is complicated leading to a doubling of the number of
helicity states [22]. Starting from this observation we proposed a
QCD approach where: (1) single longitudinal polarizations observ-
ables can be derived; (2) they involve twist three distributions. Our
approach is complementary to the one in Ref. [33] that was de-
rived using TMD factorization.

Our most important result is perhaps in dispelling the notion
that what is believed to be the orbital angular momentum com-
ponent of the nucleon spin sum rule cannot be observed directly
in hard scattering experiments. Both the JM and Ji decompositions
correspond to twist three contributions, and their validity can be
tested by measuring twist three GPDs. These observables can be
obtained from both HERMES data [17] and in forthcoming Jeffer-
son Lab analyses [18].
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