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Abstract

This is a survey of a novel approach, called “ETH approach”, to the quantum theory of events happening 
in isolated physical systems and to the effective time evolution of states of systems featuring events. In 
particular, we attempt to present a clear explanation of what is meant by an “event” in quantum mechanics 
and of the significance of this notion. We then outline a theory of direct (projective) and indirect observations 
or recordings of physical quantities and events. Some key ideas underlying our general theory are illustrated 
by studying a simple quantum-mechanical model of a mesoscopic system.
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1. Introduction – walking out of the quantum maze

1.1. Introductory remarks

Recent years have seen enormous progress in setting up beautiful experiments that success-
fully test fundamental features of quantum mechanics. Furthermore, there have been substantial 
new developments in the areas of quantum information theory and its practical uses and of 
quantum computing. These advances have made renewed studies of the foundations of quan-
tum theory commendable and, perhaps, even somewhat fashionable – after a long period during 
which such studies were facing suspicion.

Unfortunately, the success of recent efforts to clarify the message and interpretation of quan-
tum mechanics and to formulate this theory in a logically coherent way is rather limited. Much 
confusion and disorientation still surround its foundations, even among professional physicists 
– so much so that many mathematicians do not want to think about it. There are many wrong 
or misleading prejudices. To mention one example, we tend to teach to our students that, in the 
Schrödinger picture, the quantum-mechanical time evolution of states of physical systems is de-
scribed by the Schrödinger equation for a wave function (or the Liouville equation for a density 
matrix), and that the Schrödinger picture and the Heisenberg picture are equivalent. Well, when 
stated in this generality and in case we wish to describe the time evolution of systems featuring 
events (amenable to observation), nothing could be farther from the truth; see subsect. 2.4!

Given that quantum mechanics was discovered ninety years ago, the present rather low level of 
understanding of its deeper meaning may be seen to represent some kind of intellectual scandal. 
We would like to help, in modest ways, to alleviate some of the confusion blurring this most 
important theory.

Fairly shortly before his death, our unforgettable mentor and friend Raymond Stora developed 
a lively interest in questions concerning the foundations of quantum mechanics. We feel that it is 
fitting to dedicate a paper on this subject to his memory.

1.2. Some fundamental questions and problems

In our courses on quantum mechanics, we tend to describe physical systems, S, as pairs of a 
Hilbert space, H, of pure state vectors, and a unitary propagator, (U(t, s))t,s∈R, describing the 
time evolution of states (from time s to time t ). Unfortunately, these data encode hardly any 
interesting invariant data about S, besides spectral properties of the unitary operators U(t, s), 
which would enable one to draw conclusions about physical properties of S. Moreover, they give 
the erroneous impression that quantum mechanics might be a deterministic theory, because the 
Schrödinger equation is a deterministic evolution equation. These observations give rise to the 
following

Fundamental questions and problems:

• What does one have to add to the data described above to arrive at a mathematical structure 
that – through interpretation – can be given physical meaning without the intervention of 
“observers” or addition of ad-hoc postulates concerning “measurements” to the theory?

• What is the origin of the intrinsic randomness in quantum theory, given the deterministic 
character of the Schrödinger equation? In which way does quantum randomness differ from 
classical randomness?
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• How are “states”, “observables” and “events” defined in quantum mechanics; what is the 
meaning of these notions? Do we understand the time-evolution of “states” and of “observ-
ables” of physical systems in quantum mechanics, and what does it have to do with solving 
the Schrödinger equation?

• What is meant by an “isolated system” in quantum mechanics, and why is this an important 
notion? (Answer: Because only for isolated systems we understand, in a general way, how to 
describe the time evolution of “observables”.) Is it understood, in quantum mechanics, how 
to prepare a system S in a prescribed initial state? Etc.

Answers to these important questions, except to the last one, are sketched in the following sec-
tions. (A fairly detailed discussion of the last question can be found in [1,2].)

1.3. Purpose of analysis

Besides addressing the questions raised in the last subsection, the main purpose of this paper 
is to sketch or review arguments in favor of some of the following basic claims.

• In quantum mechanics, the “state” of a system – as conventionally defined – does not
describe “what is” or “will be”; it does not have an ontological status. Rather it is a mathe-
matical device enabling us to make bets about the most likely events seen to happen in the 
future. (The “ontology” lies in time-ordered sequences of events, sometimes called “histo-
ries”, not in “states”.)

• The success of a quantum theory of “events” (that can be detected through observations or 
measurements) hinges on our ability to update the state of a system in time in accordance 
with events observed in the past, i.e., on a description of the time evolution of states in the 
presence of events, which observers can, in principle, record with the purpose to optimize 
their predictions of future events.

• Our description of the time evolution of states of systems exhibiting events exploits a fun-
damental mechanism of “loss of access to information” (for short, “information loss”) and 
of entanglement with degrees of freedom carrying away “inaccessible (lost) information”. 
This mechanism allows for the evolution of pure states into mixtures.

• There is no reason to expect that there are “information- or unitarity paradoxes” in quantum 
mechanics. In fact, the quantum-mechanical time evolution of states of physical systems 
exhibiting information loss and featuring events that can be recorded is never unitary; (see 
subsect. 2.4).

• Somewhat advanced mathematical concepts, such as functional analysis, in particular opera-
tor algebras (including type III1 – von Neumann algebras), functional integration, stochastic 
processes, elements of statistics, etc. have been invented to be used in the study of Quantum 
Theory – they do not represent a superfluous luxury.

In the following sections, we sketch arguments in favor of some of these claims; (for a more 
detailed presentation we refer to [3–5]). In particular, we outline a novel theory of events, obser-
vations and measurements in quantum mechanics based on two basic concepts:

1. Fundamental “loss of access to information” and entanglement with degrees of freedom that 
are no longer observable, i.e., carry away lost information.
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2. Specification of a list of physical quantities characterizing possible events that can, in prin-
ciple, happen, (depending on the state the system has been prepared in) and be recorded 
directly.

2. Information loss and events in quantum mechanics

We start this section with a somewhat pedestrian definition of physical systems in quantum 
mechanics, (subsect. 2.1). Afterwards, we introduce the concept of “loss of access to informa-
tion”, (subsect. 2.2). This will guide us towards a novel quantum-mechanical theory of events 
amenable to observation, (subsect. 2.3). Finally, in subsect. 2.4, we describe the time evolution 
of states in physical systems featuring events that can be recorded.

It should be emphasized that what we are trying to understand in this paper is Quantum Me-
chanics – pure and simple; we are not trying to extend or generalize this theory.

2.1. Definition of physical systems

Definition N-R: In non-relativistic quantum mechanics, an isolated system, S, is characterized 
by the following data, (items 1 through 3):

• 1. A pair,

(H, {U(t, s)}t,s∈R), (1)

of a Hilbert space H of pure state vectors and a unitary propagator U with the usual proper-
ties: U(t, s) is a unitary operator on H, for all pairs of times (t, s), and

U(t, t) = 1, U(t, s) · U(s, r) = U(t, r), ∀t, s, r in R.

• 2. A list,

OS = {X̂i}i∈IS
, (2)

of bounded self-adjoint operators X̂i representing physical quantities of S that could be 
recorded directly. We assume that OS contains an identity element, 1, and that if f is an 
arbitrary real-valued, bounded, continuous function on R and X̂ is an arbitrary operator in 
OS then f (X̂) also belongs to OS .

Remarks. (i) In this paper, “physical quantities of a system S” are always represented by 
self-adjoint (bounded) linear operators.2 If during a certain interval, I , of time it is possible to 
unambiguously assign an objective value to a physical quantity of S represented by an operator 
X̂ ∈ OS we say that, during the time interval I , an “event” is happening; namely the event 
that X̂ has an objective value that could, in principle, be observed directly. What this means 
mathematically will be explained below.

(ii) Note that, in general, OS is not an algebra; it is not even a linear space! Typically, OS may 
be generated by just a few (possibly only finitely many) operators. Let AS denote the algebra 
generated by OS (closed in a C∗-norm). In simple examples of physical systems (see Eq. (8) and 
Sect. 3 for a concrete model system), the operators in OS all commute among themselves. We 

2 This is actually a feature common to all physical theories known to us – quantum and classical.
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can then identify AS with OS ; and it is a well known theorem due to I.M. Gel’fand that, under 
this assumption,

OS � {continuous functions on a compact Hausdorff space XS} =: C(XS) (3)

The topological space XS is called the spectrum of OS .
Given an algebra A of operators, a maximal abelian subalgebra of A is a commutative sub-

algebra, M ⊆ A, with the property that the subalgebra of operators in A that commute with all
operators in M is equal to M. In order to keep this paper reasonably short and easy to read, we 
introduce the following

Simplifying Assumption:
Every maximal abelian algebra, M, contained in AS is generated by a finite family of commut-
ing orthogonal projections, {�ξ1, . . . , �ξN

}. Then M = C(X ), where X = {ξ1, . . . , ξN } is the 
spectrum of M. It is assumed that there is at least one maximal abelian subalgebra, MS , in 
AS with the property that all self-adjoint elements of MS belong to OS . However, there may 
be several such maximal abelian algebras, {M(i)

S }i∈IS
, not commuting with each other.3 The or-

thogonal projections contained in an algebra M(i)
S , i ∈ IS , are called “possible events”; any real 

linear combination of the orthogonal projections generating M(i)
S is then a physical quantity, X̂i , 

belonging to OS .4

(iii) The occurrence of events in a system S does not depend on the presence of “observers”; 
i.e., our formulation of quantum mechanics does not invoke “observers” who decide to measure 
some quantity (and may then disagree on exactly which quantity they would like to measure 
and when). But, of course, any useful physical theory must talk about objects and phenomena 
that intelligent beings can observe if they choose to do so, and it should help them to cope with 
the challenges of a changing world by enabling them to agree among themselves whether some 
events have happened and to make useful and plausible predictions about future events. – That 
much about “physical quantities” (“observables”), “(possible) events”, and philosophy!

• 3. At every time t , there exists a representation

AS � X̂ �→ X(t)

of the algebra AS by operators, X(t), acting on the Hilbert space H with the property that 
X̂∗ is represented by the operator X(t)∗; in particular, if X̂ is self-adjoint then X(t) is a 
self-adjoint operator on H. The operators X(t) and X(s) are unitarily conjugated to each 
other by the propagator of S, i.e.,

X(t) = U(s, t)X(s)U(t, s), for times s, t ∈ R, X̂ ∈ AS.

By AS(t) we denote the algebra {X(t)|X̂ ∈ AS} ⊆ B(H), where, as usual, B(H) denotes the 
algebra of all bounded operators on the Hilbert space H.

3 Example: M(1)
S

= {all bounded continuous functions of the position of a particle, P }, and M(2)
S

= {all bounded
continuousf unctionsof themomentumof P }.

4 A more general analysis of the role of maximal abelian subalgebras of AS in our formulation of quantum theory, not
assuming that they are generated by finitely many projections, will be presented elsewhere.
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Possible events observable at times ≥ t generate an algebra E≥t :

E≥t := {linear combinations of
∏
i

Xi(ti)|X̂i ∈OS, ti ≥ t}−, (4)

with E := E>−∞. For concreteness, we assume that the closure is taken in the weak operator 
topology on B(H).5

With a view towards an extension of our formalism to relativistic quantum (field) theory, we 
briefly outline a somewhat more general notion of physical systems.

Definition R: In quantum theory, a general isolated physical system S is characterized by the 
following data:

• 1. A list,

OS = {X̂i}i∈IS
,

of bounded self-adjoint operators X̂i representing physical quantities of S. As before, we 
let AS denote the C∗-algebra generated by OS , and we continue to impose the simplifying 
assumption formulated in Remark (ii) after item 2, above, etc.

• 2. A net (EI)I⊂R of (von Neumann) algebras, EI , indexed by time intervals I , with the 
interpretation that EI is generated by possible events localized in the time interval I . This 
net is assumed to have the property that if I ⊂ I ′ then EI ⊂ EI ′ . We define

E≥t :=
∨

I⊆[t,∞)

EI , E := E>−∞. (5)

In (5), the closure is taken in the weak operator topology on B(H).
• 3. For every time t ∈ R there is a ∗representation

AS � X̂ �→ X(t) ∈ E≥t (6)

of the algebra AS by operators in E≥t . The representations of AS corresponding to different 
times are unitarily equivalent.
It is assumed, furthermore, that, for every X̂ ∈ OS and every ε > 0, there exist a finite dura-
tion τ = τ(X̂, ε) < ∞ and an operator Xε(t) ∈ E[t,t+τ ] such that

‖X(t) − Xε(t)‖ < ε.

Remark: In Definition R, “time” refers to the proper time of an observer, and the net {EI}I⊂R

depends on the worldline of that observer; see Fig. 1, below. This does not mean that the the-
ory becomes “observer-dependent”. But it does mean that one has to find out how one and the 
same sequence of events is seen by different observers, i.e., how to map the data concerning a 
sequence of events recorded by one observer to the data recorded by another observer. Luckily, 
for the purposes of the analysis presented here we do not need to address this problem, which 
lies somewhat beyond the scope of this paper.

The analysis presented in the following sections is based on Definition R; (but no attempt is 
made to present an analysis that takes into account the laws of relativity theory).

5 A sequence, or net, (Ai)i∈I of bounded operators on H is said to converge weakly iff (〈ψ, Aiϕ〉)i∈I converges, for 
arbitrary vectors ψ and ϕ in H. The algebras E≥t and E are von Neumann algebras, because they are closed under weak 
convergence. In the following, it is convenient to work with von Neumann algebras. But the reader is kindly asked not to 
worry about this technicality.
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Fig. 1. An illustration of Property (∗).

2.2. Information loss

The idea of “information loss” or, more precisely, “loss of access to information” is encapsu-
lated in the following general assumption concerning the algebras E≥t , t ∈ R:

B(H) ⊇ E ⊇ E≥t ⊃�= E≥s ⊇AS(s), s > t. (7)

Information Loss!

A precise formulation of “Information Loss” is to assume that if s > t then

E ′≥s ∩ E≥t �= ∅, (∗)

where, for an algebra A of bounded operators acting on H, A′ is the algebra of all bounded oper-
ators on H commuting with all operators in A. In fact, one expects that E ′≥s ∩ E≥t is typically an 
infinite-dimensional algebra (at least for some s > t), an expectation extracted from the analysis 
of examples; see [6,7].

Property (∗) is far from obvious and appears to only hold in theories of systems with infinitely 
many degrees of freedom including massless ones, such as photons or phonons. D. Buchholz and 
the late J.E. Roberts have presented a deep analysis of Property (∗) in quantum electrodynam-
ics, formulated in the framework of algebraic quantum field theory; see [6]. In their work, the 
analogue of the algebra E≥t is played by an algebra of bounded functions of the electromagnetic 
field smeared out with test functions with support in the forward light cone V

+
Pt

erected over a 
space-time point Pt at proper time t that belongs to the worldline of an observer. They show that 
Property (∗) follows from Huyghens’ Principle for the electromagnetic field and the existence of 
asymptotic electromagnetic field operators; see Fig. 1.

Fig. 1 indicates that E≥t0 properly contains E≥t , for t > t0, and that, asymptotically, flashes of 
light emitted from region O belong to E ′≥t ∩ E≥t0 .

Information Loss, in the sense of Eq. (7) (with Property (∗) valid for some s > t), holds 
in many models of non-autonomous systems describing a small system (e.g., an n-level atom) 
alternatingly coupled to various mutually independent dispersive media (e.g., the quantized elec-
tromagnetic field, or the phonons of a dynamical crystal lattice) during finite intervals of time; 
see [7]. Here we briefly sketch the example of a mesoscopic system consisting of a T-shaped 
conducting wire ending in three reservoirs denoted by DL, DR and “e− gun”; see Fig. 2.
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Fig. 2. A mesoscopic system.

The reservoir “e− gun” has a higher chemical potential than the reservoirs DL and DR . Hence 
“e− gun” emits electrons at a certain rate that move through the T-shaped wire until they dive 
into one of the reservoirs DL or DR where they disappear for ever. Before they disappear they 
trigger detectors that emit a signal (flash of light or sound wave) whenever an electron has arrived 
at DL or DR , respectively. In this example, the system S is the composition of the equipment 
E with a quantum dot P ∨ P ′ in a semi-conductor matrix. The electric charge localized inside 
the component P of the quantum dot, which can fluctuate by electron exchange between the 
components P and P ′, determines the a-priori probability by which an electron traveling through 
the T-shaped wire will dive into DR . The equipment E consists of the three reservoirs, “e− gun”, 
DL and DR , the T-shaped wire, and the detectors at the entrance gates to DL and DR . The 
only physical quantity of S that can be observed directly is the flash of light or sound emitted 
by the detector on the left or the right whenever an electron dives into DL or DR , respectively. 
Mathematically, this quantity can be represented by the operator

X̂ = 1P∨P ′ ⊗
(

1 0
0 −1

)
, (8)

which has the (infinitely degenerate) eigenvalues ξ = ±1, with

ξ = +1 ↔ DL clicks, ξ = −1 ↔ DR clicks.

The family OS of operators consists of all bounded functions of the operator X̂; its spectrum, XS , 
consists of two points, {−1, +1}. Access to the “information” represented by an electron that 
travels through the T-shaped wire is lost, as soon as that electron has dived into one of the reser-
voirs DL or DR . (To make this precise one must assume that the detectors have infinitely many 
degrees of freedom.)

This example is discussed in much detail in [5]. It illustrates how properties of a physical 
system S – in the example, the charge of the dot P – can be determined indirectly through a long 
sequence of repeated observations of physical quantities represented by operators in OS . Results 
from [5] concerning this example are summarized in section 3. (Our efforts have been stimulated 
by the experiments described in [8]; see also [9].)

2.3. Direct detection of events – projective recordings of physical quantities

Let {M(i)
S }i∈IS

denote those maximal abelian subalgebras of AS that belong to OS . In this 
subsection, we clarify what it means that a physical quantity of a system S represented by an 
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operator X̂ ∈ M(i)
S , for some i ∈ IS , is recorded or measured directly (or “projectively”) around 

some time t , i.e., that X̂ has an objective value at or around time t . We will explain the roles 
played by “information loss”, in the sense of Eq. (7), and of entanglement of observable degrees 
of freedom of S with inaccessible (“lost”) degrees of freedom.

Let ξ1 < · · · < ξN denote the eigenvalues of the operator X̂, and let �ξ1, . . . , �ξN
be the 

corresponding spectral projections, with �ξj
∈ M(i)

S , ∀j = 1, . . . , N . These projections have 
the interpretation of “possible events”; (�ξi

corresponds to the possible event that the physical 
quantity represented by the operator X̂ is observed, at some time t , to have the value ξj ). For the 
mesoscopic system considered in subsection 2.2 (see Fig. 2), OS ≡MS is generated by a single 
operator, X̂, with only two eigenvalues ξ = ±1.

Let X(t) ∈ E≥t be the operator on H representing X̂. Then

X(t) =
N∑

j=1

ξj�ξj
(t), (9)

where �ξj
(t) is the spectral projection of X(t) corresponding to the eigenvalue ξj ; (the eigen-

value ξj is independent of time t , while the projections �ξj
(t) representing the projection 

�ξj
∈M(i)

S depend on t , but are all unitarily conjugate to one another, for every j = 1, . . . , N ).
It is compatible with the “Copenhagen interpretation” of quantum mechanics (whatever this 

interpretation may be, in more precise terms) to say that if the physical quantity corresponding 
to the operator X̂ ∈ M(i)

S has an objective value around some time t , then the state of S,

ρ(·) = T rH(P ·), where P is a density matrix on B(H), (10)

when restricted to the algebra E≥t , is indistinguishable from an incoherent superposition of 
eigenstates of the operator X(t), in the following precise sense: Let

ρt := ρ|E≥t
,

then

ρt (A) =
N∑

j=1

ρt (�ξj
(t)A�ξj

(t)) + O(δ‖A‖), ∀A ∈ E≥t , (11)

for some constant δ, with

δ � min
1≤i<j≤N

|ρt

(
�ξi

(t) − �ξj
(t)

)|.
Eq. (7) and entanglement with inaccessible degrees of freedom imply that the state ρt is, in 
general, a mixed state on E≥t , even if the state ρ may be a pure state on B(H), so that Eq. (11) is 
by no means inconsistent.

Given a state ϕ on a von Neumann algebra M, we define the centralizer (or stabilizer), Cϕ , of 
ϕ to be the subalgebra of M defined by

Cϕ := {A ∈M|adA(ϕ) = 0}, (12)

where

adA(ϕ)(B) := ϕ([A,B]), for arbitrary B ∈ M;
see the Appendix for further details. For M = E≥t and ϕ = ρt , the centralizer is henceforth 
denoted by Cρt .
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Let us assume that either the algebra M is isomorphic to a direct sum 
⊕

i B(Hi ), where Hi , 
i = 1, 2, . . . , are Hilbert spaces, (i.e., that M is of type I ), or that ϕ is a separating state on M
(meaning that ϕ(A∗A) = 0, for some A ∈M, implies that A = 0).6 Then there exists a linear map 
Eϕ : M → Cϕ , called a conditional expectation from M to Cϕ , with the following properties:

Eϕ(XAY) = XEϕ(A)Y, ∀X,Y ∈ Cϕ,∀A ∈M,

0 ≤ Eϕ(A)∗Eϕ(A) ≤ Eϕ(A∗A), ∀A ∈ M.

Let Zϕ denote the center of Cϕ , (i.e., the algebra of all operators in Cϕ commuting with all 
operators in Cϕ). Under the same assumptions, there also exists a conditional expectation eϕ from 
M to Zϕ with the same properties as those of Eϕ . (The general theory of conditional expectations 
in von Neumann algebras is developed in [10,11,13]; applications to the centralizer of a von 
Neumann algebra can be found in [14,15] and in references quoted therein.) The conditional 
expectations from E≥t to Cρt and from E≥t to Zρt , the center of Cρt , are denoted by Eρt and eρt , 
respectively.

Let X(t), ξj and �ξj
(t), j = 1, . . . , N , be as in Eq. (9). It is not hard to show that

Eq. (11) ⇐ ‖Eρt (�ξj
(t)) − �ξj

(t)‖ ≤ δ′, ∀j = 1, . . . ,N, (13)

for some δ′ = O(δ/N). This and the next claim are proven in the Appendix.
Obviously, Eq. (11) also holds if

‖eρt (�ξj
(t)) − �ξj

(t)‖ ≤ δ′, ∀j = 1, . . . ,N. (14)

We are now prepared to formulate the

Fundamental axiom of events in quantum mechanics:

Let P := {�ξ1 , . . . , �ξN
} be a partition of unity in AS , (i.e., 

∑N
j=1 �ξj

= 1|AS
) consisting 

of commuting orthogonal projections that are contained in some maximal abelian subalgebra 
M(i)

S ⊆ OS, i ∈ IS . These projections have the physical interpretation of “possible events”, and 
any real linear combination of them is an operator, X̂ ∈OS , representing a physical quantity of S. 
Given a state ρ (on the algebra E ) which the system S has been prepared in, we propose to define 
what it means that one out of these N possible events actually happens (or materializes) around 
some later time t .

We fix a “threshold, 
t , for detection (of an event) at time t” satisfying

0 < 
t � min
i �=j=1,...,N

|ρt (�ξi
(t) − �ξj

(t))|, (15)

where ρt = ρ|E≥t
, and �ξj

(t) ∈ AS(t) is the orthogonal projection on the Hilbert space H repre-
senting the projection �ξj

∈ P . Let P(t) := {�ξ1(t), . . . , �ξN
(t)}.

The fundamental axiom has two parts:

• 1. Occurrence of Events in Quantum Mechanics:
One of the (possible) events �ξ1, . . . , �ξN

happens (materializes) around time t – put differ-
ently, the physical quantity X̂ = ∑

j ξj�ξj
has an objective value around time t – iff

6 If the state ϕ is separating on the von Neumann algebra M then Cϕ is seen to be the subalgebra of operators in 
M invariant under the modular automorphism group, (σϕ

t )t∈R, corresponding to (M, ϕ) [12]; see, e.g., [11,3] and 
references given there.
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dist(P(t),Zρt ) := max
j=1,...,N

‖eρt (�ξj
(t)) − �ξj

(t)‖ ≤ 
t/N. (16)

Remarks. (i) Time of occurrence of events: Obviously, Eq. (16) implies Eq. (11). The earliest 
time when a possible event in P can materialize is the smallest time t = tmin at which inequality 
(16) holds, after the preparation of S in state ρ. Let Itmin be the largest interval of time containing 
tmin such that inequality (16) holds for all t ∈ Itmin . Then one of the possible events {�ξj

}Nj=1 hap-
pens in Itmin . Most likely it happens around the time, t∗, minimizing the function dist(P(t), Zρt )

defined in Eq. (16).
(ii) Duration of events: Let τ = τ(P(t∗)) be such that there are self-adjoint operators

{�j(t∗, τ )}Nj=1 ⊂ E[t∗,t∗+τ ], with ‖�ξj
(t∗) − �j(t∗, τ )‖ ≤ 
t∗/N,

see item 3 of Definition R, subsect. 2.1. Then the duration of the event happening around time t∗
is given by τ .

(iii) A simple special case: If the algebra E≥t is of type I (which, alas, it usually won’t be!) 
then the state ρt can be represented by a density matrix, Pt ∈ E≥t . Let

Pt =
N∑

j=1

pj (t)πj (t),

be the spectral decomposition of Pt , where the operators πj (t) are the spectral projections of Pt , 
pj (t) > 0, ∀j , and

N∑
j=1

pj (t) dim (πj (t)) = 1.

Then one of the possible events �ξ1, . . . , �ξN
happens around time t iff

max
j=1,...,N

‖�ξj
(t) − πj (t)‖ ≤ 
t/N, with 
t < min

j=2,...,N

(
pj (t) − pj−1(t)

)
.

• 2. Randomness in Quantum Mechanics:
Under the condition that (16) holds at some time t = t∗ ∈ Itmin , the probability that the 
possible event �ξ ≡ �ξj

∈P actually materializes at time t∗ is given by

pξ (t∗) = ρ(�ξ (t∗)) (17)

Born’s Rule

If the event corresponding to the projection �ξ ∈ P is detected to have happened at time t∗
then the state

ρξ,t∗(·) := pξ (t∗)−1ρt∗
(
�ξ(t∗) · �ξ(t∗)

)
(18)

must be used for improved predictions of future events at times > t∗; i.e., the state of S on 
the algebra, E≥t∗ , of possible events after time t∗, conditioned on the event corresponding to 
�ξ to have materialized at time t∗, is given by ρξ,t∗ .

“Projection-, or Collapse Postulate”
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Remarks, ctd.: (iv) Apparently, if it is known that an isolated system S was prepared in a state 
ρ before the earliest event has happened, then the quantum theory of S predicts at or around what 
time t∗ the first event will occur, for what duration, τ , the event will last, and to which family, 
P , of possible events that event belongs to. (We recall that P is contained in a maximal abelian 
subalgebra M(i)

S ⊆OS of AS .) But which event from the family P materializes at time t∗ cannot 
be predicted with certainty – Quantum Mechanics only enables us to calculate the “frequency” 
or probability by which a specific element �ξ ∈P corresponds to the event materializing around 
time t∗, and this probability is given by Born’s Rule. In colloquial language, one may say that if 
one knows the state in which an isolated physical system S was prepared before the first event 
occurs then one can predict (using quantum mechanics) “which pointer (of an instrument) will 
start to turn first, at approximately what time it will start to turn, and for how long it will turn 
before it will come to rest; but its final position cannot be predicted.”

(v) Note that many or most quantum-mechanical models of isolated systems that we discuss in 
our courses and books, such as models of systems of finitely many oscillators or of atoms treated 
according to Schrödinger’s wave mechanics and not coupled to the quantized radiation field, do 
not describe any events (in the sense this notion has been given above)! The reason is that they 
give rise to algebras E≥t that are independent of t ; i.e., that they do not exhibit any “loss of access 
to information”, in the sense of Eq. (7). Before one incorporates equipment (with infinitely many 
degrees of freedom), such as detectors, etc., which the degrees of freedom of interest (e.g., the 
ones describing an atom) interact with, into the quantum-mechanical description it is impossible
to formulate a logically coherent theory of events and observations.

Furthermore, one must expect that most systems have states, called “passive states”, with the 
property that there won’t be any events happening even if there is “loss of access to information”, 
in the sense of Eq. (7). The reason is that the centers Zρt of the centralizers Cρt of the algebras 
E≥t may turn out to be trivial, for all times t , (or be independent of t ), for certain states ρ (called 
“passive”). One may even expect that, generically, a state is passive, and that equilibrium states 
at positive temperature are passive states.

(vi) It is conceivable that, in a more elaborate formulation of quantum mechanics, there is no 
need to specify the list OS of physical quantities of an isolated physical system S that can, in 
principle, be detected directly. Rather, one can imagine that the algebras

{Zρt |t ∈R, ρ an arbitrary state on E of physical interest}
will determine OS .

2.4. The effective time evolution of states of systems featuring events

Equations (17) and (18) clarify the nature of the time evolution of states of systems featuring 
events. It is illustrated in the following Fig. 3, where:

E stands for “event” (meaning that an event corresponding to a projection �ξ from some family 
P belonging to a maximal abelian subalgebra M(i)

S ∈ OS , i ∈ IS , materializes)
T stands for “tree” (of states of S corresponding to possible events, according to Eq. (18)); and
H stands for “history” (of observed events)

We thus speak of the “ETH approach” to the interpretation of quantum mechanics (describing 
the effective quantum-mechanical time evolution of states of systems that feature events).

Let us summarize some basic elements of the “ETH approach”.
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Fig. 3. “ETH approach” to quantum mechanics. (For interpretation of the colors in this figure, the reader is referred to 
the web version of this article.)

1. “Observables at infinity”: Under rather general hypotheses, one can show that the algebra

E∞ :=
⋂
t∈R

E≥t

is abelian, and that it is in the center of all the algebras E≥t , t ∈ R. Hence E∞ is contained 
in the centers Zρt of the centralizers of all states ρt = ρ|E≥t

, for an arbitrary state ρ on E
and all times t . Thus, the states ρt can be decomposed over the spectrum, X∞, of the al-
gebra E∞. Points in X∞ are called “facts”, because they correspond to objective values of 
time-independent physical properties represented by operators in E∞; see also [4].

2. In [16] and [17] the notion of “consistent histories” has been introduced and discussed, 
which, in conjunction with some understanding of the phenomenon of “decoherence” (see 
Sect. 4), is supposed to lead to a logically coherent interpretation of quantum mechanics. 
The problems with the approach in [16,17] are: (1) that there tend to exist many “consistent 
histories” that are incompatible with each other, hence mutually exclude one another; and 
(2) that, in the understanding of the theory presented in these papers, the propagator of a 
system and the choice of an initial state do not determine which physical quantities that give 
rise to consistent histories will actually be observed in the course of time. Given the time 
evolution of a system and its initial state, the choice of a sequence of physical quantities 
giving rise to consistent histories thus remains quite arbitrary, i.e., lies – like beauty – “in the 
eye of the beholder”.
This problem is avoided in the “ETH approach”, as we now briefly explain. Suppose that, 
at some time t0, a physical system S is prepared in a state ρ = ρ0 (on the algebra E≥t0 ). 
Our formalism then enables us to predict a time, t1, around which the first event after the 
preparation of S in state ρ0 materializes and a family, P1 ⊂OS , of possible events, �1

ξ ∈P1, 
to which the event that materializes at time t1 belongs; see Eqs. (11) and (16). Suppose now 
that the event happening at time t1 corresponds to the projection �1

ξ1
∈ P1. The “fundamental 

axiom” (see item 2, (18)) then instructs us that, in order to improve our predictions of the 
future after time t1, we should use the state

ρ1(·) := ρ0(�1 (t1))
−1ρ0(�1 (t1)(·)�1 (t1)),
ξ1 ξ1 ξ1
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on the algebra E≥t1 , where �1
ξ1

(t1), (with �ξ1 ∈ P1), is the orthogonal projection on H de-

scribing the event happening at time t1. Given the state ρ1, one can now predict a time t2 and 
a family P2 ⊂ OS of orthogonal projections with the property that an event corresponding 
to some element of P2 happens around time t2; etc.
Suppose that the state of the system after the kth event has happened around time tk is 
given by ρk , which is a state on the algebra E≥tk , k = 1, 2, 3, . . . . This state determines a 
time tk+1 > tk and a family, Pk+1, of orthogonal projections describing possible events that 
might materialize at time tk+1. (It can happen that ρk is a “passive state”, in which case 
tk+1 = ∞.) Suppose that the event happening at time tk+1 is detected to be given by the 
operator �k+1

ξk+1
(tk+1) representing the projection �k+1

ξk+1
∈ Pk+1. According to Eq. (18), the 

state on the algebra E≥tk+1 to be used to predict the future at times > tk+1 is then given by

ρk+1(·) := ρk(�k+1
ξk+1

(tk+1))
−1ρk(�k+1

ξk+1
(tk+1)(·)�ξk+1(tk+1)). (19)

If, however, the event happening at time tk+1 (representing some element of Pk+1) is not
recorded then the state on E≥tk+1 to be used to predict the future after time tk+1 is given by

ρk+1(·) := ρk(·)|E≥tk+1
�

∑
�k+1

ξ ∈Pk+1

ρk(�k+1
ξ (tk+1)(·)�k+1

ξ (tk+1)). (20)

Recall that the distance between Pk+1(tk+1) and Zρk
tk+1

(⊂ E≥tk+1) is tiny!

In the “ETH approach”, a history consists of a sequence, 
(
tk, �k

ξk
(tk)

)
k=1,2,3,...

, where t1 <

t2 < t3 < . . . are times, �k
ξk

(tk) (with �k
ξk

∈ Pk ⊆ OS ) is the orthogonal projection on H
describing the event happening at approximately time tk, with tk and Pk determined by the 
state ρk−1 corresponding to the event that happened at time tk−1, according to Eq. (18).
Such a history is denoted for short by

{(ξk, tk)|k = 1,2,3, . . .} (21)

Events that have materialized at some time, but have not been recorded can be omitted from 
the list (21) – as follows from Eq. (20).
Quantum mechanics, as understood in the “ETH approach”, predicts the probabilities of 
histories. In fact, these probabilities are given by a well-known formula, which we call 
“LSW-formula” (for “Lüders–Schwinger–Wigner”, see [18–20]). It is the unique general-
ization of Born’s Rule (k = 1) to all values of k. Here it is:

Prob{((ξk, tk)|k = 1,2,3, . . .} := ρ0
( ∏

k=1,2,3,...

�k
ξk

(tk) · (
∏

k=1,2,3,...

�k
ξk

(tk))
∗) (22)

Some applications of this formula will be sketched in Sect. 3.
3. It should be emphasized that a physical quantity represented by an operator X̂ ∈OS that, for 

a suitably chosen initial state, has an objective value around some time t – meaning that the 
spectral projections of X(t) belong to a family P(t) of possible events happening at time t
– will usually not have an objective value at an earlier or later time, because the quantity in 
question evolves in time; i.e., the operators X(t) representing that quantity depend on time t . 
In fact, for typical choices of an element X̂ ∈ OS , the operators X(t) do not commute with 
operators describing “conserved quantities”, such as energy, momentum or angular momen-
tum, etc. (They do however commute with operators representing “Super-Selection Rules”. 
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But energy and momentum are, of course, not Super-Selection Rules.) It then follows that 
the detection of the value of the physical quantity represented by an operator X̂ ∈ OS , with 
the property that X(t) depends on t , violates energy- (and possibly angular momentum- . . . ) 
conservation, in the sense that the distribution of energies (and angular momentum, i.e., the 
energy- and angular-momentum fluctuations) in the states before and after the observation 
of the value of X̂, see Eq. (18), are different from each other.
The relation between the duration of the event corresponding to the recording of the value 
of a physical quantity and the amount of energy fluctuation accompanying this event is given 
by the usual time-energy uncertainty relations; see, e.g., [21].

3. Indirect observation/reconstruction of properties of physical systems

In this section, we present a brief outline of the theory of indirect non-demolition mea-
surements, as originally developed in [22]; see also [23,9,5] and references given there. Our 
discussion is limited to the analysis of a simple example, which is inspired, in part, by the beau-
tiful experiments described in [8].

3.1. The example of a mesoscopic system

A property, P , of a physical system S is the value of a time-independent physical quantity. 
Examples of properties of S that can be recorded directly are “observables at infinity”, as de-
scribed in item 1 of subsect. 2.4. Our purpose, in this section, is to present a sketchy outline of 
how properties of a system S can be determined indirectly from recordings of long sequences 
of events, (i.e., from recordings of the values of physical quantities represented by operators be-
longing to OS ), as discussed in the last section. Such an indirect observation of a property P
of S is sometimes called a “non-demolition measurement”. A presentation of the general theory 
of non-demolition measurements is beyond the scope of this paper; but see [22,23,9,5]. In the 
following, we therefore focus our attention on the concrete example of a mesoscopic system S
sketched at the end of subsection 2.2. In this example, the list OS of physical quantities whose 
values can be recorded directly consists of all bounded functions of a single operator, namely the 
operator X̂ defined in Eq. (8) of subsect. 2.2, which has only two eigenvalues ±1 corresponding 
to projections �±1.

We imagine that a history, (ξk, tk)k=1,2,3,..., of events corresponding to values ξk = ±1 of the 
physical quantity represented by the operator X̂ has been recorded. In our example, the recording 
of the value ξk = 1 at time tk means that the detector near DL has clicked around time tk , (i.e., 
an electron traveling through the T-channel has entered the reservoir at the end of the left arm of 
the T-channel), while the recording of ξk = −1 at time tk means that the detector near DR has 
clicked around time tk .

For the following discussion, the values of the times t1 < t2 < t3 < . . . at which events (i.e., 
clicks of a detector) are happening are unimportant. We therefore omit reference to these times 
in our notations, denoting histories by ξ = (ξk)k=1,2,3,..., with ξk = ±1, ∀k = 1, 2, 3, . . . . By 

we denote the space of all arbitrarily long histories. A sequence, ξn := (ξk)

n
k=1, of n recorded 

detector clicks belonging to a history ξ is called a “measurement protocol” of length n.
Given an initial state ρ of S, the “LSW formula”, Eq. (22) of subsect. 2.4, determines a prob-

ability measure μρ on the space 
: The probability of a measurement protocol ξn = (ξ1, . . . , ξn)

of length n is given by
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μρ(ξ1, . . . , ξn) := ρ
(
�ξ1(t1) · · ·�ξn(tn) · · ·�ξ1(t1)

)
, (23)

see (22). We note that∑
ξn

μρ(ξ1, . . . , ξn−1, ξn) = μρ(ξ1, . . . , ξn−1), and
∑
ξn

μρ(ξn) = 1.

By a lemma due to Kolmogorov, these properties imply that μρ , as defined by (23), extends 
to a probability measure on the space 
 of histories.

We suppose that the chemical potential of the reservoir “e− gun” is only very slightly higher 
than the chemical potentials of the reservoirs DL and DR , so that the rate, τ , at which “e− gun” 
releases an electron into the T-channel is so slow that, at any given moment, there is typically only 
at most one electron traveling through the T-channel, and that, after an electron has entered D�, 
the state of this reservoir and of the detector near it relaxes to the original state in a time much 
shorter than τ , for � = L, R. These assumptions can be interpreted as saying that the electrons 
traveling through the T-channel – to get lost in one of the reservoirs, DL or DR , at the end of the 
horizontal arms of the T-channel – and their successive detections are all independent of each 
other. This implies that the measures μρ are “exchangeable”, i.e.,

μρ(ξ1, . . . , ξn) = μρ(ξσ(1), . . . , ξσ(n)), ∀ permutations σ of {1, . . . , n}, (24)

for all n = 1, 2, 3, . . . and all states ρ of the system whose restriction to the three reservoirs have 
the desired properties, (in particular, the prescribed chemical potentials).

By de Finetti’s theorem, Eq. (24) implies that μρ is a convex combination of product mea-
sures. For simplicity, we suppose that it is a finite convex combination of product measures:

μρ(ξ1, . . . , ξn) =
N∑

ν=0

πρ(ν)

n∏
i=1

p(ξi |ν), (25)

where

p(ξ |ν) ≥ 0, ∀ξ, ν, and
∑

ξ=±1

p(ξ |ν) = 1, ∀ν = 0,1, . . . ,N,

and

0 ≤ πρ(ν) < 1, ∀ν, with
N∑

ν=0

πρ(ν) = 1.

The physical interpretation of these quantities is as follows:

• ν is the number of electrons bound by the quantum dot P . Because of possible electron 
exchange between P and P ′, the state ρ of S is, in general, not an eigenstate of the electron 
number operator of P ; i.e., ν does usually not have a sharp value in the state ρ. It is assumed, 
however, that ν is a static quantity, i.e., that the electron number operator of P commutes 
with the Hamiltonian of the system.

• p(ξ |ν) is the a-priori probability that an electron traveling through the T-channel reaches the 
detector near DL (↔ ξ = 1) or the one near DR (↔ ξ = −1), respectively. This probability 
clearly depends on the number ν of electrons bound to the dot P , because these electrons 
create a “Coulomb blockade” in the arm of the T-channel above P and extending to the right, 
towards DR .
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• πρ(ν) is the Born probability (in the state ρ) for the number of electrons bound to the dot P
to be equal to ν, with ν = 0, . . . , N .

3.2. Summary of results on indirect measurements

In this last subsection, we summarize some recent results on the system described above. We 
omit the proofs, which the reader may find in [5].

We define the frequency, f (n)
ξ , of the value ξ in a measurement protocol ξn of length n (with 

ξ = 1 ↔ electron reaches DL, ξ = −1 ↔ electron reaches DR) as follows:

f
(n)
ξ (ξ) := 1

n

( n∑
k=1

δξξk

)
, with

∑
ξ=±1

f
(n)
ξ (ξ) = 1, ∀n. (26)

The following results have been established in [5].

1. Law of Large Numbers

For every history ξ ,

lim
n→∞f

(n)
ξ (ξ) = p(ξ |ν), (27)

for some ν = 0, 1, . . . , N . �
For simplicity, we assume that

min
ν1 �=ν2

|p(1|ν1) − p(1|ν2)| ≥ κ > 0. (28)

With each ν = 0, 1, . . . , N we associate a subset, 
ν , of 
 defined by


ν(n, ε) := {ξ ∈ 
||f (n)
ξ (ξ) − p(ξ |ν)| < εn}, (29)

where

εn → 0,
√

nεn → ∞, as n → ∞.

2. Disjointness

It follows from assumption (28) and definition (29) that, for n so large that εn < κ
2 ,


ν1(n, ε) ∩ 
ν2(n, ε) = ∅, ν1 �= ν2. � (30)

3. Born’s Rule and Central limit Theorem

Under appropriate hypotheses on the state ρ (see [9,5]),

lim
n→∞μρ(
ν(n, ε)) = πρ(ν) (31)

Born’s Rule
Furthermore,

μρ

(⋃
ν


ν(n, ε)
)

→ 1, as n → ∞. � (32)

4. Theorem of Boltzmann–Sanov

Defining the relative entropy σ(ν1‖ν2) by
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σ(ν1‖ν2) :=
∑

ξ=±1

p(ξ |ν1)
(
log2p(ξ |ν1) − log2p(ξ |ν2)

)
,

one has that

μ
(

ν1(n, ε)|ν2

) ≤ Ce−nσ(ν1‖ν2), (33)

where μ(·|ν) is the product measure determined by p(ξ |ν).

Remark: Results 1 through 3 hold in much greater generality; see [5]. Concerning Eq. (25)
and Result 4, we remark that there is a general theory of how to decompose measures μρ into 
“extremal measures”, μ(·|ν), ν ∈ 
∞, where 
∞ is the spectrum of the algebra of functions on 

 measurable at ∞. (Functions on 
 measurable at ∞ take the same values on any two histories 
ξ and η with ξk = ηk , except for finitely many k.) One can show that, under suitable assumptions, 
extremal measures are determined again by states of the system via the “LSW formula”.

We pause to interpret Results 1 through 4. It follows from (32) that if n is very large then the 
set 

⋃
ν 
ν(n, ε) has apparently nearly full measure with respect to μρ . By (30), it then follows 

that, for very large n, essentially every history ξ belongs to exactly one of the sets 
ν(n, ε), and 
hence a measurement protocol ξn of length n determines the number ν of electrons bound to 
the dot P nearly unambiguously, with an error margin that tends to 0, as n tends to ∞. In the 
limit n → ∞, measurement protocols determine the number ν of electrons in the dot P precisely, 
which implies that this number becomes sharp (i.e., does not exhibit any fluctuations, anymore), 
as n tends to ∞. This is the phenomenon of “purification” first studied in [23]. Furthermore, the 
empirical probability of a history ξ ∈ 
ν(n, ε) tends to π(ν), as n tends to ∞, which establishes 
Born’s Rule for non-demolition measurements.

Finally, by Result 4 (Boltzmann–Sanov), the time, T , it takes to indirectly determine the num-
ber ν of electrons bound to the dot P is given, approximately, by

T = τ/σ, (34)

where τ is the rate at which “e− gun” shoots electrons into the T-channel (i.e., the time elapsing 
between two consecutive electrons traveling through the T-channel, or two consecutive clicks of 
detectors), and

σ := min
ν1 �=ν2

σ(ν1‖ν2).

It should be emphasized that most indirect measurements are not non-demolition measure-
ments. In the example of the mesoscopic system studied above, it is an idealization to assume 
that the number of electrons in the dot P is static (i.e., that the electron number operator count-
ing the number of electrons bound to P commutes with the Hamiltonian of the system). It is 
therefore important to generalize the theory of indirect measurements sketched here to situations 
where properties of a system S change in time, albeit much more slowly than the rate at which 
direct observations of physical quantities in OS are made. A beginning of such a theory has been 
described in [5].

4. Some hints to the literature, conclusions

There are many precursors of some of the ideas described in this paper, and it is quite im-
possible to do justice to all authors who have contributed (more and less) important pieces to 
the mosaic. The puzzling features of quantum mechanics and the problems surrounding its inter-
pretations have been discussed by many people, including Schrödinger [24] and, later on, Bell; 
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see [25]. A general reference where many of the (older) interpretations of quantum mechanics 
are described is [26].7 By no means are we attempting to distribute credit to various schools of 
thought, and we offer our apologies to all those colleagues who feel that their work should be 
cited here, but isn’t. However, in all modesty, we feel that we have developed a novel approach 
to a “quantum theory of events and experiments”, and we hope that the reader may have prof-
ited from reading this summary of some of the key ideas underlying our approach. (More details 
concerning the approach summarized in this paper can be found in [1,3].)

One might say that “loss of access to information”, in the sense of Eq. (7), is a special form 
of what is called “decoherence”. The concept of decoherence was introduced and discussed in 
[30–32] and, in a very clear way, in [33] and further developed in [34,35], and references given 
there. There cannot be any doubt that “decoherence” is a basic building block in a quantum 
theory of events and experiments. Attempts to arrive at a logically coherent theory of observations 
and measurements based on the concepts of “consistent histories” and “decoherence” have been 
presented in [16,17,36].8 The crucial concept of an “event” was introduced and discussed, and 
its importance in understanding the deeper meaning of quantum mechanics emphasized, in [37]. 
This thread of thoughts has been taken up in [38,39], where a formulation of an “event-enhanced 
quantum theory” inspired by [37] and [40] has been proposed.

In our approach, the concept of an “event” is given a clear meaning, and it plays a fundamental 
role; see subsects. 2.3 and 2.4. Our formulation of the quantum theory of systems exhibiting “loss 
of access to information”, in the sense of Eq. (7), subsect. 2.2, and “events”, as defined in the 
“fundamental axiom” of subsect. 2.3, introduces a clear distinction between the past and the 
future: the past is factual – it consists of events that have materialized –, while the future consists 
of potentialities, namely of “possible events” that might happen, but need not happen.

When analyzing a problem such as the deeper meaning of Quantum Mechanics one must fear 
that not all readers will find one’s approach to the problem entirely convincing. Most certainly, 
our analysis is no exception. Moreover, we realize that various rather interesting and important 
technical issues concerning our approach remain open; (although there is no reason why one 
should not be able to settle them). We therefore conclude our report with a famous quote:

“Wir stehen selbst enttäuscht und sehn betroffen
den Vorhang zu und alle Fragen offen. . . .

Verehrtes Publikum, los, such dir selbst den Schluss!
Es muss ein guter da sein, muss, muss, muss!”

(Bertolt Brecht, in: “Der gute Mensch von Sezuan”)

This paper is a token of our deep gratitude for the wisdom Raymond Stora has shared with us 
and the friendship he has bestowed upon us.

7 The Bohmian point of view, which is of definite interest, but is not relevant for the material in this paper, is presented 
in detail in [27], and references given there. For the many-worlds interpretation of quantum mechanics, see [28,29].

8 We refrain from discussing the merits and success of various attempts to interpret quantum mechanics – which does 
not mean that we do not have opinions about them.
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Appendix. Proofs of Eqs. (13) and (14)

We first briefly explain the notion of a “centralizer”, Cϕ , of a state, ϕ, on a von Neumann 
algebra, M. We recall that

Cϕ := {X ∈ M|adX(ϕ)(·) := ϕ([X, ·]) = 0}.
It follows from this definition that Cϕ is a subalgebra of M: If X and Y are elements of Cϕ then, 
obviously, any linear combination of X and Y belongs to Cϕ , too. Furthermore, for arbitrary 
A ∈ M,

ϕ
(
XYA

) = ϕ
(
(YA)X

) = ϕ
(
Y(AX)

) = ϕ
(
(AX)Y

) = ϕ
(
AXY

)
,

i.e., XY belongs to Cϕ , too.
Next, let X = X∗ belong to Cϕ , with

X =
N∑

j=1

ξj�ξj

the spectral decomposition of X, where ξ1 < · · · < ξN are the eigenvalues of X and �ξ1, . . . , �ξN

its spectral projections. Since any polynomial in X belongs to Cϕ , too, it follows that �ξj
∈ Cϕ , 

for any j = 1, . . . , N . Thus, for an arbitrary operator A ∈M,

ϕ(A) =
∑

i,j=1,...,N

ϕ
(
�ξi

A�ξj

)

=
∑

i,j=1,...,N

ϕ
(
A�ξj

δij

)

=
N∑

i=1

ϕ
(
�ξi

A�ξi

)
. (35)

Conversely, if Eq. (35) holds for arbitrary A ∈M then it obviously follows that X belongs to Cϕ . 
It is obvious that Eq. (35) also holds if X belongs to the center, Zϕ , of Cϕ .

Application: Proofs of Eqs. (13) and (14)

Let X(t) = ∑N
j=1 ξj�ξj

(t) be as in (9), and let A be an arbitrary operator in E≥t . We rewrite 
ρt (A) as follows:



P. Blanchard et al. / Nuclear Physics B 912 (2016) 463–484 483
ρt (A) =
N∑

i,j=1

{[ρt

(
�ξi

(t)A�ξj
(t)

) − ρt

(
Eρt (�ξi

(t))A�ξj
(t)

)]
+ [ρt

(
A�ξj

(t)Eρt (�ξi
(t))

) − ρt

(
A�ξj

(t)�ξi
(t))

)]}
+

N∑
i=1

{ρt

(
A�ξi

(t)2) − ρt

(
A�ξi

(t)Eρt (�ξi
(t))

)]
+ [ρt

(
Eρt (�ξi

(t))A�ξi
(t)

) − ρt

(
�ξi

(t)A�ξi
(t)

)]}
+

N∑
i=1

ρt

(
�ξi

A�ξi
(t)

)
. (36)

In the second and in the fourth line we have used Eq. (12), which is legitimate, because 
Eρt (�ξi

(t)) belongs to the centralizer Cρt of ρt . Since we are assuming that ‖Eρt (�ξj
(t)) −

�ξj
(t)‖ ≤ δ′, ∀j = 1, . . . , N , it follows that the absolute values of the four terms on the right 

side of line 1 and on lines 2, 3 and 4, respectively, are bounded above by Nδ′ ‖A‖. This implies 
(11), and hence (13) is proven.

To prove (14), all we have to do is to repeat the above argument with Eρt (�ξi
(t)) replaced by 

eρt (�ξi
(t)), which belongs to Zρt ⊆ Cρt .
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