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We calculate the holographic entanglement entropy (HEE) of the Zk orbifold of Lin–Lunin–Maldacena 
(LLM) geometries which are dual to the vacua of the mass-deformed ABJM theory with Chern–Simons 
level k. By solving the partial differential equations analytically, we obtain the HEEs for all LLM solutions 
with arbitrary M2 charge and k up to μ2

0-order where μ0 is the mass parameter. The renormalized 
entanglement entropies are all monotonically decreasing near the UV fixed point in accordance with the 
F -theorem. Except the multiplication factor and to all orders in μ0, they are independent of the overall 
scaling of Young diagrams which characterize LLM geometries. Therefore we can classify the HEEs of LLM 
geometries with Zk orbifold in terms of the shape of Young diagrams modulo overall size. HEE of each 
family is a pure number independent of the ’t Hooft coupling constant except the overall multiplication 
factor. We extend our analysis to obtain HEE analytically to μ4

0-order for the symmetric droplet case.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Gauge/gravity duality has been a central paradigm for decades 
in theoretical physics. Among others, holographic calculation of the 
entanglement entropy (EE) [1,2] draws recently much attention 
due to its elegance and implications for the nature of quantum 
field theories as well as quantum gravity.

In this paper, we consider Zk orbifolds of Lin–Lunin–Maldacena 
(LLM) geometries [3,4] with SO(2, 1) × SO(4) × SO(4) isometry in 
11-dimensional supergravity and calculate the holographic entan-
glement entropy (HEE) to nontrivial orders in the mass parameter. 
The main motivation is their connection to the Aharony–Bergman–
Jafferis–Maldacena (ABJM) theory with level k [5] which is a con-
formal field theory (CFT) describing the dynamics of M2-branes on 
the transverse C4/Zk orbifold with the Chern–Simons level k. It 
allows a mass-deformation [6,7] which preserves full N = 6 super-
symmetries. This mass-deformed ABJM (mABJM) theory has many 
supersymmetric vacua. It has been shown that the vacua have 
one-to-one correspondence with the Zk orbifold [8,9] of LLM ge-
ometries, which are classified by a 1-dimensional droplet picture, 
or equivalently Young diagrams [4].
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The LLM metric has a mass parameter μ0 which is propor-
tional to the mass parameter μ in the mABJM theory. Then we can 
explore the renormalization group (RG) flow of the renormalized 
entanglement entropy (REE) [10] triggered by the mass deforma-
tion from the ABJM theory as a UV fixed point [11]. Since there 
are many vacua in the theory, the RG flow depends on the vac-
uum. This should be manifested in the holographic calculation of 
REE for LLM geometries. See also [12–18] for the behavior of EE 
under relevant perturbations from the UV fixed point.

An important issue related to REE is about the c-theorem 
which states that there exists a c-function which is positive def-
inite and monotonically decreasing along the RG flow [19–21]. In 
3-dimensions in particular, it is called the F -theorem [22] because 
the free energy on a three sphere plays the role of c-function. The 
F -theorem was proved [23] through the connection of the free en-
ergy with the constant term of EE of a circle [24–26]. In this paper, 
we will examine explicitly how F -theorem is realized in the HEE 
of the mABJM theory which has a large number of discrete vacua.

The LLM geometries with Zk orbifold are all asymptotic to 
AdS4 × S7/Zk . They are, however, not spherically symmetric along 
the radial direction of the AdS geometry but depend on two trans-
verse coordinates. Therefore, it is not a simple exercise to get the 
minimal area for a given entangling region because one has to 
solve a partial differential equation (PDE) for the two transverse 
coordinates. In the previous work [11], the angle dependence was 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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neglected to simplify the calculation with the assumption that it 
would not contribute at least in the leading order in μ0. Though 
sensible results were obtained for simple droplet configurations, 
there were cases that the F -theorem is violated in this approxi-
mation. In this work, however, we take into account all the angle 
dependence exactly. In other words, we solve the PDE exactly for 
all LLM solutions with Zk orbifold and obtain the corresponding 
HEE up to μ2

0-order. Then we verify that the REE satisfies the 
F -theorem for all relevant deformations connected to dual LLM ge-
ometries with Zk orbifold. For some simple droplet configurations 
with general k, we further extend our analysis to μ4

0-order and 
obtain REE analytically.

Since we work with the most general k and the rank of the 
gauge group N , it is possible to investigate the dependence of EE 
on these parameters including the ’t Hooft coupling λ = N/k in 
particular. Note, however, that it is not a trivial task to compare the 
EEs with different N or k because they will not uniquely specify a 
droplet due to many degeneracies. That is, in the field theory lan-
guage, different vacua will give different EEs and to begin with one 
has to specify the vacua to compare. We will see that, depending 
on which vacua to choose, the EE depends on λ differently. More-
over, we will show that, up to a multiplication factor, the HEE of 
LLM geometries is independent of the overall scaling of the droplet 
configurations to all orders in μ0. Therefore, we can classify the 
LLM geometries with Zk orbifold in terms of the shape of the cor-
responding Young diagrams modulo overall size. At each order in 
μ0, they are pure numbers independent of λ. These can be con-
sidered as nontrivial results to test the gauge/gravity duality in the 
large N limit between the LLM geometry and mABJM theory which 
are not conformal.

This paper is organized as follows. In section 2, we briefly re-
view the relation between the vacua of the mABJM theory and the 
droplet classification of the LLM geometry with Zk orbifold. In sec-
tion 3, we solve the PDE exactly to obtain the HEE of a disk up to 
μ2

0-order. We show that the resulting REE satisfies the F -theorem 
near the UV fixed point for all LLM geometries with Zk orbifold. 
Then we show that it is classified by the shape of the Young dia-
grams and discuss how it depends on N and k. We also calculate 
the REE analytically up to μ4

0-order for simple droplets. We draw 
our conclusion in section 4.

2. HEE of the mABJM theory and LLM geometries

Supersymmetric vacua of the mABJM theory are classified by 
the occupation numbers (Nn, N ′

n) [9], which are numbers of irre-
ducible n × (n + 1) and (n + 1) ×n GRVV matrices [7], respectively. 
On the other hand, the LLM solutions with Zk orbifold are also 
classified by the discrete torsions (ln, l′n) assigned in the droplet 
picture of the LLM geometry. It was shown that there exists one-
to-one correspondence between (Nn, N ′

n) and (ln, l′n) in the range, 
0 ≤ Nn, N ′

n, ln, l′n ≤ k [9]. Since the mass deformation of the ABJM 
theory is a relevant deformation from the UV fixed point, the dual 
LLM geometry with Zk orbifold is asymptotic to AdS4 × S7/Zk . We 
investigate the behavior of the RG flow near the UV fixed point in 
terms of the HEE for all LLM solutions with general k and examine 
the F -theorem.

Let us start with the LLM geometry dual to the vacua of the 
U (N)k × U (N)−k mABJM theory with a mass parameter μ. The 
metric is given by

ds2 = |Gtt |(−dt2 + dw2
1 + dw2

2) + Gxx

(
dx2 + dy2

)
+ Gθθds2

S3/Zk
+ G θ̃ θ̃ds2

S̃3/Zk
, (2.1)

where ds2
3 and ds2

˜ 3 are metrics for two S3/Zk spheres and

S /Zk S /Zk
Gtt = −
⎛
⎜⎝4μ2

0 y
√

1
4 − z2

f 2

⎞
⎟⎠

2/3

, Gxx =
⎛
⎜⎝ f

√
1
4 − z2

2μ0 y2

⎞
⎟⎠

2/3

, (2.2)

Gθθ =
⎛
⎜⎝ f y

√
1
2 + z

2μ0(
1
2 − z)

⎞
⎟⎠

2/3

, G θ̃ θ̃ =
⎛
⎜⎝ f y

√
1
2 − z

2μ0

(
1
2 + z

)
⎞
⎟⎠

2/3

(2.3)

with

f =
√

1 − 4z2 − 4y2 V 2. (2.4)

In the metric, the mass parameter μ0 is identified with that of the 
mABJM theory through μ0 = μ/4 [9] in the convention of [11]. 
The geometry is completely determined by functions z and V ,

z(x, y) =
2NB+1∑

i=1

(−1)i+1(x − xi)

2
√

(x − xi)
2 + y2

,

V (x, y) =
2NB+1∑

i=1

(−1)i+1

2
√

(x − xi)
2 + y2

, (2.5)

where xi ’s denote the boundaries of black and white strips in 
the droplet representation with NB being the number of black 
droplets. For details of the droplet picture with general k, see 
[9]. Due to the quantization condition of the four-form fluxes on 
4-cycles ending on the edges of black/white regions, it turns out 
that xi ’s are quantized as

(xi+1 − xi)

2π l3Pμ0
∈ Z, (2.6)

where lP is the Planck length. Note that the quantization is propor-
tional to μ0. It introduces μ0 dependence to the metric in addition 
to the explicit dependence appearing in (2.2) and (2.3).

The metric (2.1) goes asymptotically to AdS4 × S7/Zk with ra-
dius R given by

R = (32π2kÑ)1/6lP, (2.7)

where1

Ñ = 1

2k
(C̃2 − C̃2

1),

C̃ p =
2NB+1∑

i=1

(−1)i+1

(
xi

2π l3Pμ0

)p

≡
2NB+1∑

i=1

(−1)i+1 x̃p
i . (2.8)

For later convenience, we define normalized coefficients C p by

C p ≡ (kÑ)−p/2C̃ p, (2.9)

which are invariant under an overall scaling of xi ’s. Then C2 −
C2

1 = 2.
Now, let’s consider a 9 dimensional surface in this geometry. 

We denote coordinates of the surface by σi with i = 1, . . . , 9 and 
represent the embedding function as X M (σ i) where M = 0, . . . , 10. 
Then, the 9 dimensional area of the surface becomes

γA =
∫

d9σ
√

det gij =
∫

d9σ

√
det G MN

∂ X M∂ X N

∂σ i∂σ j
, (2.10)

1 Ñ is the area of the Young diagram made of positions x̃i divided by k, and is 
equal to the rank N of the gauge group in the field theory up to the contribution of 
discrete torsions [28,29]. See section 3 for an example. In addition, there is a further 
constant correction − 1

24 (k − 1
k ). With these corrections, Ñ should eventually be the 

Maxwell M2 charge [9], i.e. Ñ = N − 1
24 (k − 1

k ).
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where gij is the induced metric of the surface and G MN is the 
11-dimensional metric in (2.1). The HEE is defined by [1,2]

S A = Min(γA)

4G N
, (2.11)

where G N = (2π lP)9/(32π2) is the 11 dimensional Newton con-
stant. In the next section we would like to calculate S A for disk-
type entangling surfaces in the small μ0 limit.

3. Anisotropic minimal surfaces and HEE

The effect of small mass deformation on the HEE has been con-
sidered in [11] under the approximation that the minimal surface 
is independent of the angle in polar coordinates introduced below. 
Though this approximation gives reasonable results consistent with 
F -theorem for simple droplet configurations, one cannot expect 
that it would be valid in general because the spherical symmetry 
is obviously broken. Indeed, for some droplet configurations the 
REE calculated in [11] does not decrease monotonically along the 
RG flow, violating the F -theorem. For these LLM geometries, it was 
also found that the curvature scalars are not small at some trans-
verse positions even in the large N limit [11,27], which implies 
that the gauge/gravity duality for those geometries does not work 
in this approximation. In this section we would like to investigate 
the effect of small mass deformation without resorting to such an 
approximation. In other words, we will treat the angular depen-
dence of the minimal surface exactly. It amounts to solving PDEs 
with two variables up to some nontrivial order in μ0.

From now on, we take only disk type entangling surfaces into 
account. We will work with polar coordinates u and α defined by

x = R3

4lu
cosα, y = R3

4lu
sinα, (3.1)

where l is the radius of the disk at the boundary. The minimal 
surface is bounded by a disk in the w1-w2 plane at the boundary 
of AdS space (u = 0). To describe such a configuration, we may 
consider the following embedding,

w1 = ρl cosσ1, w2 = ρl sinσ1, u = u(ρ,φ), α = α(ρ,φ).

(3.2)

Plugging this into (2.10), we obtain the action,

γdisk = π5 R9

8k

1∫
0

dρ

π∫
0

dφ
gρ sin3 α

u2

×
√

α′ 2 + u′ 2

u2
+ g2(α̇u′ − α′u̇)2, (3.3)

where ˙ = ∂
∂ρ and ′ = ∂

∂φ
. We have also introduced the function 

g(u, φ) defined by

f (u, φ) = 2μ0lu sinφ g(u, φ). (3.4)

Note that all the mass-deformation effect in (3.3) appears only 
through the function g which contains the information of the 
droplet position xi ’s. In the undeformed limit μ0 → 0, xi ’s go to 
zero due to the quantization condition (2.6). Then it is easy to see 
that g goes to unity and hence (3.3) reduces to the minimal sur-
face action for the undeformed ABJM theory [1].

By utilizing the residual gauge degree of freedom, we may 
choose α = φ. Then the equation of motion yields a PDE for 
u = u(ρ, φ),
∂

∂ρ

(
ρg3u̇ sin3 φ

u2
√
X

)
+ ∂

∂φ

(
ρgu′ sin3 φ

u4
√
X

)

− ∂

∂u

(
ρg sin3 φ

u2

√
X

)
= 0, (3.5)

where X = 1 + u′ 2

u2 + g2u̇2.

3.1. HEE up to O(μ2
0)

Now we are ready to consider the effect of small mass deforma-
tion. From (2.4) and (2.5) we see that g can be expanded in powers 
of xi√

x2+y2
∼ μ0lu. Furthermore, u itself will depend on μ0l. As a 

result we can write

u ≡
∞∑

n=0

un(ρ,φ)(μ0l)n

= u0(ρ) + u1(ρ,φ)μ0l + u2(ρ,φ)(μ0l)2 + · · · ,

g(u, φ) ≡
∞∑

n=0

gn(φ)(uμ0l)n

= 1 + g1(φ)u0μ0l + [g1(φ)u1 + g2(φ)u2
0](μ0l)2 + · · · .

(3.6)

Since z and V consist of the generating function of the Legendre 
polynomials, gi ’s can be written in terms of Legendre polynomials 
[11]. Explicitly, a few lower terms are

g1(φ) = D1 cosφ,

g2(φ) = D2 + D3 cos(2φ), (3.7)

where Di ’s are constants depending on the droplet positions,

D1 = 1√
2
(C3 − C1C2),

D2 = − 1

32

[
4C2

3 − 4C1(C2
1 + C2)C3 − C2

2(C2
1 − 5C2)

+ 9(C2
1 − C2)C4

]
,

D3 = − 1

32

[
4C2

3 − 4C1(3C2
1 − C2)C3 + C2

2(C2
1 + 3C2)

+ 15(C2
1 − C2)C4

]
, (3.8)

and C p ’s are defined in (2.9). Given Di ’s, one can solve the equa-
tions of motion (3.5) perturbatively with respect to μ0 to obtain 
the change of the minimal surface. Note that we have to solve in-
homogeneous PDEs of two variables ρ and φ in the background of 
lower order configurations. There is, in general, no guarantee that 
explicit form of solutions can be obtained. Nevertheless, in this 
case, we are able to find exact solutions up to the nonvanishing 
second orders in perturbation.

Let us start with the zeroth order equation of (3.5) in μ0,

ü0 + (2ρ + u0u̇0)(1 + u̇2
0)

ρu0
= 0. (3.9)

This is nothing but the equation of motion for the conformal case, 
as it should be. Imposing the boundary conditions, u(0) = 1 and 
u̇(0) = 0, one can find the well-known solution which is a geodesic 
in AdS space,

u0(ρ) =
√

1 − ρ2. (3.10)
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This gives the minimal surface for ABJM theory without mass de-
formation.

If we plug this solution into (3.5), then the first order equation 
of motion reads

ρ(1 − ρ2)2ü1 + ρu′′
1 + (1 − ρ2)(1 − 2ρ2)u̇1 + 3ρ cotφ u′

1

− 2ρu1 − D1ρ(1 − ρ2)(5 − 3ρ2) cos φ = 0. (3.11)

We have to solve the equation under the boundary conditions 
u1(1, φ) = u̇1(0, φ) = 0 and u′

1(ρ, 0) = u′
1(ρ, π) = 0, where the lat-

ter comes from the regularity at φ = 0 and π . This is an inhomo-
geneous linear PDE with explicit dependence on the independent 
variables ρ and φ. It, however, admits a very simple solution

u1(ρ,φ) = − D1

2

(
1 − ρ2

)
cosφ. (3.12)

One can proceed to the second order in μ2
0. The equation of 

motion at the second order becomes, after the solutions (3.10) and 
(3.12) plugged into (3.6),

ρ(1 − ρ2)2ü2 + (1 − ρ2)(1 − 2ρ2)u̇2 + ρ(u′′
2 + 3 cotφ u′

2)

− 2ρu2 + 1

8
ρ(1 − ρ2)3/2

[
D2

1(27 − 26ρ2) − 16D2(3 − 2ρ2)

+ (11D2
1 − 16D3)(3 − 2ρ2) cos(2φ)

]
= 0 , (3.13)

with the boundary conditions u′
2(ρ, 0) = u′

2(ρ, π) = 0 and
u2(1, φ) = u̇2(0, φ) = 0. This is even more complicated than the 
first order equation (3.11). Remarkably, however, a fully analytic 
solution is still available,

u2(ρ,φ) = − 1

6
√

1 − ρ2
(D2

1 + 20D2 − 12D3) log(1 +
√

1 − ρ2)

+ 1

48

{
[8 + (9 − 13ρ2)

√
1 − ρ2]D2

1

+ 16[10 − (6 − ρ2)

√
1 − ρ2]D2

− 48(2 −
√

1 − ρ2)D3

}

+ 1

48
(11D2

1 − 16D3)(1 − ρ2)3/2 cos(2φ). (3.14)

Having found the solution to the μ2
0-order, now we can calcu-

late the minimal surface area (3.3) to this order,

γdisk = γ
(0)

disk + μ0lγ (1)

disk + (μ0l)2γ
(2)

disk + · · · . (3.15)

Inserting the solutions (3.10), (3.12) and (3.14) into (3.3), we ob-
tain2:

γ
(0)

disk = π5 R9

6k

(
l

ε
− 1

)
, γ

(1)

disk = 0,

γ
(2)

disk = −π5 R9

72k
(12D3 − D2

1 − 20D2), (3.16)

where ε in γ (0)

disk is the UV cutoff in the u coordinate. Note that the 
first order correction vanishes due to the angular integration. For 
the second order contribution γ (2)

disk , it is crucial to notice that the 
combination (12D3 − D2

1 − 20D2) can be rewritten in the form of 
a complete square,

12D3 − D2
1 − 20D2 = 16 + 1

2
(C3 − 3C1C2 + 2C3

1)2, (3.17)

2 Introducing the UV cutoff ε in the u coordinate changes the upper limit of the 
integration range of ρ in (3.3).

Fi
x̃i

w
e

S

A
th
b
tr
th
o
ti
F
ro
sc

F

w
N
m
a
T
a
fo
a
su

o
fe
S
o
m
R
si
to

b
p
R

g. 1. A droplet representation of NB = 1 case. li ’s are discrete torsions assigned at 
’s.

here we used the parameter relations in (3.8). The entanglement 
ntropy then becomes

disk = π5 R9

24G Nk

{
l

ε
− 1 − μ2

0l2
[

4

3
+ 1

24
(C3 − 3C1C2 + 2C3

1)2
]}

+O(μ3
0). (3.18)

 few comments are in order. First, it is not difficult to show that 
e expression (C3 −3C1C2 +2C3

1) appearing here is a unique com-
ination made of cubic terms in xi which is invariant under the 
anslation xi → xi +a. It provides a nontrivial consistency check of 
e result. Moreover, the expression appears in (3.18) in the form 

f a complete square and hence the second order term is nega-
ve definite. This has an important implication in relation to the 
-theorem [22,24,23]. In the present context, the REE can play the 
le of a c-function of the theory [10]. It is computed by the pre-
ription

disk ≡
(

l
∂

∂l
− 1

)
Sdisk

= π5 R9

24G Nk

{
1 − μ2

0l2
[

4

3
+ 1

24
(C3 − 3C1C2 + 2C3

1)2
]}

+O(μ3
0), (3.19)

hich is clearly monotonically decreasing near the UV fixed point. 
ote that this is true for all geometries dual to the vacua of 
ABJM, regardless of the Ci ’s. This result may be considered as 

n evidence of the validity of holography for non-conformal case. 
his corrects the result in [11] where REE was calculated with the 
ngle (α) dependence neglected and showed increasing behavior 
r some asymmetric droplet configurations. This means that the 

ngle dependence of the minimal surface in the LLM geometry re-
lts in nontrivial contributions.
As is evident from the calculation, the REE depends on N or k

nly through C p ’s except the overall multiplication. Therefore, dif-
rent theories with same C p ’s will give essentially the same REE. 

ince C p ’s defined in (2.9) are invariant under the overall scaling 
f droplet boundaries xi ’s, a family of droplets with a same geo-
etric shape of Young diagrams modulo overall size give the same 

EE up to a multiplication factor. This holds to all orders in μ0
nce the action (3.3) is completely determined in terms of C p ’s up 
 an overall factor.

As a simple example, we consider the case of NB = 1 with ar-
itrary k for which the geometry is specified by three boundary 
ositions x1, x2 and x3 of the droplet. See Fig. 1. From (2.8), the 
EE becomes
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Fdisk = π5 R9

24G Nk

{
1 − μ2

0l2
[

7

12
+ 3

8

(
x3 − x2

x2 − x1
+ x2 − x1

x3 − x2

)]}

+O(μ3
0). (3.20)

This result explicitly shows that scaling the overall size of the 
droplet (or the shape of the Young diagram) does not change REE 
except the overall multiplication factor.

To connect the result with the field theory, let us parameter-
ize the integer-valued positions x̃i = xi/2π l3P μ0 defined in (2.8)
as x̃1 = −pk − m, x̃2 = (q − p)k, x̃3 = qk + m, where p, q, m are 
positive integers and 0 ≤ m < k, so that the location of the Fermi 
level of the droplet is zero. Then including the contribution of the 
discrete torsions[9], we obtain the rank N of the gauge group as 
N = (pk + m)(qk + m)/k − m(m − k)/k = kpq + m(p + q + 1). In 
the large N limit with finite ’t Hooft coupling λ = N/k, (3.20) is 
reduced to

Fdisk = π5 R9

24G Nk

{
1 − μ2

0l2
[

7

12
+ 3

8

(
p

q
+ q

p

)]
+O(1/k)

}

+O(μ3
0), (3.21)

where we assumed k � m for simplicity and λ = pq in this limit. 
Therefore, for a fixed ratio of p and q the mass correction is inde-
pendent of λ. On the other hand, if we scale, say, p with q fixed, 
then the correction depends nontrivially on λ since p/q = λ/q2. 
Note that by changing p or q, we are comparing theories with dif-
ferent λ. The above result demonstrates that λ-dependence of REE 
appears in different ways, depending on how vacua are selected in 
mABJM theories for comparison.

Finally, let us give a comment on the stationarity of the RG flow. 
Since the deformation parameter μ enters into the mABJM theory 
as a mass of a supermultiplet, the deformation is of the first order 
in μ due to the fermionic mass term. On the other hand, REE F in 
(3.19) has vanishing first order correction in μ0. It means that the 
RG flow at UV point is stationary. This is consistent with the result 
of [13].

3.2. HEE up to O(μ4
0) for symmetric droplet case

For some simple droplet configurations, it is possible to obtain 
higher order corrections analytically. For example, if D1 = 0, the 
first order equation (3.11) becomes homogeneous with vanishing 
boundary conditions and hence the first order correction u1 is zero 
identically. This will also simplify higher order equations. Here we 
will consider a symmetric droplet case obtained by putting p = q
in Fig. 1, i.e., (x̃1, ̃x2, ̃x3) = (−pk − m, 0, pk + m) and N = kp2 +
m(2p + 1).

To consider higher order corrections up to μ4
0-order, we need 

the following coefficient functions in (3.6),

g2(φ) = −1

8
+ 9

8
cos(2φ),

g4(φ) = 1

256
[85 − 60 cos(2φ) + 359 cos(4φ)], (3.22)

as well as gn(φ) = 0 for odd n. By symmetry we may set un = 0 for 
odd n. Then employing all the lower order results including (3.10)
and (3.14) gives us the equation of motion for u4(ρ, φ),

ρ(1 − ρ2)2ü4 + (1 − ρ2)(1 − 2ρ2)u̇4 + ρ(u′′
4 + 3 cotφ u′

4)

− 2ρu4 + B(4)
0 (ρ) + B(4)

2 (ρ) cos(2φ) + B(4)
4 (ρ) cos(4φ) = 0,

(3.23)

where
B(4)
0 (ρ) = 64ρ(3ρ2 + 2)

9(1 − ρ2)3/2

[
log

(√
1 − ρ2 + 1

)]2

− 2

9ρ
(9ρ6 + 28ρ4 + 187ρ2 − 64)

− 2ρ

9(1 − ρ2)

[
128ρ2 − (67ρ4 + 8ρ2 + 85)

√
1 − ρ2

+ 192

]
log

(√
1 − ρ2 + 1

)

+ 1

1152ρ
√

1 − ρ2
(6147ρ10 − 15629ρ8 + 6165ρ6

− 8463ρ4 + 69124ρ2 − 16384),

B(4)
2 (ρ) = 3

32
ρ(1 − ρ2)

[
576 − 192ρ2

− (15ρ4 − 227ρ2 + 404)

√
1 − ρ2

]

− 6ρ(7 − ρ2)

√
1 − ρ2 log

(√
1 − ρ2 + 1

)
,

B(4)
4 (ρ) = −125

128
ρ(1 − ρ2)5/2(4 − 3ρ2). (3.24)

This is again an inhomogeneous PDE with very complicated source 
terms but fortunately we can find the solution satisfying the nec-
essary boundary conditions,

u4(ρ,φ) = C (4)
4 (ρ) cos(4φ) + C (4)

2 (ρ) cos(2φ) + C (4)
0 (ρ), (3.25)

where

C (4)
4 (ρ) = − 25

256

(
1 − ρ2

)5/2
,

C (4)
2 (ρ) = 1

64
(
1 − ρ2

)3/2

[
96

(
7 − 2ρ2

)
ρ2 log

(√
1 − ρ2 + 1

)

+ 32
(

6ρ4 − 16ρ2 − 5
)√

1 − ρ2

+
(

1 − ρ2
)(

3ρ6 − 97ρ4 + 209ρ2 + 125
)]

,

C (4)
0 (ρ) = − 1√

1 − ρ2

1∫
ρ

F (s)ds, (3.26)

with

F (s) = 135s6 + 598s4 − 3371s2 + 1423

135s(1 − s2)3/2
− 256

9s

√
1 − s2 log 2

+ 18441s8 − 37339s6 − 170949s4 + 326871s2 − 182144

17280s(1 − s2)

− 64s log2(
√

1 − s2 + 1)

9(1 − s2)2

+ 1

9s

[
64(s4 + 1)

(1 − s2)3/2
− 134s6 − 524s4 + 501s2 − 192

(1 − s2)2

]

× log(
√

1 − s2 + 1). (3.27)

Inserting the solutions in (3.10), (3.14), and (3.25) into (3.6) and 
(3.3), we easily obtain the corresponding HEE and REE for the sym-
metric droplet up to μ4-order,
0
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Sdisk = π5 R9

24kG N

(
l

ε
− 1 − 4

3
μ2

0l2 + 2671 − 3840 log 2

540
μ4

0l4
)

+O(μ6
0),

Fdisk = π5 R9

24kG N

(
1 − 4

3
μ2

0l2 + 2671 − 3840 log 2

180
μ4

0l4
)

+O(μ6
0). (3.28)

This result holds for arbitrary N and k. In general, the expressions 
of the HEE and REE depend on N , k, radius of the disk, and the 
choice of droplets as we have seen in the previous subsection. 
However, for a family of droplets related by rescaling of the overall 
size, the coefficients of the corrections are given by pure numbers 
as seen in (3.28), and in particular are independent of the ’t Hooft 
coupling constant λ. This is an interesting phenomena from the 
point of view of the gauge/gravity duality. Based on the duality 
relation between the vacua of the mABJM theory and the LLM ge-
ometries with Zk orbifold, one can examine the HEE conjecture by 
computing the EE of the dual field theory on a family of vacua 
considered here.

4. Conclusion

We investigated the RG flow behavior and the F -theorem in 
terms of the HEE near the UV fixed point in 3-dimensions, where 
a supersymmetric Chern–Simons matter theory is living. As the UV 
CFT we considered the N = 6 ABJM theory and introduced the 
supersymmetry preserving mass deformation, called the mABJM 
theory. This deformation is a relevant deformation and so triggers 
the RG flow from the UV fixed point. To describe the RG behavior 
near the UV fixed point, we adapted the HEE conjecture to the LLM 
geometry in 11-dimensional supergravity, since the supersymmet-
ric vacua of the mABJM theory have one-to-one correspondence 
with the LLM geometries with Zk orbifold.

The LLM solution has SO(2,1)×SO(4)×SO(4) isometry and warp 
factors of the metric depend on the two transverse coordinates 
(u, α) in (3.1). For this reason, one has to solve the PDE for u and 
α to obtain the minimal surface in the HEE proposal. In this paper, 
we analytically solved the PDE up to μ2

0-order for all LLM solutions 
with arbitrary N and k. We found that REEs have different RG tra-
jectories depending on the LLM geometries but they are always 
monotonically decreasing near the UV fixed point in accordance 
with the F -theorem in 3-dimensions.3 We also computed the REE 
up to μ4

0-order for a special family of LLM geometries with arbi-
trary N and k. It would be interesting to extend the result to more 
general case.

Since the HEE proposal is based on the gauge/gravity duality, 
in order to compare our results in gravity side with those in the 
mABJM theory, one has to consider the large ’t Hooft coupling 
λ = N/k in the N → ∞ limit. In general, the effect of mass defor-
mation in REE would depend on λ and calculation in field theory 
side is a formidable task due to nonperturbative effects coming 
from the strong coupling constant. In the mABJM theory, there are 
further complications from the presence of many vacua. However, 
we found that for a family of droplets with a same shape of Young 
diagrams, we have the same REE (or HEE) up to overall depen-
dence on N and k. One might be able to calculate the REE in the 
field theory side perturbatively on a certain class of vacua, and 
compare the result quantitatively with that in the dual gravity side.

3 Recently, it was reported that the strong form of the F -theorem, which de-
scribes the monotonically decreasing behavior of the REE, is violated for relevant 
deformations by operators of conformal dimension 3/2 < � < 5/2 [30,31]. One 
needs more investigations in this direction.
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