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The spectroscopic quadrupole moments of the odd–even Mn isotopes between N = 28 and N = 38 have 
been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase 
sensitivity to the quadrupole interaction, the measurements have been done using a transition in the 
ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the 
chosen transition is from a metastable state, optical pumping in ISOLDE’s cooler and buncher (ISCOOL) 
was used to populate this state. The extracted quadrupole moments are compared to large-scale shell 
model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion 
of both the 1νg9/2 and 2νd5/2 orbitals in the model space is shown to be necessary to reproduce the 
observed increase in the quadrupole deformation from N = 36 onwards. Specifically, the inclusion of the 
2νd5/2 orbital induces an increase in neutron and proton excitations across the reduced gaps at N = 40
and Z = 28, leading to an increase in deformation above N = 36.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The region around N = 40 has been extensively studied in re-
cent years due to the sudden changes in nuclear structure ob-
served below 68

28Ni40. The neutron-rich manganese isotopes studied 
here (Z = 25) provide an opportunity to investigate shell structure 
evolution towards this weak subshell closure [1,2]. In the neighbor-
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ing elements of Cr (Z = 24) and Fe (Z = 26), the electromagnetic 
transition probabilities and level structures have been studied in 
several works and evidence has been found for deformation in 
their neutron-rich isotopes. In Fe, the onset of collectivity is found 
at 64Fe38 [1] and this collectivity persists in more neutron-rich iso-
topes, as demonstrated by B(E2) values [3,4], the decreased energy 
of the 2+

1 state in 66Fe40 [5] and the E(4+)/E(2+) ratio systemat-
ics [6]. From the measured B(E2) values, a deformation parameter 
of β ≈ 0.28 is found for 64,66Fe38,40 [3].

In Cr, the isotopes between 56Cr32 and 60Cr36 begin to show 
an enhancement in collectivity, demonstrated by an energy level 
structure characteristic of the transition from vibrational exci-
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tation to rotational collectivity [7]. From 62Cr38 onwards, the 
E(4+)/E(2+) ratios suggest a more rotational character, provid-
ing evidence for static prolate deformation in the heavier isotopes 
[6,8], and a deformation parameter of β ≈ 0.35 has been reported 
for 62Cr38 [1]. The emerging picture of increased quadrupole col-
lectivity is further supported by the B(E2) values up to N = 40
[4,9]. More recently however, theoretical calculations have sug-
gested that the low-lying states of neutron-rich Cr cannot be char-
acterized as strictly prolate rigid-rotor and should instead be un-
derstood as dominated by large amplitude shape fluctuations [10].

Mass measurements of Cr and Fe isotopes indicate a weak 
N = 40 gap [11–13], making occupation of the νg9/2 and νd5/2
orbitals energetically favorable. The promotion of neutrons to the 
g9/2 orbital has been proposed as a driver of deformation [8,14]. 
Similarly, the νd5/2 orbital may play an important role in the de-
velopment of quadrupole collectivity for isotopes closer to N = 40
[1,15], however the specific role of excitations to this orbital re-
mains ambiguous. While some calculations in this mass region 
are limited to the f pg9/2 orbitals [2,16], the νd5/2 has an impor-
tant influence on the development of quadrupole correlations, and 
hence deformation, in the quasi-SU(3) picture [17].

The development of collectivity is correlated not only to the 
excitation of neutrons across N = 40, but to the dimensions of the 
total proton-neutron valence space of a particular isotope [3]. It 
is therefore not surprising that the degree of collectivity in these 
open π f7/2 nuclei is largest for the mid-shell Cr isotopes.

The observations of Fe and Cr suggest that we may expect to 
see a similar increase in collectivity in their odd-proton neighbor, 
Mn (Z = 25) [7]. Indeed, a quasi-collective band may have been 
observed for 57−60Mn32−35 [18] and the unexpectedly long beta-
decay half-lives in N � 40 Mn isotopes are suggested to be the 
result of the preferential filling of the positive parity νg9/2 orbital 
which can only decay through forbidden transitions [5]. In order 
to investigate the degree of collectivity in the Mn isotopes and the 
role played by the νd5/2 orbital, the spectroscopic quadrupole mo-
ment can serve as a direct probe. This observable is, in principle, 
directly obtainable from the hyperfine structure measured with 
high-resolution laser spectroscopy in a model-independent way.

Previous laser spectroscopy studies of atomic Mn were not suc-
cessful in measuring precise quadrupole moments for the neutron-
rich isotopes due to the small quadrupole splitting of the atomic 
ground state and the chosen excited levels [19,20]. An excited 
state in the Mn ion at 43370.51 cm−1 is known to have larger 
quadrupole splitting [21], however the transition to this level from 
the ionic ground state is spectroscopically weak. A more suit-
able transition for spectroscopy exists between a metastable ionic 
state and the excited state, however the natural population of the 
metastable state after the ion production process is too low to effi-
ciently perform spectroscopy. Optical pumping has therefore been 
used to enhance the population of the metastable state [21,22].

Here, the technique of optical pumping is used in ISOLDE’s 
cooler/buncher ion trap for the first time to enable the quadrupole 
moments of neutron-rich odd–even ionic manganese isotopes to 
be measured.

2. Experimental method

The experiment was performed at ISOLDE [23], CERN, where 
the manganese ions were produced by bombarding a uranium car-
bide target with a 1.4 GeV proton beam. After diffusing from the 
target, the reaction products of interest were ionized using the 
Resonance Ionization Laser Ion Source (RILIS) [24], then extracted 
and passed through the two mass-separating dipole magnets of 
the High Resolution Separator (HRS). They were then collected in 
ISCOOL, ISOLDE’s radio frequency quadrupole cooler and buncher 
Fig. 1. Schematic for the entry of optical pumping (OP) lasers from the RILIS laser 
lab into the cooler/buncher (ISCOOL), where they interact with trapped ions in the 
bunching region (color online).

Fig. 2. Optical pumping scheme used to excite trapped manganese ions from the 
ground state to a low-lying metastable state at 9472.97 cm−1 via an intermediate 
excited state (color online).

[25], which decelerates and cools the ions then traps the cooled 
ions in a potential well. While they were trapped in the poten-
tial well, the ions were optically pumped into the metastable state 
by resonant laser excitation and decay, using an additional pulsed 
laser from the RILIS laser lab. The optical pumping laser beam 
entered the second separator magnet via a quartz window, then 
passed through the separator magnet and the injection apertures 
of ISCOOL to interact with the trapped ion bunch near the extrac-
tion region, as shown in Fig. 1.

The optical pumping scheme is shown in Fig. 2. A pulsed 
laser beam with a repetition rate of 10 kHz was produced by 
a frequency quadrupled titanium sapphire laser at 230.50 nm. 
The broadband 10 GHz laser linewidth was well matched to 
the Doppler broadened profile of the ions in the trap. The ions 
were first excited from the 7 S3 ground state to the 5 P3 state 
at 43 370.51 cm−1. The relatively weak transition strength (Aki =
1.55 × 106 s−1 [26]) is offset by the extended trapping time in the 
cooler/buncher (200 ms), which allowed multiple laser-ion interac-
tions to take place, even with moderate laser power. From the ex-
cited state, the ions decay with a branching ratio of 0.8 to the 5 S2

level at 9472.97 cm−1. The decay from the 5 S2 metastable state to 
the ground state is a forbidden transition, so with increasing laser 
interaction time, the population of ions in the metastable state ac-
cumulates. Any effects of collisional de-excitation were balanced 
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Fig. 3. Example spectra for the odd–even isotopes 53−63Mn, with the fits overlaid. 
The inset shows one peak of 59Mn with the optical pumping (OP) laser on and off. 
The frequency is plotted relative to the 55Mn centroid (color online).

by the repeated laser-ion interactions, and thus did not affect the 
population of the final state.

The optically pumped ions were subsequently released in 
bunches of approximately 4 μs length and directed to the COLLAPS 
setup [27] for investigation via collinear laser spectroscopy. The 
beam was overlapped with co-propagating light from a frequency-
doubled narrowband dye laser that provided approximately 1 mW 
of power at a Doppler-shifted vacuum wavelength of 294.69 nm, 
in order to probe the transition from the metastable state de-
scribed above. A tuning voltage applied to the interaction region 
modulated the energy of the bunch from its initial 30 keV, thus ef-
fectively Doppler shifting the laser frequency seen by the ions over 
the range of the hyperfine splitting. Four photomultiplier tubes 
surrounded the interaction region of the setup and detected the 
emitted fluorescence as the ions decayed back to the metastable 
state. The background due to dark counts and randomly scat-
tered laser light was reduced by a factor of approximately 104

by restricting the data acquisition system to accept photomulti-
plier counts only during the time that the ion bunch traversed the 
interaction region [28–30]. In the case of 63Mn, photons were only 
accepted within one half-life (275 ms) after the proton pulse on 
target (a method called proton triggering, see [20] for details) in 
order to further suppress the background counts. A total exper-
imental efficiency gain of approximately an order of magnitude 
was observed with respect to our previous measurement using 
atomic manganese [19]. In addition to the increased sensitivity to 
Table 1
The hyperfine A and B values of the upper (5 P3) and lower (5 S2) states extracted 
in this experiment (the B(5 S2) values were approximately 0 MHz for all isotopes). 
Statistical errors, which dominate the uncertainty, are shown.

Isotope A(5 P3) (MHz) B(5 P3) (MHz) A(5 S2) (MHz)
53Mn −156.2(9) +16(13) −1239.4(13)
55Mn −150.1(2) +86(3) −1195.3(4)
57Mn −151.3(5) +95(6) −1201.1(7)
59Mn −151.2(7) +90(9) −1204.9(9)
61Mn −153.5(4) +95(5) −1218.2(6)
63Mn −149.7(5) +124(7) −1185.8(9)

the quadrupole interaction provided by the chosen transition, ionic 
transitions have the advantage that they do not suffer from the 
problem of populating a large number of states during the charge-
exchange process, as is the case in the atom. Despite lower yields 
resulting from problems with the ISOLDE target, these advantages 
enabled a successful investigation of isotopes up to 63Mn.

The hyperfine spectra collected in this way were fitted with 
Voigt line profiles and unconstrained intensities, using a least-
squares method as outlined in [28]. The known nuclear spins [19]
were used to extract the A and B coefficients of the hyperfine 
structure [28–30].

Fig. 3 shows example spectra for all six isotopes measured. 
Without the use of optical pumping, no resonant counts were seen.

3. Results

The extracted A and B coefficients of the hyperfine spectra for 
the 5 P3 and 5 S2 states are shown in Table 1. The A and B coef-
ficients for 53,55Mn have been measured previously in a similar 
optical pumping experiment for neutron-deficient isotopes [21], 
and the results shown here agree to within 2σ . Table 2 shows 
the magnetic dipole moments extracted from the A(5 P3) state and 
the spectroscopic quadrupole moments extracted from the B(5 S2)

state using the relations [28,30],

μ = μref
I A

Iref Aref
(1)

Q s = Q ref
B

Bref
(2)

where the reference values are those of 55Mn listed in Table 2. 
The hyperfine anomaly was assumed to be negligible. The dipole 
moments show good agreement with those previously measured 
for atomic Mn [19].

4. Discussion

Comparison of experimental data to theoretical calculations is a 
powerful method for testing our current understanding of nuclear 
structure and dynamics across the nuclear chart. In particular, re-
gions of rapid structural change, such as those around N = 40, pose 
serious challenges.

Fig. 4 and Table 2 show a comparison of the experimental 
quadrupole moments with the results of large-scale shell model 
calculations, performed using three different effective interactions 
and model spaces. The GXPF1A effective interaction [31] uses a 
40Ca core and is restricted to the pf space for both protons and 
neutrons. For computational reasons, a maximum of 2 protons and 
6 neutrons can be excited across Z = N = 28. The LNPS interac-
tion [17] uses a 48Ca core and considers the entire pf shell for 
protons, and the p3/2, f5/2, p1/2, g9/2 and d5/2 orbitals for neu-
trons. A maximum of 11 excitations across Z = 28 and N = 40
are allowed. The modified A3DA interaction [32] considers the 
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Table 2
The magnetic dipole and electric quadrupole moments derived from the coefficients in Table 1. The spin assignments have already 
been confirmed [19]. Also shown are the quadrupole moments calculated using the GXPF1A [31], LNPS [17] and modified A3DA [32]
effective interactions. All calculations are done with effective charges eπ = 1.31 and eν = 0.46.

Isotope N I μ (μN ) Q s (b) Q s (b) 
[GXPF1A]

Q s (b) 
[LNPS]

Q s (b) 
[modified A3DA]

53Mn 28 7/2 +5.036(5) +0.06(5) +0.08 – +0.08
55Mn 30 5/2 +3.46871790(9)a +0.33(1)b +0.33 – +0.33
57Mn 32 5/2 +3.485(2) +0.37(3) +0.33 +0.31 +0.35
59Mn 34 5/2 +3.496(3) +0.34(4) +0.31 +0.32 +0.32
61Mn 36 5/2 +3.535(2) +0.36(3) +0.30 +0.35 +0.38
63Mn 38 5/2 +3.441(3) +0.48(4) +0.26 +0.41 +0.41

a Reference from [33] with corrections for diamagnetic shielding.
b Reference from [34].
Fig. 4. Comparison of the quadrupole moments determined in this work to the 
results of calculations using the GXPF1A, LNPS, and modified A3DA effective in-
teractions with eπ = 1.31 and eν = 0.46 (color online).

f pg9/2d5/2 space for protons and neutrons with 40Ca as a core, 
and was able to include a larger model space by performing cal-
culations in the Monte Carlo shell model framework [32]. Both the 
GXPF1A and LNPS calculations have been done using the ANTOINE

shell model code [35], which imposes some computational limits 
on the size of the model space since a full Lanczos diagonalization 
is performed.

As can be seen in Fig. 4, the GXPF1A effective interaction suc-
cessfully predicts the quadrupole moments up to 59Mn (N = 34), 
after which the predictions and experimental data begin to di-
verge. The data follows an upward trend in deformation, as pre-
dicted by LNPS and modified A3DA, while the GXPF1A calculations 
follow a downward trend, as would be expected if there was a 
subshell gap at N = 40. Indeed, previous work on the magnetic 
moments [19,20] and energy levels [18] has demonstrated that 
the GXPF1A model space, which does not permit excitations across 
N = 40, is too limited to accurately describe the more neutron-rich 
Mn isotopes. Thus the larger model spaces employed by the LNPS 
and modified A3DA interactions are necessary to reproduce the ex-
perimental data. Both interactions have proven to be successful in 
this region of the nuclear chart [19,20,36,37], and LNPS has re-
cently been used to accurately characterize a similar deformation 
trend in 58,60,62Cr34,36,38 [38].

Quadrupole moments are a useful tool to investigate the role of 
excitations across N = 40 because of their sensitivity to 2p-2h and 
4p-4h excitations, and to the strength of the quadrupole collectiv-
ity. In particular, the quadrupole moments will be used to probe 
the role of the νd5/2 orbital in the development of this collec-
tivity. For this purpose, calculations of the theoretical quadrupole 
Fig. 5. The results of LNPS calculations of the quadrupole moment with neutron 
excitations limited to the f pg9/2 space (labeled trunc.) and in the full f pg9/2d5/2

space (labeled full) are shown compared to experimental values (color online).

moments have been performed using LNPS in a truncated model 
space which excludes the νd5/2 orbital. Fig. 5 shows the results 
of these calculations (labeled trunc.), where excitations have been 
limited to the νg9/2 orbital. The quadrupole moments calculated 
this way do not reproduce the rising trend of the experimental 
data, but remain nearly constant from N = 34 onwards. The trend 
of the experimental data is only reproduced in the full f pg9/2d5/2
space. This demonstrates the necessity of including both the νg9/2
and νd5/2 orbitals in the model space – neutron excitations to 
νg9/2 alone are not sufficient to explain the deformation in the 
Mn isotopes. This can be understood in terms of the pseudo and 
quasi SU(3) symmetry as discussed in [39].

The effect of the excitations across N = 40 can be seen more 
clearly in the occupation numbers of protons and neutrons for 
the upper pf and g9/2d5/2 orbitals. Fig. 6 shows a comparison of 
occupation numbers calculated using the LNPS interaction in the 
truncated f pg9/2 space and the full f pg9/2d5/2 space.

The top panel of Fig. 6 shows that excitations to the νg9/2 or-
bital are suppressed in the truncated f pg9/2 space as compared to 
the f pg9/2d5/2 space. This illustrates the correlation between the 
increased occupation of the νd5/2 orbital and the quadrupole col-
lectivity, which also increases the excitations to the νg9/2 orbital. 
The reduced neutron excitations across N = 40 in the f pg9/2 space 
provide a possible explanation for the difference in predicted de-
formation, as shown in Fig. 5.

The exclusion of the νd5/2 orbital also has consequences for 
proton excitations across Z = 28. The lower panel in Fig. 6 shows 
the proton excitations into the upper pf orbitals for both the 
f pg9/2 and f pg9/2d5/2 spaces. While the total upper π pf shell oc-
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Fig. 6. Orbital occupation numbers for excitations past N = 40 and Z = 28. The 
labels full and trunc. refer to calculations done in the f pg9/2d5/2 and f pg9/2 spaces 
respectively (color online).

cupation for the truncated f pg9/2 space remains nearly constant, 
this same occupation rises in the full f pg9/2d5/2 space with in-
creasing N .

Since the exclusion of the νd5/2 orbital has a significant effect 
on both neutron and proton excitations, it is helpful to look at the 
separate neutron and proton contributions to the total quadrupole 
moment, by decomposing it into its components, Q = Q π + Q ν . 
The results for both the full and truncated spaces are shown in 
Fig. 7. In the limited f pg9/2 model space, both the neutron and 
proton contributions remain essentially constant, showing no in-
crease in deformation towards N = 40. In contrast, both contribu-
tions rise with increasing N in the full model space. The contri-
bution from neutron correlations dominates the overall increase 
in the quadrupole moments, although the protons also induce an 
increase of �Q s = 0.035 b between N = 34 and N = 40. The in-
crease in the experimentally observed quadrupole moments be-
tween N = 36 and N = 38 is due to a combination of the rise in 
the neutron and proton quadrupole components. The comparison 
between the f pg9/2 and f pg9/2d5/2 spaces emphasizes the trend 
seen in the occupation numbers.

Calculations using the modified A3DA interaction (see Fig. 4) 
obtain results similar to those of LNPS for the quadrupole mo-
ments, as well as the neutron and proton occupation numbers. 
In addition, this interaction has been used to calculate the poten-
tial energy surfaces of the Mn ground states, and the minima of 
these plots have shown a progression from a near spherical shape 
Fig. 7. Contribution of the neutrons and protons to the total quadrupole moment for 
both the f pg9/2 and f pg9/2d5/2 space, where the labels full and trunc. have been 
used to indicate the f pg9/2d5/2 and f pg9/2 spaces respectively (color online).

in 53Mn, towards increasing prolate deformation in the more neu-
tron rich isotopes up to 65Mn [40]. This deformation is, however, 
not rigid and there is evidence that shape fluctuations with triaxial 
components play a role in the ground state structure of manganese 
towards N = 40. Though the spectroscopic quadrupole moment is 
not sensitive to such fluctuations, the rising deformation with neu-
tron number predicted by the potential energy surfaces mirrors the 
increasing deformation observed experimentally.

5. Conclusions

Optical pumping in the ISOLDE cooler/buncher has been suc-
cessfully applied in order to enhance the population of ionic Mn 
in a chosen metastable state, which allowed efficient collinear laser 
spectroscopy to be performed on the neutron-rich isotopes. Hyper-
fine A and B coefficients were extracted and electric quadrupole 
moments were determined for the odd–even 53−63Mn isotopes. 
The theoretically predicted quadrupole moments were calculated 
using three shell model effective interactions, GXPF1A, LNPS and 
modified A3DA. In comparing the observed moments to those cal-
culated with the shell model interactions, the influence of the 
νg9/2 and νd5/2 orbitals on the developing collectivity can clearly 
be seen in the deviation of the observed values from those pre-
dicted by GXPF1A. The larger model spaces used by LNPS and 
modified A3DA reproduce the trend of the quadrupole moments 
very well in the region approaching N = 40. Calculations done us-
ing LNPS in a truncated f pg9/2 space (thus excluding the νd5/2

orbital) shed some light on the roles played by the individual or-
bitals above N = 40. It is found that the increase of the quadrupole 
moments and thus the development of collectivity towards N = 40
can only be reproduced if both the g9/2 and d5/2 orbitals are 
included in the calculations. By comparing the neutron and pro-
ton occupation numbers for the full and truncated LNPS calcula-
tions, it is clear that the inclusion of the νd5/2 orbital leads to 
an increase in both neutron and proton excitations. A calculation 
of the individual neutron and proton contributions to the spec-
troscopic quadrupole moment confirmed this interpretation and 
demonstrated the important role of the νd5/2 orbital in produc-
ing the necessary neutron and proton excitations to reproduce the 
observed deformation in the neutron-rich Mn isotopes.
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