PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: June 18, 2016
ACCEPTED: July 20, 2016
PUBLISHED: August 10, 2016

Anomalous dimensions of scalar operators in QED3

Shai M. Chester and Silviu S. Pufu

Joseph Henry Laboratories, Princeton University,
Princeton, NJ, 08544 U.S.A.

E-mail: schester@princeton.edu, spufu@princeton.edu

ABSTRACT: The infrared dynamics of 2+ 1 dimensional quantum electrodynamics (QED3)
with a large number N of fermion flavors is governed by an interacting CFT that can
be studied in the 1/N expansion. We use the 1/N expansion to calculate the scaling
dimensions of all the lowest three scalar operators that transform under the SU(N) flavor
symmetry as a Young diagram with two columns of not necessarily equal heights and that
have vanishing topological charge. In the case of SU(V) singlets, we study the mixing of
(Vip?) (j97) and F,, F*, which are the lowest dimension parity-even singlets. Our results
suggest that these operators are irrelevant for all N > 1.

KEYwWORDS: 1/N Expansion, Conformal Field Theory

ARX1v EPRINT: 1603.05582

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP08(2016)069


mailto:schester@princeton.edu
mailto:spufu@princeton.edu
http://arxiv.org/abs/1603.05582
http://dx.doi.org/10.1007/JHEP08(2016)069

Contents

1 Introduction and summary 1
2 Setup and conventions 4
2.1 Derivation of Feynman rules )
2.1.1 Feynman rules with standard gauge fixing 5

2.1.2  Feynman rules with non-standard gauge fixing 6

2.2 Summary of Feynman rules 7
2.3 General strategy for anomalous dimension computation 7
2.4 Previous results 8
2.4.1 Correction to fermion propagator 8

2.4.2 2-fermion singlet 8

2.4.3 2-fermion adjoint 9

3 Operators in representation (1N —2n 2”) 9
3.1 Number of operators 10
3.2 Scaling dimension of O, 11
3.2.1 Leading order 12

3.2.2 Next-to-leading order 13

3.3 Scaling dimension of O}, and O 16
3.3.1  (O'(z)0(0)) 17

3.3.2 (Ol (2)O(0)) and (O (z)O"(0)) 17

4 The mixing of lowest parity-even SU(IN) singlets 19
A Useful integrals and Fourier transforms in 3d 24

1 Introduction and summary

Quantum electrodynamics in 241 dimensions (QED3) with N (two-component complex)
charged fermions can be shown to flow to an interacting CFT perturbatively in the 1/N
expansion [1, 2]. In this CFT, there are many quantities that have been computed to various
orders in 1/N. Examples include: the scaling dimensions of the lowest SU(N) singlet
scalars [3-6], adjoints [7, 8], and a couple of other scalar operators [6]; the scaling dimensions
of monopole operators [9-11]; the two-point functions of the canonically-normalized stress-
energy tensor and of the conserved currents [12-14]; the S free energy [15]; as well as
various finite temperature quantities [8].! Our goal here is to add to this list the scaling
dimensions of many more operators: for each SU(N) irreducible representation with two

See also [16-18] for estimates of some of the same quantities coming from the 4 — ¢ expansion.



columns of fixed lengths, we identify the 3 lowest-lying scalar operators with zero monopole
charge, and we compute their scaling dimensions to order 1/N.

Our interest in the scaling dimensions of scalar operators transforming in non-trivial
representations of SU(NN) comes in part from the recent conformal bootstrap study [19] of
QEDg3. This study focused on unitarity and crossing symmetry constraints on the four-
point function of monopole operators carrying a single unit of topological charge. The OPE
of such a monopole operator and its conjugate contains operators transforming under the
flavor SU(N) as precisely the irreps considered in this paper, namely two-column irreps of
the form

n

SU(N) irreps: N-nd[ | :(1N_2”,2") , n=0,1,...,N/2, (1.1)

O

\

where (A", A\5%,...) denotes a Young tableau with v; rows of length )\;, and the n = 1
case is the adjoint. In tensor notation, the irrep (1.1) can be represented as a traceless
tensor with n antisymmetric fundamental indices and n antisymmetric anti-fundamental
indices. While the bootstrap study [19] only examined relatively small values of N (namely
N = 2,4, and 6), future studies may be able to access larger values of N, and in order to
assess their accuracy, one would benefit from more large N analytical approximations than
those currently available in the literature. We thus develop the large N expansion for the
scaling dimensions of scalar operators transforming as (1.1) under SU(N). Of course, such
large N expansions could also be useful independently of the conformal bootstrap program,
for instance if one engineers a new material that exhibits critical behavior described by
QEDj3 with a sufficiently large number of flavors.

An additional motivation exists for computing the scaling dimensions of lowest-lying
parity even SU(N) singlet operators. As we explain below, the lowest such operator has
scaling dimension approximately equal to 4 at N = oo, with negative 1/N corrections. If
this operator becomes relevant at some finite value of N, it may completely change the
IR physics if no tuning is performed. It is conceivable that for N < N, the deep IR
corresponds to a chiral symmetry breaking phase and that N4t can be estimated from
when the scaling dimension of the lowest lying SU(N) singlet approaches 3 [6, 16, 17].
Computing this scaling dimensions as a function of N would allow us to estimate Nct.

Let us present a summary of our results. For any n > 0, for which the SU(N) irrep is
given by (1.1), we denote the lowest dimension operator by O,,. As we show in section 3.1,
SU(N) group theory requires that for n > 0, O,, must be constructed from a product of
precisely n distinct fermions anti-symmetrized in their SU(N) indices and symmetrized
in their spinor indices and a product of n distinct anti-fermions with the same property.
Furthermore, only a single operator can be built in this way, namely?

(On) 501 i :w[h Zﬂ)zﬁ(al ...&a") — (SU(N) traces) (1.2)

(o [int1 i2n]

2The construction of this operator requires n < N/2. The regime where n is comparable to N is outside
of the validity range of our approximation — we first fix n and then take N to be large.



where oy, = 1,2 are Lorentz spinor indices and i,, = 1,..., N are flavor indices — see
section 2 for our conventions. This operator is parity even (odd) depending on whether
n is even (odd). We provide a formula for the scaling dimension A,, of this operator to
order 1/N in eq. (3.29) for all n > 0. This formula is rather complicated, so we record the

scaling dimensions here only for the first several cases:
64 64
A1=2——— 1/N? Ay=4— —— 1/N?
1 37T2N+O(/ )a 2 7T2N+O(/ )7
128 640
A3 =6— ——+O(1/N* Ay=8———— +O(1/N? (1.3)

etc.

Next, we consider the lowest dimension operator in the same SU(N) irrep as O,, but
with opposite parity. For that purpose, we must consider an operator constructed with
one more v and 1) each than O,,. As we will show, for 0 < 2n < N there are two linearly
independent such operators, which can be taken to be?

N
(Or) 5o, = Z [“ T §L+1)¢zn+1' wzzn@ba"“ (SU(N) traces)
k=2n

Uiy
R

(O;{)ilminin+1~-~i2n = (On)ilminin-q-y-hn

(1.4)
By considering the mixing of these two operators (1.4), we calculate the scaling dimensions
A, 1 toorder 1/N for alln > 0. Since the final expression (eq. (3.42)) is rather complicated,
we will only record here the scaling dimensions for the first several cases:

8(25 + v/2317) ) 32+ 160 9
'1¢Z4+W+O(1/N)a i_6+7N+O(1/N),
4(—21 + v/19189) 64(—26 £ 1/2362)
/ _ 2 2
3,i_8+ 32N +O(1/N )7 4i_10 152N +O(1/N )7
etc.
(1.5)

Lastly, the case n = 0 (SU(/V) singlet) requires special treatment. The lowest dimen-
sion parity odd SU(N) singlet is Op = ﬁ@ﬁf‘@bg Its scaling dimension is [5]

128 )
—94 =2 , 1.6
Ao =2+ 25+ O(1/N?) (1.6)

3The scaling dimension A; was already computed in [7, 8]. Ay agrees with the result of sections II.B

and IL.C of [6]. The other operator in section IL.C of [6], with scaling dimension 4 + %% + O(N?), is a
four-fermion operator transforming under SU(N) as the irrep (271, 4%).

4The construction of O, requires n < N/2 — 1, and the construction of O requires n < N/2. The
regime where n is comparable to N is outside of the validity range of our approximation — we first fix n
and then take N to be large.



The two lowest dimension parity even operators are mixtures of the operators (zﬁlwz) (zﬁjwj )
and F),, F*V. We find that the scaling dimensions are
Agvi=4+m(23;‘ﬁ)]b+0(1m2). (L.7)

This result agrees with that of ref. [6] that was obtained through a different method.”
Extrapolating (1.7) to finite N, one finds that all parity-even SU(NV) singlets are irrelevant
for all values of N > 1. This result might suggest that the interacting CF'T obtained in
the 1/N expansion extends to all values of N > 1, in agreement with the recent lattice
simulations of [20].% It is worth mentioning that the scaling dimension of the four-fermion
parity-even singlet was also estimated from the 4 — e expansion in [16], where it was found
that this operator is irrelevant only for N > 2 [16]. It would be interesting to understand
how the mixing between the four-fermion operator and F; 3,/ studied here affects the 4 — €
expansion estimates.

The rest of this paper is organized as follows. In section 2, we set up our conventions
and Feynman rules for QED3. Sections 3 and 4 contain the bulk of our computations.

2 Setup and conventions

Before we delve in the computations of the various scaling dimensions mentioned above,
let us describe our conventions and the setup of our computation. The Euclidean signature
Lagrangian of QED3 with N fermion flavors is

L= T;F,WF/“’ — iy (0, + i ALY (2.1)
where e is the gauge coupling. The gamma matrices obey the Clifford algebra {y*,7"} =
20" I and can be taken to be equal to the Pauli matrices v# = o, for u = 1,2, 3. We choose
to write fundamental spinor indices as lower and fundamental SU(N) indices as upper, as
in ¢!, withi=1,..., N and a = 1,2. Anti-fundamental indices have the opposite index
placement, as in @f‘ In the following we try to avoid as much as possible writing down
explicit spinor indices, but we do write down the SU(/N) flavor indices explicitly. Repeated
indices are always summed over.

As will become clear shortly, the gauge coupling e drops out of all computations in the
IR CFT. Therefore, one can think of the fermions in (2.1) as carrying any gauge charge,

"Ref. [6] studied the mixing of the operators (zﬁzwl) ('l[]j’ll)j) and (@iyuwi) (@jv“wj) by adding these
operators to the action and studying the renormalization of their couplings as one integrates out momentum
shells. In our approach, we extract the scaling dimensions from the matrix of two-point functions, and in
doing so we can make use of the equations of motion. The gauge field equation of motion, ¥;v,1%"* = 0, implies
that the two-point function of (zzify,ﬂ/)i) (ijfy“wj) vanishes at separated points. Instead of considering the
mixing of (zﬁﬂ/ﬂ) (&jw‘j) and (@i'yuwi) (@j’y“wj), we consider the mixing of (J)ﬂ/}’) (ijwj) and F,, F*,
as we do in section 4. Despite the different methods, we obtain the same result as ref. [6]. It would be
interesting to perform a similar computation to the one in this paper in the case of an SU(2) gauge theory
and compare with the results of [6].

5See, however, [21] where it was observed that for N = 2 there is spontaneous chiral symmetry breaking.
Also, the F-theorem [17] implies that chiral symmetry breaking is ruled out for N > 10.
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Figure 1. Feynman rules with standard gauge fixing.

and not necessarily the smallest unit of charge allowed by the U(1) gauge symmetry. The
results of this paper are thus independent of the gauge charge of the fermions.

2.1 Derivation of Feynman rules

2.1.1 Feynman rules with standard gauge fixing

A slightly cumbersome but natural option is to work with the Feynman rules derived
directly from the Lagrangian (2.1) supplemented by the standard gauge fixing term

11 9
»Cgauge fixing — _@g(auAu) . (2'2)
In momentum space, the fermion propagator G(p) and the gauge field propagator D, (p) are
" . e? Pup
6w =" D) = % (G- €1 0P ) (23)

The gauge-fermion vertex factor is simply iv*. See figure 1. Computing diagrams using
these rules is then straightforward. The IR CFT behavior can be extracted by taking

2 5 50 in all

the limit of small external momenta. This limit is equivalent to taking e
correlation functions because by dimensional analysis e? always appears as €2/ |p|, where
p is one of the external momenta.

Using the Feynman rules in figure 1 is cumbersome for two reasons. The first reason
is that at the CFT fixed point the Maxwell term is irrelevant, so there should be a way of
performing the computation such that e? never appears and no limit needs to be taken at
the end. In other words, there should be a way of performing the computation where the
e? — oo limit is taken from the very beginning. The second reason is that at each order in
1/N there is an infinite number of fermion bubble diagrams that always get resummed in
the same way, so one should resum them once and for all.

Let us address the second concern first. In order to avoid resumming the same bubble
diagrams every time, one can define an effective gauge field propagator obtained after
the resummation. See figure 2. In order to obtain an explicit expression for the effective
gauge propagator, it is convenient to work with the position-space fermion Green’s function
obtained by Fourier transforming (2.3):

) _ ) d3 Cip (o) ot — gt
W W)e =5 6), Gl = [ hame e = EL) oy

Each fermion bubble is nothing but the two-point function of the gauge current j# =

Piy")t; in position space, it is

I (2, ) = ((2)% (1))o0 = ———0

82 [z

(6" a? — 2at2”) (2.5)
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Figure 2. Effective photon propagator defined as sum of fermion bubble diagrams.

as follows from performing the required Wick contraction and using (2.4). Passing to
momentum space, one has

v d3 v —ip-(x— v N v ip”
H“ (‘T7y) = / (27_(_2))3]‘—['“ (p)6 p( y), H# (p) = 1l3p| (CVL - ppf;) ) (26)

as follows from the formulas given in (A.1). As defined above, the effective gauge field

propagator is just the sum of the fermion bubbles and takes the form of a geometric series:
Dy (p) = D™ (p) — D™ (0)117 (p) Doyt (p) + - .

&e?pupy 16
— 1 _l’_ N
p |p|

(2.7)

p,upl/
g )+0<p /).

One can thus replace the gauge propagator (2.3) with (2.7) in order to not have to resum
the bubble diagrams every time, and otherwise compute Feynman diagrams as usual.

2.1.2 Feynman rules with non-standard gauge fixing

As already mentioned, it would be nice to have a way of performing computations at the
CFT fixed point without having to carry around e? and to take the limit e? — oo at the
end of the computation. Unfortunately, the Maxwell propagator (2.3) and the effective

2 — 00, so this limit cannot in

propagator (2.7) do not generally have finite limits as e
general be taken at the beginning of the computation.

An exception occurs in the gauge £ = 0, where the effective gauge propagator (2.7)
does have a finite limit as €2 — oo and one can indeed take e? — oo from the beginning.
As we now show, it is also possible to modify the gauge fixing term (2.2) so as to have a
one-parameter family of gauge-fixing terms, not just that for £ = 0, for which one can take
e? — oo from the beginning.

Instead of (2.2), one can consider the non-local gauge-fixing term

. _ s [ 5 OuAM(2)0,A(y) N d*p pupy A (p)A” (—p)
Sgauge fixing = C 1 /d /d 7_‘,2‘$ y| - 32((_1)/(27‘-)3 |p’
(2.8)

where ( is a gauge-fixing parameter. Using (2.8) instead of (2.2), the Maxwell gauge field

propagator in (2.3) gets replaced by

= ? 16(C — 1) pup
D“{axp:e<5y—p"p”)+ 1By 1 O(p?/e?), (2.9)
1% ( ) p2 I p2 N |p| ( / )
and the effective gauge propagator in (2.7) gets replaced by
= 16 ptp
Defﬁp:<5“”— >+O 2/e? 2.10
50 = 57 )+ o, (210)
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Figure 3. Feynman rules used in this paper.

2

As advertised, this expression has a finite limit as e — oo for any (. Gauge invariant

observables should of course be independent of (.

2.2 Summary of Feynman rules

To summarize, the momentum and position space Feynman rules we will work with are:

P 16 Pup
= Do) = 77y (0 =222
(2.11)
iy Ho v
Tu® 8 T1oT
Glay,ap) = —Eg DW(za) = [(1 — Q)0 + 2&“5} ,
Am 212 72N |212| |z12]

where 212 = 21 — 22 and the position space expression for D, is derived in (A.4). The
vertex factor is iy*. See figure 3.

In working with the effective gauge field propagator D*¥ one should keep in mind that
this propagator stands for the sum of the bubble diagrams in figure 2, so one should not
count the same Feynman diagram multiple times. In particular, one should not consider
any effective gauge propagators renormalized by fermion bubbles, for instance as on the
r.h.s. of figure 2 if the dotted lines were replaced by wavy lines.

2.3 General strategy for anomalous dimension computation

In this paper, we compute anomalous dimensions from the matrix of two point functions
in 1/N perturbation theory. Suppose that there are r operators O, a = 1,...,r that have
the same quantum numbers and scaling dimension A(® at leading order in N. The matrix
of two-point functions has a large N expansion of the form

May(2) = (Oal2)0(0)) = MD () + MY (x)% o (2.12)

We expect the following = dependence of the first two coefficients:
0 Ny 1 1
M((zb)(m) = 7| 2A® Mf(zb)(x) = 7| 250 [—Mab log(|z|* A%) + O(\x!o)] S (2.13)
T T

This expression serves as a definition of the » x r matrices N and M. Here, A is the UV
cutoff, which is required in order to make the argument of the logarithm dimenisonless. At
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Figure 4. Diagram for AE;).

order 1/N the anomalous dimensions are the eigenvalues AEP of the matrix
A = N~'M (2.14)

(see for instance [22]). The total scaling dimensions are thus
1
A, =A0 4 Af})ﬁ + O(1/N?%). (2.15)

In the examples below, we compute the matrices N and M and use this procedure to
extract A,.

2.4 Previous results

In the following we will use the previously computed results for the leading 1/N corrections
to the scaling dimensions of the fermion field ¢ and that of the 2-fermion singlet Oy =

=i’ [5, 7).
2.4.1 Correction to fermion propagator

Because the gauge fixing term (2.8) is conformally invariant, the two point function of ¢ has
powerlaw decay for any (. However, the corresponding scaling dimension A, will depend
on ¢ and does not have to obey the unitarity bound for a spin-1/2 operator. We have

_ M
((1)(22)) o W (2.16)

Expanding in 1/N, we have Ay, =1+ AS)% +O(N7?) and

1

(b)) = Glan.az) |1+ (=00 log(a*A%) + 0(1l"))

+O(N‘2)] . (2a7)

)

can be found from the diagram in figure 4. It is found to

A = % (:1)) - §> . (2.18)

The correction coefficient Agbl
be [5]

2.4.2 2-fermion singlet
The dimension of Oy = Tlﬁ"@wl is [5]

1 128
Ag=2+A0C+ONE), Al =25

0% (2.19)

We exhibit the diagrams that were used in evaluating A(()l) in figure 5.
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Figure 5. Diagrams for A(()l).

2.4.3 2-fermion adjoint

Similarly, the dimension of the 2-fermion adjoint O = ;17 — %65 Y is [7]

M=o+ AP Loy, AP =

~ (2.20)

3n2’

The diagrams that contribute to A(()l) are the same as those in figure 5 except for the
last two.

3 Operators in representation (1V=2",2m)

In this section we consider the three lowest-lying scalar operators transforming in the irrep
(1N=2n_2m) of SU(N), with n > 0. For a Young diagram representation, see eq. (1.1). In
the case n = 1, the lowest-lying operator is the 2-fermion adjoint discussed in section 2.4.3.
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Figure 6. Decomposition of [¢]™ under SU(2) x SU(N).

3.1 Number of operators

The scalar operators in (1N —2n, 2”), being gauge invariant, must be constructed from an
equal number of ¢’s and ¥’s. Let us count how many linearly independent operators we can
construct out of m 1’s and m 1’s and determine the smallest value of m that is necessary
in order to be able to construct at least one such operator.

Let us consider the m v’s and the m 1)’s separately at first. The 1’s transform as
fundamentals both under the flavor group SU(NN) and the space-time group SU(2). Since
there are 2N such ¢’s, we can formally combine them in a fundamental vector of a larger
group SU(2N), which is not a symmetry group of the theory but nevertheless a convenient
bookkeeping device. In terms of the product group SU(2N), the product of m 1’s, denoted
[1]™, transforms as (1™) because the 1’s are all anti-commuting. The representation (1)
of SU(2N) decomposes under SU(2) x SU(N) as

L™y o nég ((2j),(12j,2m/2—j)), (3.1)
j={m/2}

where {z} denotes the fractional part of z and (2j) denotes the spin-j irrep of SU(2). See

figure 6. The product [¢)]™ transforms in the representation conjugate to (3.1):

m/2
o (1™ = P <(2j),(12j,2m/2*i)). (3.2)
j={m/2}

The product [¢)]™ X [¢)]™ transforms in a reducible representation of SU(2) x SU(V)
that can be obtained by simply multiplying (3.1) and (3.2). It contains operators with spin
ranging from 0 to m. The spin-0 operators appear only when multiplying a spin j irrep

~10 -



in (3.1) with a spin j irrep in (3.2), and so they transform under SU(N) as

m/2

Hw]m X [&]m] SU(2) singlets - @ |:(12j’ 2m/2_j> ® (12j’ 2m/2—j)] : (33)
j={m/2}

Each term in the sum (3.3) can be further decomposed as a sum of irreducible rep-
resentations of SU(N). Performing this decomposition is a straightforward group theory
exercise, and one can then count how many times the irrep (1N —2n 2”) we are interested
in appears in this decomposition. The result is that if m < n, the irrep (1N —2n 2”) does
not appear at all: we need at least n ¢’s and n ¢’s in order to construct an operator
transforming in (IN*Q”, 2”). If m = n, the irrep (1N*2”, 2") appears in the decomposition
of (3.3) only once, and it comes from the term j = n/2; the corresponding operator can
be written explicitly as

(On) 11y iz = B B ) — (SU(N) traces), (3.4)

i2n]

where we symmetrize and anti-symmetrized with unit weight, and the traces are over
SU(N) indices. This operator is non-zero only for 2n < N. When m = n + 1, the irrep
(1N=2n 2") appears in (3.3) twice, once coming from j = m/2 and once form j = m/2—1.
The corresponding linearly independent operators can be taken to be

(O;)il...inin+1...i2n = Z ”l/}[ll . wan_‘_l)w[szA . wzgn an+1 (SU(N) traces) s
1.9 "%W 11...3
(0”) v n'L'rH»l don T (\/N) (On) v n1n+1 KOTR)

(3.5)
where O], corresponds to j = m/2 and O is a linear combination of an operator from
j=m/2—1and j = m/2 that is easy to write down. Note that O}, is non-zero only if
2n < N and Q! is non-zero only for 2n < N. It is straightforward to use the same method
to also count the multiplicity of the irrep (1N —2n 2”) when m > n + 2, but we will not be
concerned with those cases here.

3.2 Scaling dimension of O,
We consider a particular operator representing (3.4) by taking iy = k:
1 n| 7(a T
Op =it 0 Bt ) (3.6)

where the trace term in (3.4) does not contribute because all the iy are distinct. This
operator can be rewritten as

nntl) ) 1 : o o n o n o(n
0, = (1) 2 3 sig@)0 (@), OF) =y ™™ (g

’ O'GSTL

where the spinor indices are contracted between adjacent fermions, and sig(c) is the sig-

nature of the permutation o € S,,. The conjugate of 07({7) is
) = Yoy Dy (3.8)

- 11 -



We would like to express the two-point function of O,, as in section 2.3. Directly from
the definition (3.7), we can write

(On(2)0,(0)) = > sig(o”)sig(o”)(OF) ()05 (0)) . (3.9)

o, 0"eSy

(n!)?
For any permutation 7 € Sy, we can perform the relabeling 1; — t.(;), which shows that
<0§LU/)($)@£LU”)(0)> = <O§LU/T)(:B)@$LUHT)(O)>. We can freely apply such a transformation to
each term in (3.9) separately. Taking 7 = (¢/)~! and denoting ¢”7 = o, we see that (3.9)
reduces to ]

(On(2)0n(0)) = — > _ sig(0){O}) ()07 (0)), (3.10)

" o€eSy

where [ is the identity permutation. Noticing that each permutation in a given conjugacy
class gives an equal contribution to the two-point function, we can express (3.10) as a sum
over conjugacy classes Cy,; of the symmetric group S,:

((’)n(az)@n(O)):% 3 sig(Cun)|Cral (O ()0 ™ (0)). (3.11)
Ch,,i€CI(Sn)

Since conjugacy classes of the symmetric group S, will appear several times in this
section, let us briefly review their properties. Conjugacy classes of S, are in one-to-one
correspondence with integer partitions of n. Suppose we write such an integer partition
corresponding to a conjugacy class C,,; as

n
n=>ayj, (3.12)
j=1

for some positive integers a;;. All permutations in C), ; have a;; cycles of length j. In terms
of this data, the size and signature of C),; can be expressed as

n!

Cni = n N ; Slg CTLZ = (-1 27:1 aij(j_l)- 3.13
R VG R (8.9
See table 1.
3.2.1 Leading order
At leading order at large N, we can evaluate <O7(ll) (x)(’_)flcn’i)(O» using Wick contrac-

tions with the propagator in (2.11). Since each permutation cycle of length j contributes

—tr[G(x,0)G(0,z)]?, we have

_ ) n -\ Qij ZEL:ICLU
(O @O 0) o) = [ (- (G 0G0.2)) " = Sig(CWM ’

j=1

(3.14)

where we used (3.13) and the fermion propagator in (2.11). Then, using (3.11), we find
_ 1 92.=1%ij
(On(2)0n(0))0) ol Z(S )|Cn,i‘ <(47r)2"|x|4”> : (3.15)

" Cp,€Cl
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n | i | partition for C, ; a; |Ch.i| | sig(Chi)

1)1 1 (1) 1 1
1 2 ( ) 1 1
) 01
9 141 (20) 1 1
1 3 (001) 2 1
3
2 241 (011) 3 1
3 1+1+1 (300) 1 1
1 4 (0001) 6 1
42 341 (1010) 8 1
3 2 42 (0200) 3 1
4 2+141 (2200) 6 1
51 1414141 (4000) 1 1

Table 1. Conjugacy class data for n =1,2,3,4.

The sum 2?21 a;j gives the number of cycles in conjugacy class Cy, ;. Explicitly,

(10100 = g2z
(@000, = 5 42 = g (3.16)
_ 1 1

) - 1244)= ————
(O3(2)05(0) ) = Grgmyorez @+ 124 = a2

and so on.
3.2.2 Next-to-leading order
For the next order in 1/N, we should consider diagrams with one photon line. In
ACnh.i(1
(L @)0 D (0)) 0y (3.17)
there are several possibilities for where to draw the photon line:

e the photon line can connect a fermion line to itself. Fach such diagram gives

o A
L = (O4(2)00 " (0)) o) |~ log(2?A%) + O(la’) | - (3.18)

~13 -



Figure 7. Example diagram for L.

There are 2j such diagrams for a permutation cycle of length j, for a total of 2n
diagrams. See figure 7 for an example.

The photon line can connect fermion lines belonging to different cycles of C,, ;. These
diagrams cancel in pairs — see figure 8.

The photon line can connect distinct fermion lines of opposite types (one G(z,0) and
one G(0,x)) within the same cycle of C,, ;. See the lefthand diagram in figure 9. Let
this cycle have length k. In position space, such a diagram is

(ko M2y 3,53
Dy(x) = — TSECE e s1g(Cm;)/d 2d°wD, (z,w)

x 1[G, )G (2,0) (G(0.2)G ,0) G(0.w)3" G w,2)(Gl.0)G (0,22,
(3.19)
where the first term in parentheses comes from the cycles without photon lines, and

the contribution we exhibited is that coming from the photon line. The number
of fermion propagators between those containing photon lines is k; and ks, with
ki +ko=k—1.

The photon line can connect distinct fermion lines of the same type (either both
G(z,0) or both G(0,z)) within in the same cycle of C,, ;. See the righthand diagram
in figure 9. For instance, if the photon line connects two G(x,0)’s in a cycle of length
k we have a contribution equal to

(—1)k2m Mg . 33
Ex(z) = — CSEGEIPLCED sig(Ch) [ d°zd°wD,, (z,w)

x tr[G(z,2)7"G(2,0)G(0,2)(G(2,0)G(0,2)) " G(z,w)" G(w,0)G(0,2)(G(2,0)G(0,z))*2]
(3.20)
where again the first term in parentheses comes from the cycles without photon

lines, and the contribution we exhibited is that coming from the photon line. Here,
ki+ky=k—2.

— 14 —



+ 0

x ol x > o =

Figure 8. Diagrams that cancel in pairs.

Figure 9. Diagrams for Dy (x) (left) and Ex(x) (right).

From D, and E; we have to extract the logarithmic divergence. While these are very
complicated diagrams and their full evaluation would be an onerous task, the extraction
of the logarithmic divergence is quite easy, because it comes either from when z and w are
both close to z or to 0. Both limits give the same answer, so we can just take the limit
where both z and w are close to 0 and multiply the answer by 2. For Dy, eq. (3.19) thus

becomes
Sig Cn,z’ 22] i v
Dy(x) ~ — (M) /dgz d*w Dy, (2, w) tr [v*G(2,0)G(0,w)y"] , (3.21)
where we used G(z,0)G(0,x) = —ml. The position space integral can be written in

Fourier space as an integral over a Fourier momentum g¢:

3
(3733 tr [y igig"] D“q”4(Q) L (3.22)

This expression can be seen to evaluate to —8(3 — () log A2/(N7?) after performing the

/dgzdgw D,y (z,w) tr [v*G(z,0)G(0, w)v"] :/

required gamma matrix algebra and using the gauge field propagator in (2.11). Here, A
is the UV cutoff and it must appear inside the logarithm in the combination A |x|. Thus,
Dy (z) evaluates to

D = (OL@OT D 0)) o) | g3~ Qo A% +0(a)| . (3:28)
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A similar strategy works for evaluating the logarithmic divergence in Eg. Taking the
limits when z,w go to x or 0, one obtains

sig(Cy ;)22 i a3 .1 D

The momentum space integral now gives 8(1 4 ¢)log A?/(N?), so in the end

Ex(z) = (OL(2)05" (0 >><O>[ 1+ OlogA2 e +0(al)| . (3.25)

Due to the various ways of placing the gauge propagator, there are k? diagrams that
give Dy, and k(k — 1) diagrams that give E;. Along with the leg contributions, we have

(0L (2)05 (0 Zalk (k2D (z) + k(k — 1)Ex(z) + 2kL(x)] . (3.26)
Quite nicely, after plugging in (3.18), (3.23), and (3.25) into (3.26) one obtains an expression

independent of (:

I Cri(1) ooy yonI ¢ ACmi (D) " 32k(3k — 1) log A?|z|?
(On(@)0n™"(0)) = (0 (2)0n™"(0)) o) kZl SN +

0(\wlo)]

(3.27)
Using (3.10) and (3.15), we can write the ratio between the 1/N correction to the two-point
function and the leading result as

(On(2)0n(0)) 1y 3220, cc1(s) |Cn i 2259 Y ageke(3k — 1)

log |#|?A% + O(|z|") .

<On($)@n(0>>(0) 37T2NZCn,iEC1(Sn) |Cn,i|22j i
(3.28)
The results of section 2.3 then imply that the scaling dimension of O, is
2 | Cni|2%1%5 3, aik(3k — 1) 1
A =2n - i2 2 Cuictsn) | Lo — +O(1/N?). (3.29)

3m 2 Gy s €CI(Sn) |22 %5 N

This expression can be evaluated for any n using the data for the conjugacy classes of the
permutation group. When n = 1, one has only one conjugacy class C; of size |C7| = 1 and
aj; = 1; it is easy to see that (3.29) reduces to (2.20).

3.3 Scaling dimension of O/ and O/

We consider particular operators representing (3.5) by choosing iy = k:

1 N
On= =D Wiy - V) Pt - V500
tﬁk: ) (3.30)
_ w )

O//

Ll ) = 0,00,

~16 —



with O,, as in (3.6) and Op as in section 2.4.2. Since we have two operators that mix
together, we must consider the matrix of 2-point functions

M, (2) = <(9§z($)(?11(0)> <0§L(w)(?§{(0)> 7 (3.31)
(07(2)05,(0)) (On(2)05(0))

as in section 2.3 and expand it in 1/N.
Note that we can write

(n+1) (n+2)
(1) (Jk)
o, =(-1) 2 (n+1 UESZH;S% a)Ok) (z) 5
B) = 10T W iy p Tk (W gpor(nt D)

where ¢ is a permutation of the set {1,...,n + 1}, and o = 7 0 0, 7 being the map
m(i) =i fori =1,...,n and m(n + 1) = k. This expression is somewhat similar to that
for On41, which is an observation that will simplify some of our computations.

3.3.1 (O/(x)0(0))

The two-point function (O (z)O”(0)) is the simplest to calculate because it factorizes not
just at leading order in 1/N, but also at the first subleading order:

(O5(2)071(0)) = (0,,(2)0,,(0)){Oo(x)Oo(0)) + O(1/N?). (3.33)

The factorization at next-to-leading order is because the diagrams formed by photon lines
between O,, and Oy all cancel in pairs. From (3.28) and (2.19), we have the following ratio
of subleading to leading orders

OOy [ S consnlCuil2Zr% S yauk(3h —1) ] 32l0g/z[2A2 )
Q| = 4 R
(On(2)05(0)) o) 2y 1€CI(S,) |Cin i 2257 3m2N
(3.34)

3.32 (0 (2)0,(0)) and (O}, ()0%(0))

Calculating the two-point functions (O! (z)O0!(0)) and (O, (x)O2(0)) is harder. First,
notice that

N
(O}(#)0}(0)) = le (o) (OO @070 )
‘ =1 n+1
N A(Ik) AT k) -
, =, 1 On 7 (z)  nOp " (x) | Aok
<On($)0n(0)> ! N = & - < n -+ 1 n 4 1 O’ﬂ (0) I

(3.35)
where I is the identity permutation, and I is the transposition that flips n and n + 1.
These expressions are valid to all orders in 1/N. The terms in the & sum vanish if & < 2n,

(o,k)

because then 0" as defined in (3.32) vanishes automatically.
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Figure 10. Additional diagrams for (O}, (x)O(0))(1) and (O} (x)O%(0))1).

At leading order in 1/N, egs. (3.35) simplify, and they become equal to the leading
order two point function of the operator 0,11 that was studied in the previous section:

(0,(2)0;,(0)) (0) = (O, (2)07(0)) 0y = (011 (2)O,11(0)) 0y - (3.36)

At sub-leading order, the two-point functions (3.36) have the same diagrams as
(0,110,410 (1), but also differ from (O, ,,0, 1)1y due to the occurrence of additional
diagrams where the 1, and ¥* belonging to either O/, or O! are joined together by a
fermion line. See figure 10. These additional diagrams are similar to the last two diagrams
in figure 5. We thus obtain

<O;($)@Z(O)>(l) = <On+1(x)@n+1(0)>(l)
64

1—n/2 A
+ <n—i—{> (On11(2) 05 11(0)) o) {_ﬂN log |z|*A% + O(WO)] ’
(3.37)

<O§z($)@%(0)>(1) = (0,41(2) 0, 11(0)) (1)

64 242 0
. 2Nlog]a;|A + O(|z| )]

+ (1 — n/2>2 (On+1(2)O0n41(0)) () {_W
(3.38)

The n-dependent prefactors in the second lines of (3.37) and (3.38) can be understood
as follows. In the case where ¥* and v, belong to O}, we either have that Y* can be
contracted with 1, or ¥* and 15, can be part of a bigger cycle. Out of (n + 1)! total
possibilities, the first case occurs n! times, while the latter occurs n!n times and has an
extra factor of —1/2 relative to the first, because there is one fewer trace and permutation
for this diagram. Summing both cases we find that whenever ), is involved we must

include a factor of
nl—nln/2  1-n/2

(n+1)!  n4+1

relative to the n = 0 case of the last two diagrams in figure 5. For O we do not need any

(3.39)

extra factors. Thus (3.37) contains one power of (3.39) and (3.38) contains two powers
of (3.39).
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Gathering the previous results we can write down the M and N matrices defined

in (2.13):
N, = A4 , M, = ¢ D , (3.40)
A B D FE
where
1 QZ?I Laij 9 92 7=14ij
A= (n+ 1) Z ‘Cn+1,i|<(4ﬂ_)2n+2>a B—a Z |an‘<(4ﬂ_)2n+2 )
C’n+1,¢€CI(Sn+1) CHJECI(S»,L)

4
C=—r—e Y [Cupi
m(n+1)IN [Crti
Cn+1,:€CH(Sn+1)

ntl, N T n+1
4 92j=1 % 1—n/2 aipk(3k — 1)
D=—— Cri1i - .
m(n +1)IN 2 [Cota, |< (47)2n > n+1 > 6

Crt1,;€CH(Sn+1)

2t \ [ /1 —n/2)? . g:laikk@k —1)
(47)?n n+1 6 ’

k=1

2 —appk(3k—1)

szzlaij

8
E= min!N Z )Cn’i|< (4m)2n )

Cn,i€CI(Sn

(3.41)
From this expression and (2.15), we can extract the anomalous dimensions by diago-
nalizing N~'M, which yields

L, 2AD - CBAE \/(CB+AE —2AD)* — 44 (A - B) (D* - CE)
nt SR T A B 24 (A— B) '
(3.42)

Particular cases are given in (1.5) in the Introduction.

4 The mixing of lowest parity-even SU(IN) singlets

We now consider the parity-even SU(N) singlets. At large N, all these operators are
irrelevant. As mentioned in the Introduction, it is important to estimate down to what
value of NV this situation persists, because if a parity-even SU(N) singlet becomes relevant,
it can be generated during the RG flow and change the fate of the infrared physics.

At infinite N, there are two lowest-dimension parity even operators that mix in 1/N
perturbation theory. They are

01 = L@ WG?),  Or= " FuF* (1)

where the factors of V have been chosen such that the two-point functions of these operators
scale as N at large N. Both operators in (4.1) are real, and their scaling dimension is
Ag =4 at N = oo.

Before we start calculating the mixing between these two operators, let us explain
why there are only two such operators. The counting argument of section 3.1 implies
that there are actually two linearly-independent four-fermion operators that are SU(N)
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Figure 11. Cancelation of diagrams contributing to (O3(2)O3(0)) at order N°.

singlets. They can be taken to be O; and O3 = %(%%W)(%’Y“%ﬁj). However, Os is
proportional to the large N equation of motion operator E,, = ;7,4 = 0 of the large IV
theory obtained by varying the action with respect to A,. As such, O3 does not contribute
to the matrix of two-point functions. Indeed, it can be checked that at separated points
we have (O3(2)O3(0)) = 0. For instance, at order N°, the diagrams in figure 11 can be
seen to cancel exactly.”

Let us thus focus on the matrix of two-point functions of O;, with ¢ = 1,2 and write
it at large IV in the form given in section 2.3. In particular, let us compute the matrices
M and N defined in (2.13).

At leading order in N, we have

1
(OO0 = 24 (G, 060,26 0GO.0)] = g (02)
T
Rewriting Oy as
N

Oy = 5 [0,A,0"AY — 0, A,0" A'] | (4.3)

and using the gauge field propagator D,,, in (2.11) gives

512

(O2(2)02(0))0) = 3— 5 - (4.4)

4 ||

"We thank Mark Mezei for discussions on this issue.
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Figure 12. Diagrams that contribute to the mixing of the operators O; and O defined in (4.1).

Since at order NV, the two-point function (O1(z)O2(0)) o) vanishes, the matrix N defined
in (2.13) is

1
No L= !

(4.5)
™\ 0 3x512

In order to compute M, it is natural to think of each O; as a composite between ;1)
and &jwj , and of 07 as the composite between [, and F'*¥. There are many diagrams
that contribute to M but they can be split into diagrams referred to as leg corrections
coming from each of the factors of the composites as well as diagrams referred to as vertex
corrections that mix together the two factors.

The leg correction diagrams have already been computed. Since the operator ;1)
acquires an anomalous dimension given by 128/(3m2N) + O(1/N?) (see (1.6)) and F},, has
no anomalous dimension, we have that the leg contribution to M is

1 256
Lm0 (4.6)

Mlcg =—
& 0 0

Let us now compute the leading vertex corrections. The two-point function (O (z)01(0))
does not receive any such corrections. (The diagrams cancel in pairs as in figure 8.) On
the other hand, (O1(x)02(0)) = (O2(2)O1(0)) and (O3(x)O2(0)) might.

Let’s start with (O1(2)O2(0)) (bottom diagram in figure 12). In position space, this

diagram can be written as
(O2(2)O01(0))vertex = 4N2/d3zd3wd3yd3t8“Dl,)\(w,z)(—8“Dp”(w,m) + 0"D, ! (w,x))

X Dor(y,4)tr| G(0,2)7 2,977 G (,0) | ]G (0.0 G (t,w)1 "G w,0)].
(4.7)
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As in the previous sections, we are content with extracting only the logarithmic divergence
of this diagram, leaving its full evaluation to future work. The log divergences come from
regions where z, w, y, t are either close to x or to 0. The first one is

vertex

(Oz(2)0y (O)>(x) R~ 4N2/d32d3wd3yd3t6MD,,)\(m,z)(—(9“Dp”(w,x) + 0"D,H(w,x))

% Dor(y,t)tr [G(O,x)fy’\G(z,y)ng(a:,O)} tr[G(0,2)77 G (tw)y* G (z,0)].

(4.8)
This is just a one-loop diagram, written in Fourier space as
5 (@) 2 [ d’q up v ey
(O2(2)01(0))yertex = —4N unDuA(Q) (¢"Dy"(a) — 4" D, (q))
) (4.9)
X Dor(q) tr | (=) igr | tr [(—)yTigy ] ——————
(@)t [Cp i ] o [0 ]
This expression evaluates to
_ 512 d3q 1 128
O0a(2)01(0))), . ~ / = _log(AZ|z]). 4.10
(021010 kex 7 | mie = aes OBA l) (410)

To evaluate the contribution from when z, w, y, t are close to 0 in (4.7) one has to
be more careful. To obtain the log divergence, one has to expand the D’s in the first line
of (4.7) to linear order in z and w as these quantities tend to zero:

vertex

(02(2)01 ()9, ~ AN20,0,D,x()d3 (0" D, (z) — 0" D, (x)) FO7 | (4.11)
where

FoNP () = /dSzd3w d3y d*t Dyr(y, t) 2w
(4.12)
e [G(0.27 G2y G0 0)] 1 [G0, 0 Clt W)y Gluw,0)]

(The terms proportional to 2*2z% and w®w” in the expansion give vanishing contribution to
the final answer and can be dropped.) In (4.12), the = dependence appears only implicitly
as A |z|, A being the UV cutoff. This is a 3-loop diagram

3 3 3
Foz)\ﬁp(x) _ / (d q d’r d’s 16 <5UT . CQOQT> 1

2m)? (2m)3 (21)° N |qf @ ) 1 1sP r + af*|s + g
) 0 (4.13)
xtr | | —=—i—s | YNy Ti(F + ] tr [z + @)y iy’ <z>} :
(giile) irritr e o i i (50t
It can be evaluated by first performing the r and s integrals, which give
5§ — gar 5B
alB ~ 2 2
FOP () = 9GIN log(A” |x|7). (4.14)
Going back to (4.11), we have
afB SAp _ Sap SBA
(O2(#) OO} D = AN0,0a Do ()05 (9D, () — 0 D () 2 0 1og(A2 o).

962N
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Comparing with (4.4), we obtain
1 128

© 1 20,2y _ 2,12
(O2(2)01(0)) yertex = <O2(1‘)O2(0)>(0)m10g(1\ |z|%) = Wmlog(f\ |z]7) .
(4.16)
Adding up (4.10) and (4.16), we see that
1 956 -
(O2()OL O vertex & g Lo (421al) . (4.17)

Next, let’s move on to (O2(x)O02(0)). The diagrams that contribute are the top two
diagrams in figure 12. They are

(Oa(2)02 (0NN — _N? / Bz dPw &y &t 9, Do (2, 2) (—0" D, (w, z) + 8D, (w, z))

vertex

% DaD3-(0,y) (—8O‘D56(t, 0) + 8°Ds° (¢, 0))

X

tr |Gz 9y Gy, 7 Gt w)r Glw, )7

+ %tr [G(%y)V”G(y,w)va(w,t)véG(t Z)VA]] ;

(4.18)
where the third and fourth lines represent the contributions of the top left and top right
diagrams of figure 12, respectively. There are potential divergences from when the interme-
diate points are close to z and from when they are close to 0, giving equal contributions, so
we can consider the case when they're close to 0 and multiply the answer by 2. Expanding
to quadratic order in z and w, we obtain

(O2(2)O05(0))vertex ~ —2N? [[%%DM(»@)} 0 (0"D," () — 0" D, (x)) HY ™ (x)
+ [050,0,D,7(2)] (9D, (2) — 8" D, () HY ™ (2) (4.19)
T [0uDu(2)] 9507 (9D, (x) — "D, () H§”p<x>] ’
where

HP™ (z) = / @z dw dy 4t 0D (0,y) (-0 D5 (1,0) + 0° Dy (1,0))

7

X

tr [G(z, Y)YV Gy, )y’ G(t, w)v G(w, Z)ﬂ

+ L tr [G(z, )Y Gy, w)v"G(w, )y’ G(L, z)'y’\]] (4.20)

2
27w’ if i=1,
X & —2927 if 1=2,
—ww’ if =3,
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and the factor of 2 in (4.19) is precisely because we're also accounting from the divergent
contribution from the regime where the internal points are close to x. The x dependence
of H AP is again implicit and appears only through A |z|, where A is the UV cutoff. In
momentum space, Hi can be written as

HIVP = —/(fg?’& [820(%1)5”((1))} [aaqT (q“Daﬁ(Q)—qﬁDéa(q»]

< e[GOy G+ GG+t [Crn Gl rarP G o] |

2

(4.21)
The expressions for Hy and Hj differ from (4.21) only in the placement of the derivatives
0y and 9;. It is tedious but straightforward to perform the r integral first and then the ¢
integral using the formulas in [23]. The result is that these integrals do not have logarithmic
divergences.
Putting everything together, we have that

Mvertex — (422)

Combining with (4.5) with (4.22) and (4.6), we can write down the anomalous dimension

matrix
g g2
N—lM _ N—l (Mleg + Mvertex) _ 371r T (4‘23)
5z O
From the eigenvalues of this matrix,
64(2 £ V) (4.24)

32 ’
we conclude that the two parity even SU(N) singlet operators have scaling dimensions
given in (1.7).
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A Useful integrals and Fourier transforms in 3d

The following Fourier transform formulas are useful for the computations in this paper:

/d3 eip-:r: 27’(‘2
x = —,
|2|? p

eip~:r:
[ ===l
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3 eip-x_WZ N

eip-:r 7T2 .
/ 3z = Ip|” .

[ 360
(A1)
Since
1 Pubv
0,0, |p| = — (5 — ”) A2
g4 ‘ ’ |p’ 4 p2 ( )
we have
. o 1
/ &z P [A LA B%ﬂ“} = 72 <(2A + B)6 — Bp“§”> . (A.3)
|2| || p| p
To find the position space representation of the gauge propagator, we need
8(1— 16
a-80-9  p_ 16 (A.4)

mN - m2N
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