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Abstract

We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated 
SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields 
in order to minimize the computational cost for a given level of overall statistical accuracy. We find that 
AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same 
cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor 
charges of the nucleon in Nf = 2 lattice QCD with non-perturbatively O(a)-improved Wilson quarks, using 
O(10,000) measurements to pursue the signal out to source-sink separations of ts ∼ 1.5 fm. Our results 
suggest that the axial charge is suffering from a significant amount (5–10%) of excited-state contamination 
at source-sink separations of up to ts ∼ 1.2 fm, whereas the excited-state contamination in the scalar and 
tensor charges seems to be small.
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1. Introduction

Recent developments in the field of numerical algorithms and computer hardware have made 
it possible to perform simulations of lattice QCD with dynamical light quarks at physical pion 
masses, enabling reliable first-principle determinations of hadronic and nuclear properties.

Indeed, with current technology the lattice computation of the light hadron spectrum, includ-
ing not only the ground states, but also resonances, has become a routine task, which can be 
accomplished with great precision [1–6]. On the other hand, attempts at achieving a similar pre-
cision for the prediction of nucleon structure observables from lattice QCD [7–16] are confronted 
with a dilemma arising from the simultaneous problems of excited-state contamination at short, 
and deteriorating signal-to-noise ratio at large Euclidean times: while excited states are exponen-
tially suppressed at large time separations, the signal-to-noise ratio likewise decays exponentially 
with time, and increases only with the square root of statistically independent measurements. As 
a result, controlling both statistical and systematic errors for nucleonic observables becomes dif-
ficult, in particular for structure observables, where both the time separation between the nucleon 
source and sink, and those between the source or sink and the operator insertion of interest, need 
to be made large to suppress excited-state contaminations.

It is therefore perhaps not surprising that the results for nucleon structure observables which 
have been obtained by different lattice collaborations currently show large discrepancies between 
the different groups (for details, cf. e.g. [17–20] and references therein). The problem is partic-
ularly acute for the axial charge of the nucleon, which is both of fundamental importance for 
testing the limits of the Standard Model and well known experimentally, but for which lattice re-
sults differ amongst themselves by several standard deviations and show a discrepancy of about 
10% from the experimental value when extrapolated to the physical point.

To address this problem, lattice studies of nucleon structure with high statistical accuracy at 
large Euclidean time separations are needed. Keeping the computational cost manageable re-
quires efficient techniques of variance reduction. The present study aims to reduce the statistical 
noise by using the recently proposed technique of all-mode-averaging (AMA) [21–23]. AMA is 
able to achieve a significant reduction in statistical error at moderate cost by combining multiple 
cheap low-precision calculations of the quark propagator with an appropriate bias correction. 
This makes AMA particularly attractive for approaching the physical light quark mass, since the 
cost of computing quark propagators scales inversely proportional to the quark mass.

In this paper, we study the efficiency of AMA when combined with the highly efficient locally 
deflated SAP-preconditioned GCR solver. In an extension of our previous studies [13,24,25], we 
apply AMA to the calculation of the axial charge of the nucleon from three-point functions with 
large source-sink separations of around 1.5 fm and above on large lattices satisfying mπL > 4
with Nf = 2 flavours of dynamical quarks. In addition, we also determine the scalar and tensor 
charges of the nucleon on the same configurations.

We find that for the axial charge as extracted from ratios of correlation functions, large source-
sink separations are required to reliably suppress excited-state contaminations, which become 
visible only at high enough statistics, and that values close to the experimental one are obtained 
from the largest source-sink separations studied. The summation method [9,13,25] is able to ex-
tract the asymptotic behaviour already from moderate source-sink separations, but still profits 
greatly from having precise measurements at large separations.

This paper is organized as follows: In section 2, we explain the numerical methods, including 
how to properly define AMA when using the Schwartz alternating procedure (SAP) and local 
deflation with the GCR solver. We also define the ratios of three- and two-point functions that we 
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Table 1
Lattice parameters and gauge ensembles used in this analysis. The number Nmeas of measurements is given by NG (see 
Table 3) multiplied by the number Nconf of configurations.

Label Lattice(T × L3) a [fm] mπ [MeV] ts [fm] Nconf Nmeas

A5 64 × 323 0.079 316 0.79 68 4,352
(2.5 fm)3 (mπL = 4.0) 0.95 74 4,672

1.11 72 4,608
1.26 71 4,544
1.42 695 44,480

B6 96 × 483 0.079 268 0.79, 1.11 49 3,136
(3.8 fm)3 (mπL = 5.0) 1.26 281 17,984

1.42 294 28,224

E5 64 × 323 0.063 456 0.82 559 35,776
(2.0 fm)3 (mπL = 4.7) 0.95 500 32,000

1.13 489 31,296
1.32 994 63,616
1.51 1,605 102,720

F6 96 × 483 0.063 324 0.82 60 3,840
(3.0 fm)3 (mπL = 5.0) 0.95 150 9,600

1.07 75 4,800
1.32 254 16,256
1.20, 1.51 299 19,136

F7 96 × 483 0.063 277 0.82, 0.95, 1.07 250 16,000
(3.0 fm)3 (mπL = 4.2) 1.20, 1.32 250 32,000

1.51 250 64,000

G8 128 × 643 0.063 193 0.88 184 14,720
(4.0 fm)3 (mπL = 4.0) 1.07 112 19,040

1.26 182 29,120
1.51 344 44,032

N6 96 × 483 0.05 332 0.9 110 3,520
(2.4 fm)3 (mπL = 4.1) 1.1 888 28,416

1.3, 1.5, 1.7 946 30,272

use to extract the axial charge, scalar and tensor charge. In section 3, we study the performance 
of AMA and consider how to tune the solver parameters. In Sections 4 and 5, we present a first 
analysis of the nucleon two-point function and three-point functions, respectively, using AMA 
with parameters tuned as presented in Section 3. In the last section, we summarize our results 
and discuss directions for further improvement and future study.

2. Numerical method

2.1. All-mode-averaging

The all-mode-averaging (AMA) estimator [21–23] for an observable O can be defined as

OAMA =O(rest) + 1

NG

NG∑
O(appx) g, (1)
g∈G
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O(rest) = 1

Norg

Norg∑
f ∈G

[
Of −O(appx) f

]
, (2)

where O(appx) denotes an approximate evaluation of O constructed by means of applying a “slop-
py” inversion algorithm (a truncated solver with a precision of typically around 10−3) to the Dirac 
operator. The bias inherent in any truncated-solver method is corrected by the term O(rest). To 
ensure that the expectation value of OAMA is consistent with O, both the sloppy and the exact 
evaluations of O are averaged over orbits Og under some subset G (of size NG) of a symmetry 
group (such as translations) under which O transforms covariantly.

To improve the accuracy with which the bias correction O(rest) is estimated, it may also be 
averaged over an orbit Of under a subset of size Norg � NG of G. In this way, it becomes 
possible to reuse existing exact evaluations of O using different source positions to enhance the 
statistical accuracy without having to recalculate the exact evaluations.

The idea behind AMA is that, as long as O(appx) is an appropriate observable in the sense 
of having a strong correlation with the original observable O, the statistical accuracy of OAMA

evaluated on Nconf gauge configurations should be similar to that of O on Nmeas = NG × Nconf
configurations, while the cost of evaluating O(appx) is much lower than that of evaluating O. We 
should therefore expect to be able to achieve a much-increased statistical accuracy for the same 
effort, or conversely to have to pay only a reduced price for achieving a desired statistical error.

More specifically, the ratio between the standard deviations of OAMA and O is given by [23]

σ AMA/σ �
√

N−1
G + 2�r + R, (3)

�r =
( 1

Norg
− 1

NG

)(
1 − 1

Norg

Norg∑
f ∈G

〈�Of �O(appx)f 〉
σf σ (appx) f

)
, (4)

R = 1

N2
G

NG∑

g,g′∈G

g 	=g′

〈�O(appx)g�O(appx)g′ 〉
σ (appx)gσ (appx)g′ , (5)

where �O = O − 〈O〉, and the standard deviation is given by σ = √〈(�O)2〉.
The deviation from the ideal error-scaling behaviour σ AMA ∼ 1/

√
NG is parameterised by 

two quantities: �r represents the degree of disagreement between O and O(appx) by tracking the 
amount by which the statistical fluctuations of O(appx) fail to track those of O, while R represents 
the amount by which using NG approximate measurements O(appx) g falls short of providing NG

statistically independent measurements by tracking the degree to which the individual approxi-
mations O(appx) g are correlated amongst themselves. Note that we ignore the correlation between 
the exact measurements Of because these are generally sufficiently few in number (Norg � NG) 
that it is always possible to choose the spatial separations between the sources large enough to 
render these correlations negligible.

To reduce the error on OAMA as far as possible, it is therefore desireable to achieve both 
�r � 0, indicating close tracking of the exact by the approximate measurements, and R � 0, in-
dicating nearly-independent measurements from different source locations. Achieving the latter 
primarily relies on a suitable choice of translation g by large enough distances, whereas the for-
mer has to be achieved by ensuring that the parameters of the truncated solver used are suitably 
tuned.
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2.2. AMA with a locally deflated SAP+GCR solver

So far, AMA has been mostly used with relatively inefficient solvers such as CG. It is therefore 
worthwhile to study whether the significant benefits reported in that context [26,27] carry over to 
the case of a more efficient solver, such as Lüscher’s locally deflated SAP-preconditioned GCR 
solver [28,29] used in the DD-HMC [30–32], MP-HMC [33], and openQCD [34,35] codes.

Here we recall the basic features of the Schwarz Alternating Procedure (SAP), as discussed 
in refs. [28,29]. When applied to the Dirac equation

Dψ = η , (6)

the SAP is a “divide and conquer” strategy which starts by decomposing the lattice into two 
non-overlapping domains � and �∗ consisting of blocks arranged in checkerboard fashion. The 
SAP then visits the blocks in turn, updating the field on each block to the solution of the Dirac 
equation with Dirichlet boundary conditions given by the field on the neighbouring blocks. Due 
to the checkerboard structure of the block decomposition, this can be done in parallel by simul-
taneously visiting first all black blocks and then all white blocks in parallel.

Denoting the points of � and �∗ that have neighbours in �∗ and �, respectively, by ∂�∗ and 
∂�, the Dirac operator can be decomposed into a sum

D = D� + D�∗ + D∂� + D∂�∗ , (7)

where D� acts only on the field at points x ∈ � with all terms involving fields in �∗ set to zero, 
D∂� contains the terms through which points in � receive contributions from �∗, and so forth. 
A complete cycle of the SAP can then be written as

ψ �→ (1 − KD)ψ + Kη (8)

with the SAP kernel

K = D−1
� + D−1

�∗ − D−1
�∗ D∂�∗D−1

� . (9)

After ncy SAP cycles starting from ψ = 0, this corresponds to approximating the inverse of the 
Dirac operator by the polynomial

D−1 ≈ MSAP = K

ncy−1∑
ν=0

(1 − DK)ν , (10)

and this is used as a preconditioner by solving the right preconditioned equation

DMSAPφ = η (11)

using the generalised conjugate residual (GCR) algorithm and setting ψ = MSAPφ at the 
end [28]. The tunable parameters of the SAP preconditioner are therefore the block size and 
the number ncy of SAP cycles.

To further accelerate the GCR solver, deflation may be used as a means of improving the 
condition number of the Dirac operator by separating the high and low eigenmodes for separate 
treatment. If the deflation fields {φk}k≤N span a subspace (the deflation subspace) containing 
good approximations to the low eigenmodes of the Dirac operator, an oblique projector to the 
orthogonal complement of the deflation subspace is given by

PL = 1 −
N∑

Dφk

(
A−1

)
kl

φ
†
l , (12)
k,l=1
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where

Akl = (φk,Dφl) (13)

is called the little Dirac operator. The Dirac equation can then be split into a low-mode and a 
high-mode part by left-projecting with 1 − PL and PL, respectively. The low-mode part can be 
solved in terms of the little Dirac operator, so that the solution is given by

ψ = χ +
N∑

k,l=1

φk

(
A−1

)
kl

(φl, η) , (14)

where the high-mode part χ = PRψ satisfies

PLDχ = PLη , (1 − PR)χ = 0 (15)

with PLD = DPR [29].
Combining the block-decomposition approach with deflation leads to the construction of a 

deflation subspace of dimension N = NsNb , where Nb is the number of blocks, and each defla-
tion field has support only on a single block. In practice, such deflation fields are obtained by 
restricting a set of Ns global deflation fields to each block and orthonormalising the resulting 
fields using the Gram-Schmidt procedure. To ensure that the deflation space approximates the 
low eigenspaces of the Dirac operator efficiently, the global fields should ideally be good ap-
proximations to the low modes. Such approximations can be obtained using a few rounds of the 
inverse iteration φl �→ D−1φl starting from random fields. Since only approximate low modes 
are needed, the exact inverse of the Dirac operator is not required, and the SAP approximation 
MSAP can be used instead [29]. Note that by using the block decomposition, we effectively are 
able to obtain N deflation vectors for the price of computing only Ns � N approximate eigen-
modes. The tunable parameters of the deflation procedure are then the block size and the number 
Ns of global deflation fields.

For a more efficient implementation, mixed-precision calculations can be used; since the SAP 
preconditioner needs not be very precise, single-precision arithmetic suffices in this case. In the 
GCR algorithm, likewise, some operations can be carried out in single precision [28].

In line with the setup used in the generation of the Monte Carlo ensembles, we keep ncy = 5
fixed in our setup. The remaining algorithmic parameters that control the quality of the sloppy 
solves, as measured by �r in Eq. (4) are then the iteration number Niter of the GCR algorithm, 
the block size (which for simplicity we take to be the same for the SAP preconditioner and 
the deflation procedure), and the number Ns of global deflation fields. Tuning these parameters 
requires one to make a trade-off between the quality of the AMA approximation and the gain 
in performance from using the sloppy solver. In the case of the iteration number this is obvious, 
while in the case of the deflation parameters the trade-off comes from the increase of the size 
(and hence condition number) of the little Dirac operator with Ns and the number of blocks. We 
will study the dependence of the overall runtime on these parameters in section 3 below.

A notable feature of the block-decomposition technique is that for translations within the 
same block the translation invariance of the approximate solution O(appx) may be broken due to 
the limited precision of the sloppy solver in conjunction with the Dirichlet boundary conditions 
imposed in each SAP cycle. To preserve the translational invariance of O(appx) g under all trans-
formations g ∈ G, we use only shifts that map the domains � and �∗ onto themselves. As MSAP
is invariant under such translations, these shifts are not affected by broken translation invariance.
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2.3. Computation of nucleon charges

In this paper we concentrate on the application of AMA to computating the axial (gA), scalar 
(gS ) and tensor (gT ) charges of the nucleon in lattice QCD. These observables can be extracted 
from suitably renormalised ratios of two- and three-point functions involving the operators of 
the axial current Aμ = ψ̄γμγ5ψ , scalar density S = ψ̄ψ , and tensor current Tμν = ψ̄σμνψ , 
respectively.

For the nucleon, we use the interpolating field

Nα = εabc(uaCγ5d
b)uc

α, (16)

where C is the charge conjugate matrix, α is the Dirac spinor index, and a, b, c are the colour
indices of the quark fields. (In the following we will omit the spin indices from our notation.)

In order to increase the overlap between the nucleon ground state and the state created by 
applying the interpolating operator to the vacuum, we apply Gaussian smearing [9] (with APE-
smeared [36] gauge links in the Laplacian) at both source and sink. The smearing parameters 
used are the same as in [25,37].

Using the spin-projection matrices P + = 1
2 (1 + γ0) and P +

53 = P+γ5γ3, we evaluate the 
charges of the nucleon through computing the ratios of three- and two-point functions given 
by

Rbare
A (t, ts) =

tr
[
P +

53〈N(ts)A3(t)N̄(0)〉
]

tr
[
P +〈N(ts)N̄(0)〉

] , (17)

Rbare
S (t, ts) =

tr
[
P +〈N(ts)S(t)N̄(0)〉

]

tr
[
P +〈N(ts)N̄(0)〉

] , (18)

Rbare
T (t, ts) =

tr
[
P +

53〈N(ts)T12(t)N̄(0)〉
]

tr
[
P +〈N(ts)N̄(0)〉

] , (19)

which yield the (bare) charges gbare
A , gbare

S , and gbare
T , respectively, at asymptotically large time 

separations,

lim
ts ,ts−t→∞Rbare

O = gbare
O . (20)

At finite time separations the ratio Rbare
O differs from its asymptotic value gbare

O by time-dependent 
contributions from excited states with the same quantum numbers as the ground state. We will 
discuss in section 5 how to best suppress these contributions, and how the use of AMA can help 
to obtain a good signal even at relatively large time separations.

To further improve the statistical quality of the signal for the ratio Rbare
O , we average over the 

forward- and backward-propagating nucleon, constructing the ratio separately for each direction 
in order to take optimal advantage of correlations between the two- and three-point functions. 
Obtaining the three-point function for both directions requires the computation of sequential 
propagators with sink positions at both ts and T − ts , whereas the two-point function for both 
directions can be obtained from a single inversion by using opposite parity projections for the 
forward and backward directions.
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Table 2
Renormalisation factors for the axial current, Zeff

A
= ZA(1 + bAamq), from [38,39], and for the scalar operator, 

ZMS
S

(2 GeV), and the tensor operator, ZMS
S

(2 GeV), from [15]. A perturbative error of the same order as the one-loop 
contribution to bA is included in Zeff

A
.

Label Zeff
A

ZMS
S

ZMS
T

A5 0.7785(83) 0.6196(54) 0.8356(15)
B6 0.7777(76) 0.6196(54) 0.8356(15)
E5 0.7866(83) 0.6152(32) 0.8540(91)
F6 0.7842(59) 0.6152(32) 0.8540(91)
F7 0.7835(51) 0.6152(32) 0.8540(91)
G8 0.7825(42) 0.6152(32) 0.8540(91)
N6 0.8022(91) 0.6082(31) 0.8886(95)

We note that, since the charges are defined at zero momentum transfer and we use the spatial 
components of the axial vector and tensor currents, no additional operators are needed to realise 
O(a) improvement. To obtain the renormalised charges gO = ZOgbare

O , we therefore only need 
to include the appropriate renormalisation constants, which should ideally be chosen such that 
O(a) improvement is realised. We use the non-perturbative determination of ZA computed in the 
Schrödinger functional [38] together with the perturbative mass correction bA from [39], while 
for ZS and ZT we take the non-perturbative evaluations in the MS scheme at a renormalisation 
scale of μ = 2 GeV using the RI-MOM scheme [15]. Since the values of the bare coupling used 
in [15] are slightly different from the ones used by us, we determine the values of ZS and ZT

to use by linear interpolation and extrapolation in 1/β , ignoring the unknown mass correction 
terms. In summary, our renormalised ratios are related to the bare ones by

RA(t, ts) = ZA(1 + bAmqa)Rbare
A (t, ts) , (21)

RS(t, ts;μ) = ZS(μ)Rbare
S (t, ts) , (22)

RT (t, ts;μ) = ZT (μ)Rbare
T (t, ts) . (23)

Table 2 shows the values of the renormalisation constants used in this paper.

3. Tests and performance of AMA

In order to achieve the greatest possible gain in statistical accuracy for fixed computational 
effort, we need to appropriately tune the parameters of the sloppy solver.

3.1. Covariance test

Before discussing how to tune the parameters of AMA for use with the deflated SAP-
preconditioned GCR solver, we first need to check that the covariant symmetry of the ap-
proximation is preserved in the presence of the domain decomposition underlying the SAP 
preconditioner.

The amount by which the assumed covariance is violated can be parameterized by [23]

δc = (O(appx)g[Uḡ] −O(appx)[U ])/O(appx)[U ], (24)

i.e. the relative difference between evaluating the original observable on the original gauge field 
and evaluating the approximation based on the transformation g on the appropriately transformed 
gauge field; if covariance were exact, we would find δc = 0.
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Fig. 1. The covariance violation |δc| defined in (24) for the nucleon two-point function as a function of source-sink 
separation as measured on one F7 configuration (96 × 483 lattice, mπ = 0.277 GeV). The different colours indicate the 
results obtained using smeared (green squares) and point (blue circles) sources and sinks, respectively. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For a numerical test, we use the F7 ensemble from Table 1, choosing a domain size of 64

for the SAP preconditioner. In line with the arguments laid out in Section 2.2, shift vectors 
need to be such that each of the SAP subdomains is mapped onto itself; we therefore choose 
the shifted source location to be g = (6, 6, 0, 0), with the corresponding shift of the gauge field 
given by ḡ = (−6, −6, 0, 0). Since the point of this comparison is to check that the effects of 
the block decomposition in the SAP are under control, we did not use deflation for this test. For 
the approximation, we therefore had to choose a fixed iteration count of Niter = 30 for the GCR 
algorithm, which in our example corresponds to a residual norm of order 10−2. The resulting 
covariance violation |δc| for the nucleon two-point function as a function of the source-sink 
separation is shown in Fig. 1. At large time separations t � 30a, the accumulation of round-off 
errors in the approximation leads to a non-negligible covariance violation |δc| ∼ 10−5–10−3

(which however is still less than the statistical errors in this time region). On the other hand, the 
covariance assumption is well-justified in the typical signal region t � 25a, where |δc| � 10−6. 
We may therefore conclude that with this set of parameters, the systematic error arising from 
violating the covariance assumption is negligible for practical purposes.

3.2. Correlation between original and approximation

Given that the statistical error of the AMA result depends crucially on the discrepancy �r

between the fluctuations of the original observable and its approximate evaluation, our tuning of 
the solver parameters will have to be guided by considering the parameter dependence of �r .

The left panel of Fig. 2 shows 2�r for the nucleon two-point function as a function of source-
sink separation using both Ns = 40 and Ns = 60 deflation vectors. For Ns = 40, an increase in 
�r can be seen at larger time separations 15 ≤ t/a ≤ 25, where it becomes large enough to no 
longer be negligible compared to 1/NG for NG = 128. For Ns = 60, on the other hand, we find 
�r � 10−3 all the way out to t/a = 25 (corresponding to a separation of ∼ 1.5 fm). The optimal 
choice of the parameters for the approximation therefore will in general depend on the maximal 
time separation one is interested in.
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Fig. 2. The correlation mismatch 2�r on the G8 ensemble (128 ×643 lattice, mπ = 0.193 GeV) for the nucleon two-point 
function (left) and the axial-vector nucleon three-point function (right), as a function of the source-sink separation ts and 
operator insertion time t . The straight lines indicate the level of the statistical error reduction achievable with AMA in the 
case of mutually perfectly decorrelated approximations that are each perfectly correlated with the original observable.

Fig. 3. A comparison of the computational cost between the exact (using Ns = 40 deflation vectors) and two approximate 
evaluations (using Ns = 40 and Ns = 60, respectively) of the axial charge of the nucleon on the G8 ensemble. All 
percentages given are relative to the total time for the exact evaluation.

The right panel of Fig. 2 shows 2�r for the three-point function appearing in the numerator 
of the ratio RA as a function of the operator insertion time t for a range of different source-sink 
separations ts . For Ns = 40, �r is seen to increase with ts , becoming comparable to 1/NG for 
NG = 128 at ts/a = 20. Since �r can be reduced by increasing Norg as per Eq. (4), we use 
Norg > 1 for ts/a = 20. For Ns = 60, we see that �r is sufficiently reduced to be negligible 
even at ts/a = 24, albeit at the expense of a 1.6-fold increase in computing time (cf. Fig. 3), 
indicating that the trade-off between computational cost and achievable statistical accuracy is a 
crucial consideration in tuning the parameters of the approximation used in AMA.

3.3. Performance of AMA for different approximation parameters

In Fig. 3, we show a comparison of the overall performance of two different approximations 
(using Ns = 40 and Ns = 60 deflation vectors, respectively) relative to the exact evaluation (with 
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Fig. 4. The relative error of the axial charge measured on the F7 ensemble using ts /a = 13, t/a = 7 plotted against the 
total CPU time used. The different symbols and colours denote different values for NG , where the error scaling for each 
is explored using different numbers of gauge configurations. In the case of the non-AMA evaluation, the complete gauge 
ensemble is used with a single source position for the exact evaluation. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Ns = 40 deflation vectors), using the G8 ensemble as a test case. For the approximation with 
Ns = 40, the time required for inverting the Dirac operator is reduced by a factor of 5, whereas for 
Ns = 60, the reduction is only by a factor of 3 due to the larger size of the “little” Dirac operator 
(13) in Eq. (14). Taking into account the fact that generating a larger number of deflation fields 
is also more costly, and including the fixed costs of source and sink smearing and contractions, 
the total time for an approximate evaluation using Ns = 40 is about 30% of the exact calculation, 
whereas for Ns = 60 it is about 50%.

3.4. Error scaling and computational cost

Finally, we consider how the overall statistical error scales as a function of the total CPU time 
used when varying the total number of measurements by varying NG, Nconf, or both.

Fig. 4 shows the relative error of the ratio RA(t, ts) from Eq. (21), as measured on the F7 
ensemble using ts/a = 13 and t/a = 7, plotted against the total CPU time used for AMA with 
NG = 8, 16, 32, and 64, with different numbers of configurations used. The relative error and 
CPU time required when not using AMA and performing a single exact evaluation on each 
configuration instead is also shown for comparison.

Since increasing NG leads to an increase in the correlation R between the different approxi-
mations (because the source positions g will have to be taken closer together when using more 
approximate solves), the error scaling between different values of NG is not perfect. In our test 
case, using NG = 8 requires about half the computational cost at the same relative error as the 
larger values of NG considered, whereas the larger NG values exhibited roughly identical error 
scaling.

Comparing AMA to the conventional method, a reduction in error by a factor of about 1.5 − 3
can be achieved at constant computational cost by using AMA. This is one of the main findings 
of this paper concerning the performance and effectiveness of AMA in conjunction with highly 
efficient solvers.
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Table 3
AMA tuning parameters for each gauge ensemble.

Label Domain size 
(T× X× Y× Z)

Ns NG Niter
(2pt, 3pt)

Norg ts [fm]

A5 4×4×4×4 30 64 (3, 3) 1 0.79, 0.95, 1.11
1.26, 1.42

B6 6×6×6×6 40 64 (4, 3) 1 0.79, 1.11, 1.26
40 96 (3, 3) 1 1.42

E5 4×4×8×8 30 64 (3, 3) 1 0.82, 0.95,
1.13, 1.32

30(994 cfgs.) 64 (3, 3) 5 1.51
40(661 cfgs.)

F6 6×6×6×6 30 64 (4, 3) 1 0.82, 0.95, 1.07
1.20, 1.32

40 64 (4, 3) 1 1.51

F7 6×6×6×6 30 64 (4, 3) 1 0.82, 0.95, 1.07
30 64 (4, 3) 4 1.2, 1.32
40 64
30 192 (4, 3) 15 1.51
40 64

G8 8×8×8×4 40 80 (4, 3) 1 0.88
40 170 (4, 3) 1 1.07
40(101 cfgs.) 160 (4, 3) 5 1.26
50(81 cfgs.) 160
60 128 (4, 3) 1 1.51

N6 6×6×6×6 30 64 (4, 3) 1 0.9, 1.1, 1.3
1.5, 1.7

3.5. Tuning of AMA parameters

For the remaining calculations, we have tuned the parameters of the deflated SAP-precondi-
tioned GCR solver so as to achieve the maximum reduction in computational cost while keeping 
�r sufficiently suppressed to enable good error scaling. Table 3 shows the resulting tuned pa-
rameter values.

We use fixed numbers Niter of GCR iterations for the point-to-all propagator and the sequential 
propagator, as shown in Table 3; using a sloppier propagator between the sink and operator 
insertion point does not lead to an increase of �r , and thus enables us to reduce the computational 
cost for the three-point function. We note that the iteration count of Niter = 3 corresponds to a 
similar residual as Niter = 30 in the undeflated test of section 3.1.

4. AMA study of excited-state contamination in nucleon two-point functions

The nucleon two-point correlation function may be approximated as

CN(t) � ZNe−mNt + ZN ′e−mN ′ t + · · · , (25)
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Table 4
Results for single- and double-exponential fits to the nucleon two-point function on each gauge ensemble. The nucleon 
mass, χ2/dof and fitting intervals (in lattice units) are given. To determine the masses, the largest set of measurements 
available in Table 1 for each ensemble was used (i.e. for ensemble E5 the measurement set where Nmeas = 102,720 was 
used).

Single-exp. Double-exp. Ref. [40]

A5 [15, 20] [6, 20] [5, 20] [7, 20] [6, 19] [6, 21] [10, 25]
amN 0.465(6) 0.437(1) 0.444(2) 0.444(2) 0.437(2) 0.449(1) 0.468(7)
χ2/dof 0.8 4.6 1.54 2.9 2.6 4.8 0.9

B6 [15, 20] [6, 20] [5, 20] [7, 20] [6, 19] [6, 21] [8, 20]
amN 0.448(7) 0.436(2) 0.444(2) 0.424(1) 0.433(4) 0.434(2) 0.444(5)
χ2/dof 0.4 3.8 13.2 2.3 1.0 1.2 1.3

E5 [15, 23] [7, 23] [6, 23] [8, 23] [7, 22] [7, 24] [11, 25]
amN 0.433(1) 0.429(1) 0.421(1) 0.430(1) 0.432(1) 0.429(2) 0.441(4)
χ2/dof 0.5 2.5 5.3 1.6 0.6 2.2 1.1

F6 [15, 24] [8, 24] [7, 24] [9, 24] [8, 23] [8, 25] [11, 25]
amN 0.382(2) 0.370(2) 0.376(1) 0.376(1) 0.379(3) 0.376(1) 0.382(4)
χ2/dof 0.6 1.9 1.5 1.6 1.6 1.6 1.0

F7 [17, 24] [9, 24] [8, 24] [10, 24] [9, 23] [9, 25] [11, 25]
amN 0.369(3) 0.361(1) 0.360(1) 0.363(2) 0.359(2) 0.361(2) 0.367(5)
χ2/dof 0.9 1.1 1.3 1.1 1.5 1.2 0.58

G8 [17, 24] [8, 24] [7, 24] [9, 24] [8, 23] [8, 25] [11, 24]
amN 0.338(4) 0.335(2) 0.338(2) 0.336(1) 0.336(1) 0.331(2) 0.352(6)
χ2/dof 1.3 1.5 1.8 0.9 1.6 1.6 1.4

N6 [23, 33] [11, 33] [10, 33] [12, 33] [11, 32] [11, 34] [15, 30]
amN 0.288(2) 0.290(1) 0.285(2) 0.290(7) 0.293(1) 0.290(1) 0.297(3)
χ2/dof 1.3 2.7 2.2 3.3 2.7 2.6 0.69

with masses mN and mN ′ and overlap factors ZN and ZN ′ , for the ground state and first excited 
state respectively. In order to study the nucleon mass, we utilised single- and double-exponential 
fits to the correlation function eq. (25), of the form

CN(t) = Ae−mt , (26)

CN(t) = Ae−mt + Be−(m+�)t . (27)

For the fitting, we used a χ -squared minimisation and found that the nucleon mass could be 
determined reliably using a single-exponential fit performed in the interval 1.0 fm < t < 1.5 fm
(confirmed by the double-exponential fits), whereas in order to incorporate the excited states 
fitted in the double-exponential fits, an earlier fitting interval was required, starting at t � 0.5 fm. 
This is highlighted by the plots in Fig. 5, where the effective mass

meff
N (t) = ln

CN(t)

CN(t + 1)
, (28)

is used to monitor the region of ground state dominance and of excited-state contamination. It 
also indicates the effectiveness of the exponential fits.

The results for the single- and double-exponential fits to the correlation function for each of 
the ensembles are given in Table 4, four of which are displayed in Fig. 6. For the subsequent 
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Fig. 5. Effective mass plots of the nucleon for six gauge ensembles. The ensemble parameters are indicated in the plots. 
The two colours indicate the different nucleon sink operators. The blue and cyan bands indicate the results and errors 
from single- and double-exponential fits to the correlator. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Fig. 6. Results for single- (red points) and double-exponential fits to the nucleon two-point function for the β = 5.3
gauge ensembles. For the double-exponential fits, the blue and green points indicate the ground and excited state masses 
respectively, for a number of different fitting intervals (indicated in Table 4). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

analysis, we took the single-exponential results for the extracted ground state nucleon mass. 
Whilst we see a small discrepancy for this value obtained from double-exponential fits, we find 
that, overall, the double-exponential fits largely confirm the single-exponential fits to be in the 
ground-state region. The observed discrepancy within the double-exponential fits (dependent on 
the fitting interval) is, in part, due to the contamination by higher excited states, which are not 
accounted for by the double-exponential fitting ansatz of Eq. (27).

For reference, we also show our previous results from [40] in Table 4 and note that for three en-
sembles (labelled E5, N6 and G8) we observe a discrepancy between the new single-exponential 
results and our previous results. This is due to the increased statistics on these ensembles, which 
allows us to better identify the contamination from excited states and hence provide a revised 
determination of the nucleon mass at later fitting intervals.

5. AMA study of excited-state contamination in nucleon three-point functions

The ratios RA, RS and RT ,

RO(t, ts) = gO + cO
(
e−�ts + e−�(ts−t)

) + O(e−�′(ts−t)), (29)

with the target observable gO , mass difference � and unknown coefficient cO suffer excited state 
contamination at finite t and ts . For the subsequent analysis, we used both the plateau method 
that assumes ground state dominance around the middle of each ts dataset and the summation 
method [9,13,25].

5.1. Axial charge

5.1.1. Plateau method
In Fig. 7 we show gA obtained from plateau fits to the middle 4 points (3 for N6) of the ratio 

RA(t, ts), for each ts . The ratio RA(t, ts) typically resembles the example shown in Fig. 8 (right 
panel) for the F7 ensemble. This demonstrates a clear tendency for the plateau results to approach 
the experimental value from below as ts is increased and indicates a significant contribution from 
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Fig. 7. gA as a function of ts from plateau fits. Green symbols denote our previous results [25] on the same configu-
rations but without AMA. These have been rescaled to account for the updated renormalisation factors in Table 2. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the excited states in Eq. (29), which is especially pronounced for N6 (small lattice spacing) and 
G8 (small pion mass). The excited state contamination is significant at ts = 1 fm, which supports 
our previous findings [25] that the plateau method still suffers from substantial excited state 
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Table 5
gA on the F7 gauge ensemble, mπ = 277 MeV. Using the plateau method for each source-
sink separation and the summation method result.

ts/a ts [fm] gA

13 0.82 1.123(09)
15 0.95 1.139(13)
17 1.07 1.140(18)
19 1.20 1.164(26)
21 1.32 1.217(40)
24 1.51 1.217(61)

Sum (all ts ) 1.218(48)
Sum (ts > 0.9 fm) 1.244(82)

Exp. 1.272(02)

Table 6
gA determined using the plateau method for the largest source-sink separation, tmax

s , for each gauge ensemble. The 
approximate pion and nucleon masses are given for reference.

Label mπ [MeV] mN [MeV] gA plateau tmax
s

A5 316 1160 1.255(35)
B6 268 1120 1.277(36)

E5 456 1350 1.184(25)
F6 324 1190 1.205(36)
F7 277 1150 1.217(61)
G8 190 1090 1.224(68)

N6 332 1130 1.254(49)

Exp. 139 939 1.272(02)

contamination at ts = 1.3 fm and that 1.5 fm or more may be required. The plateau fit results at 
each ts for ensemble F7 are given in Table 5, for which the extracted gA results can be clearly 
seen to approach the experimental value as the source-sink separation is increased. The results 
for the largest ts on each ensemble are summarised in Table 6.

5.1.2. Summation method
Performing the summation SO(ts) parametrically reduces the excited state contamination,

SO(ts) ≡
ts−1∑
t=1

RO(t, ts) = d1 + (
gO + O(e−�ts )

)
ts , (30)

and through determining SO(ts) for a number of ts , the target observable may be obtained from 
the slope of a linear fit.

The ts dependence of the summed data points, including the linear fits, for the F7 ensemble are 
shown in Fig. 8 and the results are summarised in Table 5. To check the dependence of the fit on 
the smaller ts points, the linear fits were performed for two intervals. One used all the ts points 
and the other used only the points where ts > 0.9 fm. We observe no statistically significant 
discrepancy between the two fits and therefore we quote the statistically more accurate result 
that incorporates all ts points.



G. von Hippel et al. / Nuclear Physics B 914 (2017) 138–159 155
Fig. 8. Left panel: SA as a function of ts on the F7 gauge ensemble. The solid lines are linear fits to all ts points (blue) and 
only for points where ts > 0.9 fm (red). The bands indicate the statistical error of the respective fit. Right panel: RA(t, ts )
for the nucleon axial charge as a function of t − ts/2 with the summation result for all ts overlaid. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Renormalised scalar charge gS (left panel) and gT (right panel) as a function of ts obtained from plateau fits.

5.2. Scalar and tensor charge

Fig. 9 shows the renormalised scalar charge gS and tensor charge gT , extracted from the ratio 
of the two- and three-point functions defined in Eq. (18) and Eq. (19) and obtained from plateau 
fits (to the same intervals as for gA). In contrast to gA, the dependence on ts is very mild with 
no evidence of excited state contaminations, even for a fine lattice spacing (N6) or for a light 
pion mass (G8). This echoes the behaviour seen by other groups, such as [18,15]. In Fig. 10 we 
show a comparison of lattice results for these quantities, where we use our plateau fit results for 
ts ∼ 1.1 fm, which we believe to be reasonable due the absence of excited state behaviour in 
these quantities, as seen in Fig. 9. A similar comparison for the case of gA is shown in Fig. 11, 
but we caution that the results obtained from the plateau method shown here should not be taken 
at face value due to the strong excited state contamination observed in the case of gA, even when 
ts is as large as 1.3 fm.
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Fig. 10. Left panel: results for gS from ETMC [41,42], LHPC [43], PNDME [18,44], and RQCD [15] (open symbols) 
compared to this work (filled symbols) as a function of m2

π ; right panel: results for gT from ETMC [45,42], LHPC 
[43], PNDME [18,44], RQCD [15], and RBC/UKQCD [46] (open symbols) compared to this work (filled symbols) as a 
function of m2

π . All results are quoted using a renormalisation scale of 2 GeV.

Fig. 11. Results for gA from ETMC [47,48,42], LHPC [49,50], PNDME [18,44], and RQCD [15] (open symbols) com-
pared to this work (filled symbols, plateau method only) as a function of m2

π .

6. Summary and discussion

We have investigated the performance of all-mode-averaging (AMA) [21–23] when used in 
conjunction with the locally deflated SAP-preconditioned GCR solver [28,29] employed in the 
DD-HMC [30,31], MP-HMC [33] and openQCD [34,35] packages. While the block decomposi-
tion that forms the basis of the SAP preconditioner breaks the translation invariance of the Dirac 
operator and thus limits our choices of source position for the sloppy solver in the AMA method 
[51], we find that AMA provides an increase in efficiency (as measured by computer time ex-
pended to achieve a given relative statistical accuracy) by a factor of around two compared to the 
standard method of averaging over multiple source positions.

Using AMA with appropriately tuned parameters, we have investigated the excited-state 
contamination of the axial, scalar and tensor charges of the nucleon by measuring two- and 
three-point functions at large source-sink separations ts � 1.5 fm with large statistics. AMA en-
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ables us to achieve good statistical precision even at large ts with moderate computational effort. 
The results for the axial charge contained in this paper represent an extension of our earlier study 
[25] with statistics increased by a factor of 5–20.

From a comparison of different analysis methods (such as plateau fits and the summation 
method), we are able to conclude that the ratio from which gA is extracted still suffers from 
significant excited-state contamination even at source-sink separations of around ts � 1.3 fm, 
while the ratios for gS and gT are only weakly affected.

In a recent study by the Regensburg group [15] using similar configurations with Nf = 2
O(a)-improved Wilson fermions, a value for gA that was around 10% below the experimental 
one was obtained even at mπ � 150 MeV, using source-sink separations of ts � 1 fm. Our es-
timate of gA obtained from ts � 1.5 fm in the mass range mπ � 200–300 MeV is consistent 
with experiment and shows no significant pion mass dependence; we also do not find any ev-
idence for a sizeable finite-size correction [14] on our lattices satisfying mπL ≥ 4. It appears 
likely, therefore, that for gA source-sink separations ts larger than 1.5 fm are required in order 
to avoid any systematic uncertainty from excited state contamination. This must be controlled 
before proceeding to an estimate of other systematic uncertainties, for instance finite-size, pion-
mass, and cut-off effects. Since we did not apply AMA in order to increase statistics to the entire 
range of lattice spacings and pion masses available, we refrain from performing a joint chiral and 
continuum extrapolation of gA, gS , and gT , to quote a result at the physical point.

The present study has demonstrated the feasibility of obtaining statistically accurate results for 
nucleon structure observables from lattice QCD using large source-sink separations with AMA, 
and we intend to perform further studies of nucleon structure (including in particular the vector 
form factors, where the suppression of excited-state effects appears to be of crucial importance 
[40] in order to address the proton radius puzzle from first principles) using this method. Related 
efforts on the Nf = 2 + 1 CLS configurations [52] are under way.
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