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1 Introduction

For several decades diffraction has been one of the most intriguing phenomena of strong
interaction. The HERA research program has shown for the first time that diffractive
processes in the semi-hard regime can be measured and studied based on QCD, giving one
of the main tools to access the internal dynamics of the nucleon in a regime of very high

1 One of the most important legacies of HERA is the fact that almost

gluon densities.
10 % of the v*p — X deep inelastic scattering (DIS) events contain a rapidity gap between
the proton remnants and the hadrons coming from the fragmentation region of the initial
virtual photon. This subset of events, called diffractive deep inelastic scattering (DDIS),
thus looks like v*p — XY [3-10], where Y is the outgoing proton or one of its low-mass
excited states, and X is the diffractive final state. Apart from the inclusive DDIS data, one
can further focus on more specific interesting observables, like diffractive jet(s) production,
or exclusive meson production.

Due to the existence of a rapidity gap between X and Y, it is natural to describe
diffraction through a Pomeron exchange in the t—channel between these X and Y states.
This is a common concept underlying the approaches to describe diffraction within pertur-
bative QCD.

In the collinear framework, justified by the existence of a hard scale (the photon
virtuality @2 of DIS), a QCD factorization theorem was derived [11]. Similarly to DIS
on a proton, here one introduces diffractive structure functions, which are convolutions of
coefficient functions with diffractive parton distributions. In this resolved Pomeron model,
those distributions describe the partonic content of the Pomeron, similarly to the usual
parton distribution functions for proton in DIS.

At high energies, it is natural to model the diffractive events by a direct Pomeron
contribution involving the coupling of a Pomeron with the diffractive state X of invariant
mass M. For low values of M2, X can be modeled by a ¢g pair, while for larger values of
M?, the cross section with an additional produced gluon, i.e. X = ¢gg, is enhanced. Based
on such a model, with a simplified two-gluon exchange picture for the Pomeron, a good
description of HERA data for diffraction was achieved [12]. Interestingly, the ¢g component
with a longitudinally polarized photon plays a crucial role in the region of small diffractive
mass M, although it is a twist-4 contribution. It is a typical signature of such models.

In this direct Pomeron contribution, the ggg diffractive state has been studied in two
particular limits. First, at large Q?, a collinear approximation can be used, based on
the fact that the transverse momentum of the gluon is much smaller than the transverse
momentum of the emitter [13-15]. Second, for very large M?, contributions with a strong
ordering of longitudinal momenta are enhanced [16, 17]. These two limiting results were
combined in a single model, and applied to HERA data for DDIS in ref. [18].

In the present article, we extend our work started in [19] towards a complete next-to-
leading order (NLO) description of the direct coupling of the Pomeron to the diffractive
X state. To be more specific, the “Pomeron” should be here understood as a color singlet
QCD shockwave, in the spirit of Balitsky’s high energy operator expansion [20-23] or in
its color glass condensate formulation [24-32].

'For reviews, see refs. [1, 2].



In our previous study [19], we computed the () 5 ¢gg impact factor and rederived
the v*) — ¢g impact factor, both at tree level.2 In the present article,®> we complete
the results of ref. [19] by a study of the virtual contributions, and compute the one-loop
'y(*) — qq impact factor. We emphasize that in these results, the impact factors are com-
puted without any soft or collinear approximation for the emitted gluon, in contrast with
the results reported in the literature. This thus presents an important step towards a
consistent description of inclusive DDIS, or exclusive two-jet diffractive production, in the
fragmentation region of the scattered photon, i.e. in the forward rapidity region, with NLO
precision. Since the results we derive are obtained in the QCD shock-wave approach, and
depend on the total available center-of-mass energy, the present framework is rather gen-
eral and can have many applications. Indeed, below the saturation regime, one might de-
scribe the t—channel exchanged state in the linear Balitsky-Fadin-Kuraev-Lipatov (BFKL)
regime [35-38], here with NLO precision [39-42]. At higher energies, beyond the saturation
limit, the Wilson-line operators, whose matrix element describes the t—channel exchanged
state, evolve with respect to rapidity according to the Balitsky hierarchy. In the case of a
dipole operator, it reduces to the Balitsky-Kovchegov (BK) equation [20-23, 43, 44] in the
large N, limit.

In the present paper we calculate the matrix element for the 7(*) — @ transition in
the shockwave background of the target. It depends on the target via the matrix elements
of two Wilson line operators tr(U; UQT) and tr(U; U:;f) tr(U;;UJ) — Nctr(Uy UQT) between the in
and out target states. The Wilson lines are functions of the rapidity which separates the
gluons belonging to the impact factor and the gluons from the Wilson lines. For hadron
targets these matrix elements are to be described by some models. For example for the
former one there are several saturation models, inspired by the Golec-Biernat and Wiisthoff
model [45, 46], while for the latter, to the best of our knowledge, we are not aware about
any such model. These Wilson line operators can also be calculated as solutions of the
NLO BK and the LO double dipole evolution equations with the initial conditions at the
rapidity of the target. In the linear limit (BFKL) for forward scattering these solutions
are known analytically with a running coupling [47, 48]. In addition, in the low density
regime one can always linearize the second Wilson line operator and write the cross section
in terms of matrix elements of color dipoles only.

Here we will focus on the details of the coupling of these Wilson-line operators to
the diffractive state. The various possible regimes and the related appropriate projections
which are required for phenomenological applications will be the subject of a future study.
This choice is motivated by the fact that one of the technical difficulties in this frame-
work is to prove explicitly that the various infrared (IR) and ultraviolet (UV) singularities
cancel properly.

Next, motivated by the phenomenological importance of our results, we study in detail
the cross section for exclusive dijet production in diffraction, as was recently reported by
ZEUS [49], to show how these cancellations occur in a detailed way. For that, we derived
the differential cross section for the v*P — ¢qP’ transition. Taking the corresponding

2Here the photon can be either on-shell or off-shell, hence the notation ’y<*).
3Partial results of the present study were already presented in refs. [33, 34].



matrix element from ref. [19] we also calculated the v*P — ¢ggP’ cross section. Combining
them we wrote the v*P — 2jets P’ exclusive cross section canceling the soft and collinear
singularities in the small cone approximation. Besides, outside the jet cones one can use
the v*P — qqgP’ cross section to study the electroproduction of 3 jets as well.

The paper is organized as follows. The next section contains the definitions and nec-
essary results. Section 3 briefly introduces the basic notations and reproduces the LO
~*) — ¢ impact factor and gives the general expression for the v*) — ¢ impact factor at
one-loop accuracy. Section 4 gives the v*) — ¢gg impact factor at Born order in arbitrary
dimensions. Section 5 gives the 4*) P — qgP’ cross section at leading and next-to-leading
order. Section 6 gives the YY) P — ¢ggP’ cross section at leading order. Section 7 gives
the final result for exclusive v*P — dijetP’ transition, showing explicitly the cancellation
of divergencies, based on the two previous sections. Section 8 concludes the paper. The
appendices comprise the necessary technical details.

2 Definitions and building blocks

We introduce the light cone vectors ny and no as follows:

n=(1,00,1), np= %(1,@,—1), nt = ny = (n1-na) = 1 (2.1)
For any vector p we note
pr=p-=@{p-n)= %( °+1°),  pr=p =@ m)=p"-p", (2.2)
p=pni+p na+pi, (2.3)
so that
(p k) =p'ky=p k™ +p k" + (o k1) =pik- +p_ky — (7 k). (2.4)

For a moment, we will consider the open production of partons, the conversion into jets
will be discussed later in this paper. We denote the initial photon vector as p,, and the
outgoing quark and antiquark vectors as pg, and p;. In the real correction, an additional
external gluon is emitted. Its momentum will be denoted as p,. We will focus on diffraction
off a proton P which remains intact after the interaction. We denote the initial and final
proton momenta as py and pf. Our calculation can be used for other processes later on
with minor modifications. We consider semihard kinematics with the hard scale

s = (py +p0)° > [P3], Mp, [phol. (2.5)

Here and throughout this paper we use the notation p;; = p; — p; for two given vectors
p; and p;. Mp is the proton mass. The semihard scale comes from either the photon
virtuality |p3/\, the momentum transfer |p(2)0,\, or the invariant mass of the produced jets.
In this kinematics one can write

s 2p$p5, (2.6)



and choose the reference frame where
pj,pa ~ /5. (2.7)
In the case of our process, one can write
P~ pd ~pk > gt po >0y pg vy (2.8)
The longitudinal momentum fractions of the qq pair are defined by

- +
Pq Pg
— =z = z5. (2.9)
Py " T
For simplicity we consider a forward photon with virtuality () and no transverse momentum:
2

. py
Py = 0, pg = p’y nl + 7”5? _p'2y = Q2 > 0. (210)
2p7
We will denote its transverse polarization 7. Its longitudinal polarization vector reads
1 P’ ry - Q
+,,Q oo + Y
e} = —— | piny — —ng e ==, & =—.

—p2 < T 2pd > Lo TP oy

We work in the light-cone gauge A - no = 0. In this gauge, the bare gluon propagator is

given by
- —id""” (p)
GYY (p) = ————, 2.11
o) = (211)
where
nMnVPQ pﬂ n¥ + pu n/i n#nVﬁQ
d’“/p:d’w _ 22 , uup:g;w_J_2 172 Tl ) 2.12
( ) ( ) (p+)2 0 ( ) 1 p+ (p+)2 ( )
The bare fermion propagator reads (we give expressions in the massive case for complete-
ness)
i(p+m)
G =" 2.13
0 (p) p2 —m2 +1i0 ( )

We will need the external lines and the propagators in the shockwave background [19, 20]

(P Ylosy+ = (@I T@ (y) ') “0%)[0)u,

2.14
V(D Ylosy+ = (@IT@ (y) €T EE)]0)50, 21
ab i [ L(z)dz
G (x,y) = (O|T(Aj (x) A (y) e )10} suw (2.15)
G(,y) = (T (% (2) ¥ (y) €'/ O?75)|0) o,

The external line for a particle with momentum p which steams from the coordinate y with
lightcone time y* < 0 can be written as

—+ D-2 oyt )
AP s PR AT EE S
V2pt (2m)
(Y pt + Dot + m]
2pT

X Uy U (p1 — pay1) (2.16)



in the case of a quark (where U is an operator in the fundamental representation of SU(N)),

4 D—-2 ot .
v (PY) losy+ = 07) jinry 4dp2jb—2 ilp21-y1)=igrr (P —m+i0)
V2pt (2m)
[’Y pt + P —m] t +
o U'(p2r —p1)7" vy (2.17)

in the case of an antiquark (again with UT being an operator in the fundamental represen-

tation of SU(NNV)), and

6* ( y)| L= 0 (p+) eip‘i’y* / dD pQJ_ eZ(pQL yl) (p2L+ZO)
0>y 2p+ (27T)D 2
« P3
X EpJ_O' |:gjf_l/ - ijnQV:| U (pL _pQL) (218)
in the case of a gluon (now with U in the adjoint representation of SU(N)). The propaga-
tors read
Gy, )]yt 5050+ (2.19)
+1D-2 D—2
= / dpyd™"p11 / dp2 d”"p21 e~ Py 3 —i(p2L- Y1) iz py i1 :M)Qﬂ.(;( )9(p+)
(2m) D1 (2m)D-1 2
wa mw ST
x 0(—z )0y H)e 2 . v p2 +p21+m U (pon )’)/ j 2 +1111_+m
2]92 2p]
for a quark,
G, )]yt 5052+ (2.20)
+1D—2 D—2
_ _/ dpld P1L /dp2d pQLe—zy Dy 7l(p2l yJ_) iz~ p] +z(pu_ Q?L)27T5( )e(p;—)
(2m) D1 (QW)D 1
2 2 2
PR 24i0 L p}) —mPtio b
x 0(—z)0(yH)e 25 e S i -Hiu m U (pro )7 Do —Hiu m
2 2p2

for an antiquark, and

+ 3D—2 + 3D—-2
G (2,9) 505y + = — / s pu/ 0y d Dol —ipfa tiply” gmilpasws) i)

(27T)D71 (27T)D 1
S(n)0 (T P2L+10 ot pu"”Oer
X WW 2y 0 dope(p3 s p21)U (p21.0) 9 dosy (1, p1L)
1
(2.21)
for a gluon. In these formulas D =2 + d = 4 + 2¢ is the space-time dimension and
UlpL) = /dD_27lei(pl'”)U,ﬂL and Ul(p,) = /dD_QTLe_i(m’“)Ujl (2.22)
are the Fourier transforms of the Wilson lines
U, = U (7,1) = Peion” J2Z bn (i dr* (2.23)



For convenience we will write U; = U,, for a point r;. The external shock-wave field bg
is built from the gluons that are slow in the asymmetric boosted frame where the non-
perturbative dynamics only occur in the proton. Its form in coordinate space can be
written in a simple way, as

4 +
b = / (;lﬂl))4e_’(p'z)b_ (p) 0 (677—|p¢|> L W(2) = b (=, Dl = 6(=1)B () nl. (2.24)
Here 7 is the rapidity divide, which separates the slow gluons in the Wilson lines and the
fast ones in the impact factors.

To construct the cross section after calculating the impact factor one has to integrate
w.r.t. the field b generated by the proton. Technically it means that one has to treat the
field b as an operator and use the matrix element of the total Wilson operator between the
proton states

Ui — (P;6|T(Ui )| Ppg)- (2.25)

For simplicity of the notations we will still use the operator U instead of its matrix element
during the calculation of the impact factor, and return to the matrix element later on.

We introduced the regularization scale p in (2.23) because in dimensional regularization
the coupling constant is a dimensional quantity

Go=gp 5 s = o pu 2. (2.26)
In our computation we do not need the f—function correction since renormalization effects
start at the next-to-next-to leading order in the impact factor. We also introduce a regu-
larization cutoff a for the spurious light cone singularity p; — 0. Evolving the operators
U(r,p) from p = a to p = € with the help of the BK equation will allow us to cancel
rapidity singularities, as shown in section 3.2.2.
In the following we will need the BK equation in d dimensions. It reads [50]

otr (U U w2l L d
T(a; 2) _ 0‘2’;1 I <2> /ddm [tr(UlUg)tr(UgUg)—thr(UlUg)} (2.27)

2(r131 - r231) 1 1
2 ) 5 2 - * 2 a1t 2 :
(=12, 4+1i0)2 (=13, +10) (=773, +10) (—735, +10)

in coordinate space, and

otr(U(p)UT (—p21))
on

X

d d—1
2

= 0(k1 + kot + k3t — proL — pat)2asu® e

/ A1 d%g 1 dks) {_Q(ku —pi1) - (kat — pu)
(2m)2 (k1 —p1)3 (k2 — p2)?

W%F(l — %)F(%)2 ( 0(koy —p2l) i Ok — le_ )]

Ld-1) (—(k1 —p)2)"2  (—(k2 —p2)3)' 72
« [tr(UlUg)tr(UgUg) _ thr(UlUg)] (k1s ko, ks) (2.28)



/pQ

— p'y pq

p1

Figure 1. LO impact factor. The momenta p; and ps go from the shockwave to the quark and
antiquark.

in momentum space. Here we introduced the Fourier transform of the operator
[tr(UlUg)tr(UgUg) — Netr(UUD) | (e ko, K1) (2.29)

= / d¥ry | d¥ry) drs el ki) Hras ke D+ sk OV g (0, U e (U UY) —thr(UlUg)] :

3 Impact factor for the v* — gq transition

The matrix element for the EM current in the shockwave background reads

e~iprvo) gy I — i [ Li(=)d

— e, [ Py = o VLT T 0770 ) £ 0 00
Here a and b are the quark and antiquark annihilation operators, e, is the quark electric
1
Vs

with the reduced matrix element T

is the projector on the color singlet. To shorten the notation we will work

~ —Zeq _Z(s(pq +pq _p'y)

M = r
2p7 VN, (2m)P 72\ [2pF \/qu

Its expression at LO is obtained with the help of (2.16) and (2.17), by computing the
diagram depicted in figure 1. The result can be written as

(3.2)

3.1 LO impact factor

1§ = /ddpuddpzﬁ(pqu + pg2L — pyL) tr {U (1) UT (—pzﬁ} LR (3-3)
After subtraction of the noninteracting part one gets
15 = /d P11d"p210 (Pg1L + P2 — py1) O {W (UlUT> } (P11sp21)- (3.4)

Here

{tr (UlUQ) } (P11,p21) = /ddrldeTQLei(pu'”i)"'i(p“'r?i) [tr (U1U2T> - Nc] (3.5)



is the dipole operator. The function

0 = @G (P11,p21) (3.6)

is the LO impact factor and we will often suppress its dependence on variables for brevity.
Its components have the form (3.7)-(3.8), in which s =z and z =1 — z = a4

+ =+
pr 2xTp
+ _ v _ o
Oy = ———0, =

(v v, , 3.7
p’y ﬁqu +SCSEQ2 ( quy pq) ( )

Up, <(1 - 2x) péu + % [ﬁqlb 72}) v p,
ﬁqu + IIXIJQ2 ’

Dl = (3.8)
The first equality in (3.7) holds thanks to the electromagnetic gauge invariance, which
allows us to calculate only the ™ component of the impact factor.

3.2 NLO impact factor

At NLO the subtracted matrix element generalizing expression (3.4) can be split into
two terms, depending on the type of Wilson line operators involved. Expressing all the
Wilson operators in the fundamental representation, we can show that one term involves a
single dipole operator Uy = tr(Uy U2T ) — N, while the other one involves the double-dipole
operator tr(UlUg)tr(UgU;r) — thr(UlUg) = Ui3Uso + N (Uis + Use — Ui2):

3 F(l_e) d d aNC2_1 T
7 = QSW dp11d°pay  6(PgrL+Pg2L —py1) D] 5 [tr (U US) = N (p11, pa.)
ddpu N ; ;
+ W(;(p‘ﬂ +Dg2 Pyl _p3L)q)2 [t’r‘(UlUS)trr(UgUQ)
1
_ thr(UlU;r)](pu,pu,Pu)2} . (3.9)

The Wilson operators here are defined in (2.29), (3.5) and the dependence of the
coupling constant on the regularization scale (2.26) is included in the definition of ®¢
and ®F.

There are 8 one-loop diagrams contributing to the matrix element 7T7. Five of them
are presented in figure 2. The remaining ones can be obtained from diagrams 3, 5 and 6
via the substitution p, <+ pg, g <> vg, p1 <> p2 and the reversal of the order of the gamma
matrices, which we will denote (¢ <+ ¢). Diagrams 2, 3 and 4 contribute only to the dipole
term ®; while diagrams 5 and 6 contribute to both ®; and the double-dipole term ®s.
Indeed, after projecting on the color singlet state and subtracting the non-interacting part,
it is straightforward to see that diagrams 2, 3 and 4 involve tr(U; UQT ) — N., while diagrams
5 and 6 involve the Fourier transform of an operator which can be decomposed as follows:

arr ppriyan Ve —1 1 t t fyy, Ve~ 1 f
tr(t Ult U2)U3 77 = 5[tT(U1U3)tT(U3U2)7NCtT(U1U2)]+W[tT(U1U2)*Nc]

(3.10)
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Figure 2. One-loop diagrams for the v* — ¢g transition. The momenta p;, p2, and p3 go from the
shockwave to the quark, antiquark and gluon.

3.2.1 Method of calculation of the NLO corrections

Due to the presence of the rapidity singularity p™ — 0 in lightcone gauge, we cannot inte-
grate directly in D dimensions with the usual Feynman integration methods. Dimensional
regularization can be used for the transverse components with dimension d = D — 2, while
the longitudinal divergences will be regularized by the cutoff a.

We will now present the essential steps required to compute the diagrams in figure 2.
For this purpose, we will consider the simple case of diagram 3, the contribution of the
other diagrams being obtained in a similar way. The initial expression for this diagram is
the projection on the color singlet state of the following expression:

~ 7 2@ ~ A 1
M3 = % dPyadPy1dPyoti (pg, y2) v*Go (y21) 7" Go (y10) 7 \/T
c 2p"/

x 0 (p1) 0 (—y3) 0 (—ui) 0 (—ui) v (D, Yo) Gw (yar) e P790), (3.11)

,10,



Using the building blocks defined by egs. (2.16) to (2.21) and projecting on the singlet,
we get:

M®|3 = ig”cy dPyadPy1dPy / Do 7qr D1 N —1
VN. (2m)P (2m)P (2m)P 2N

X tr [U(pu)UT(—PzL)} 0 (—y;) 0 (—yf) v (—yo+)

0 (ry)

JF
+we (par w2 ) =iz (99, +i0)

1 irqys Up,
D—2 2
(2m) 2pd Pq
. A 1
% efz(lIerl)'lefz(erw),YNGO <q2) ’YVGO ((h) ,ya e—z(pﬂY yo)@ (p;r) G;w (l)
2py
+

0 (pT it ye +i(p2gi you ) —i—2 (p2. +i0) pFA— 4 P

X (pq) € . ( ! ) QPZ}_( 2k )M +qu' (312)

PN +
(2m) P72\ J2pt 2pq

We now apply the following procedure:

e Integrating w.r.t. the ~ and transverse components of the coordinates yo, y; and
Yo gives relations for the conservation of ™ and transverse momentum components,
such as

§(pf —aq3 —17)6(pgr —aqe1 —11).
e The ™ and transverse momentum integrations are now taken, as trivial § integrations.
e We integrate the ~ momenta by pole integration.

This way, one obtains
ig?eq tr [U(p1)U (—pau)] <N3—1> 0 (p7) 0 (p7) 0 (7)
/NC (27T)2D74 2Nc /2p'y 2pq 2pq

< [ dufaytayto (~u7)6 () 6 (~u) 0 (5 1) 0 (17)

ey = -

X /dl+dD2lJ_5 (pg +Pd —07) 0 (PqrL+DP2gL —PyL) Up, YT [

—1.)? R
X [(p;;_l-i-) ,Y—_(pqli 1) ’f”r(ﬁqu—h)]

2 (pq _l+)

qu 2 (pq _l+)

2 + - oA
_ DPui R . Py Y +Dg2L
X - - 0 (yio) +i6 (ulo) 7" | 7 | o | 7 o
o ([ gl 2p;7 Par1 | 0 (ylo) +0 (y10) 7" | 7 R pa
2 : 2 .
1 | _ p3z +1i0 pqu—HO
——do(l) exp | —i | p5 +—2 y(')F
"o ton 7 2pF 2pd
(B0 (pai—l10)?Hi0 Pl +i0)
_ . 3.13
o [( Y I )

— 11 —



In this example, one can easily see that the contributions from the terms with 5(y;rl) or
G(ygrl) give zero, due to either the gamma structure or T-momentum ordering.
The integration w.r.t. the ™ components of the coordinates finally gives two contribu-

tions:
2tr [U(pr)U ( —p21)] (N2 -1
el _ ;i€ < : ) 3.14
3 T VN, (2m)2P~ 2N, (3.14)
L 0(p7) 0(pg) 0 (p7) 3 (P +pg — 1Y) I (Pars +P2gr)
2
‘/2p7 2pq 2pq (pJJr tzo erﬁrzo)
X iy v+ {p;W_—i—pL vedlt dP21,
Pa 2t o +)2 2 ort(piat _ +
R R e
X (p+—l+)7’*7(m_m2 7++(pL*lAL) g
‘ 2 (pg —17)
lLun2u+lLun2p N2uM2y 59 + - pj_ 4+, A o p;’Y_—pL 4
X [!M;w I+ + (l+)2 it Py 72;,77 N el T 7 Upg s
and
@) _ g% tr [U(p1)UT (=p21)] (N2 =1 0 (pf) 0 (p7) 0 (p7)
M |3 - 2D—4 (315)
vV Ne (2m) 2Ne A /2p7 2pq 2pq

X i (pg +pg —P7) 0 (Pg1L + P2gL — PyL)

1 PaYT + PgrL
a0 ;-1 0 ) g’ Lpz 200 qz+)] M

- g | J Py AP
=)+ (o= 0)] o= 0 [P o
q

5 : ) > :
_ quJ_JrzO l 4130 (pqu_ lJ_) +10 — pqu_+10 p2@_+10
(pv =+ 2qu + 2;+ + ( = l+) Dy + 2p7 =+ F

2pg
We introduced the regularization cutoff o for the divergences which will emerge from the

longitudinal integration.
The transverse momentum integration can be performed straightforwardly with the
Feynman parameter or Schwinger representation method. We then decompose the result

D 4 and a constant term. Thus:

Nf—l) 0 (py) 0 (p7) 0 (p7)

tr [U(pu)UT(—pM)} ( 2N, \/W
c D~ 2Pq 2Pg

as a divergent term in € =

eq9® T(1— 6)

VNG (1673)1T

O (pd + g5 —p7) 0 (PqrL + P2gL)
(4p7) (P2 +22@2)

z =2 =()2
x/ d—z ll—i-ln (pql ﬁfo >+ln (Z(x_z))] <2d+4x(x—z)>
o T° | € TT x z

X Gy, (Y DgrL) + 5 (V)] (057 = Pars) v vpg - (3.16)

Moy = —
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To regularize the integration over parameter z, we will always write

/:O dz ¢(z) =~ /:0 dz¢o(z)+/ozo dz [(2) — ¢o(2)]
= /:0 dz¢0(2)+/ozo dz [p(2)], (3.17)

where we explicitly extract the non-integrable part ¢g of ¢, writing ¢(z) = ¢o(z) + O(In 2)
for z — 0.

In the case of diagram 3, both these terms can be computed analytically to the end.
However it is not the case for some other diagrams, although the first term of the second
line of eq. (3.17) is always straightforward to obtain.

The method for the computation of the other NLO virtual diagrams is similar although
more elaborate. We will not give the details for them in the body text and relegate the
details of the results to the appendices. We will only give the divergent part, by which we
mean the first part of the second line of eq. (3.17) and the % term in the second part of
this line.

3.2.2 Double dipole contribution ®5

For reader’s convenience, we will only write here explicitly the divergent parts of diagrams
in figure 2. The expressions for the constant parts can be found in appendix A.

The contribution of diagram 5 to ®9, including the (¢ <> ¢) terms, reads:
T (P — ﬁq% — ﬁq% —227Q?)
(53 + 22Q?) (ﬁq% + :L’:Z’Q2> — 23Q2p2

x In (1:—%) In <(ﬁq22 +22Q*) (P73 +22Q?)

o? fozﬁg

¢§r|5 = 2p—7i_(apq7+qu)

) + (p, C3)vp, ) (3.18)
for a longitudinal photon, and

¥4l =0 (25) {1 041~ 20) 4 5l LD o

N < PA + x:ﬁQ2> Pd + 22Q?
52 72 (= _ . _ 2
Pq1 zzQ) (Pq21 + xeQ) (P +22Q?) — xQp3
=2 =12\ (72 — )2
+ xx go T 2T
% In ((pql Q ) (pq2 Q ))

xiQZﬁ??

+ (¢ q)} + 1y, CF vy, (3.19)

for a transverse photon. The contribution of diagram 6 reads:

= (5~ =2
xZp (tp, v vp,) z\ (1 3 _ _
q’;’ﬁ __( vy \""Pq Pg [4 In <a> <6+ln (IL‘;)) —6:| —|—(q < q)) —i—upchﬁuqu (320)

P +xzQ?
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for a longitudinal photon, and

. Ty, (P, | (1 —22) 4+ 2[por 1, v Dy o, N\ /1 5.2
%:_< py (P11 (1= 22) + 5[Pgr1, v 1)y o, {m(z) <+m (1?3,2>> _3}

Pj + x2Q?

+ (¢ < q‘)> + Ty, CF| vp, (3.21)

for a transverse photon.

In these expressions the functions C' do not contain singularities. Their exact form
will be given in appendix A. The remaining (divergent) part contains a rapidity divergence
of the form In . Such terms have to be absorbed into the renormalized Wilson operators
with the help of the BK equation. Indeed the LO contribution as defined in (3.4) involves
the Wilson line operators at rapidity In . We thus have to use the BK evolution from «

N dp <8Ué2’p)> . (3.22)

to e, by writing

U(a:,e”):U(a:,oz)—i-/

«

Let us note that the BK equation is of order ay so U(z,«) can be directly replaced by
U(z,e") in NLO corrections to impact factors without concern.

Plugging this eq. (3.22) into eq. (3.4) and using the explicit BK equation (2.28) allows
one to evolve the LO dipole contribution into an NLO double-dipole contribution. This
contribution reads:

(I5)" = /ddpuddpufS(pqu +pg2l — Py )P0 (P11, D21)

dky | d%s  ds
(27r)2d

e’ _
x In (a> §(kyy + kot + kst —pro — pai) 2as? d/

[_Z(ku —p11) - (kal —p21)
(k1 —p1)7 (k2 — p2)7

N wgf(l - %)F(g)z (( 0(kay — poi) n 6(k11 —p11) >]

CEY (k1 —p1)2)' "% (—(k2 —p2)2)' 2

x [tr (UIU?I) tr (UgUg) — Netr (UlUg)] (kys kot ksl). (3.23)

After integrating w.r.t. ps| and renaming the variables, we get

d¥py 1 d¥ps) dips,
(T5")" = / (2m)d 0(Pq1L + Pg2L — P31 — DyL)

X In @ 2 M2_d/ p, OG(p1L +pL,p2L +p31 —pL)
« B (2m)d 0 ’

o 2L (e —ps1)) 7:0(1 - D) (6(p. —ps1) N 6(p1)
P —ps)] -1 (728 (~(p—pe)D)'"
x [tr(UUDtr (UsUS) — Netr(ULU)] (911 pa s p3.1)- (3.24)
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Integrating w.r.t. p,, one can get the contribution from this convolution:

e/r]
Wb (01 pas, 1) = —427p? (1,7 ) I (a) (3.25)
P2\ 1 -1 -1
In + -
|G ) (i
n Py - pql - qu - 29@@2 I (ﬁq% + xin)(ﬁng + 22Q?)
(ﬁq% + fo%(ﬁq% + 22Q?) — 909?1732622 909?1732622

in the longitudinal case, and

) el B ) 1. . ;
%K = —92In (a) {upq <(1 — 2$)pzu_ + 2[pq1l773_]> ’Y+/Up§

= <1n (ﬁf> + 1) oLy (Patod
P +azQ? 2 € PA xT(Q?

B 15522 + 22Q?
(Pa +22Q?) (P + 27Q?) — 2T Q*

9 _ 2\ /=2 =2
x In P + xe, —)»(qu22 Herdy + (g4 q) (3.26)
rTps Q

in the transverse case.

Combining this subtraction term with the results from diagrams 5 and 6 above, we
can cancel the rapidity divergence in Ina and obtain the actual double-dipole part @/, =
®y + P of the impact factor:

v2(pf — P — pA —23030@2)

Lt = 2pt (p, v vy, ) 2 _
T ! (P + me2 ﬁ21 m:Q2> — 2zQ%pf
" ln pq2 + 27Q?) (ﬁql + $f‘Q2)
rTQ*pf
T 1 D 3
B BN ( ) m(2)) -2 Ny
(@ (@) (o () 2] ron)
+ Up, (Cgu + 026“)% (3.27)
in the longitudinal case, or
@ = 7, (plan (- 20) + Sl 7)) Vo gy (328)
a \ Pq o Fa P +xzQ?

z 1 D 3 TT
. [zm (2) (eﬂn (U) _26] v (50)
1 [P+ 232Q? P + 22Q°
X | =g In|{ 73 T (52 v DATEE 202 70252
g1 zZTQ (pql +z72Q )(pqz + 22Q?) — 2ZQ*Py
< In ((ﬁﬁ +22Q?) (7} + m@?))

foQﬁgQ

) + (g < q)} + Uy, (C3 + CF )vp,

in the transverse case.
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These impact factors still contain % terms, although by construction they should not
have any IR, UV or collinear singularity. These poles are artificial UV poles and already
appear in the momentum representation of the BK equation (2.28). They originate from
the fact that when we transform the Wilson line operator (2.29) into its momentum space
representation straightforwardly, we do not take into account its property of vanishing
when r3 = ry or r3 = r1. This property reveals in the convolution of the impact factor
and the operator (2.29) killing all the artificial singularities. Indeed, the divergent terms
depend only on p] and are independent of p3 and ps (up to a (14+2) permutation). Writing
those terms as F'(p; ) and covoluting them as in (3.9) gives

/ddpuddpuddpgﬁ(pm +pg2 —PyL —p3L)F (p11)
X [tr(UlUg)tr(UgU;) - thr(UlUg)](pleu,ng)
= / d'prid’psydir i dire dirs)
X F (pr) e!me s atvn s et (U, Uf e (UsU) = Netr(U1U])]

~ / ddpliddﬁdergLF (p11) e riLpii)+ira 1 -(pg1L+Pgy L)

x /ddma(rm)[tr(UlUg)tr(UgUg) — N.tr(U,UD)] = 0. (3.29)
Thus the artificially divergent part
T z\ 1 3
F = ————2In(—)-—— .
(P11) Pyt +27Q? [ " (e’?) € 2€:| (3:30)

will cancel once convoluted, so it can be omitted. For a more involved discussion about
such terms, see ref. [51].

The same computation can allow one to omit the In(u?) contribution. However, we
will keep it so that no dimensional log appears, keeping in mind that there is no actual u
dependence. Therefore hereafter we will use

TE(PF — Py — P — 202Q%)
(B3 +22Q?) (B3 + 21Q?) — 2ZQ%py
() <<ﬁq% +a7Q?) (54 + m@?))

5" = 2p3 (@p, 7 vp,) { (3.31)

6217 xiQZﬁ:g

> 2

—2xT T P3 _ — 5 6
* (M i () () o q>> }*“pq‘@'*cﬂ)””“

and
: : 1 : -2 T i
P ) — 7 ~ 7 + 3
% = {7, 00 (1= 20) + Sl 21170 (ﬁq% () (%)
+l ( TT ) 1 | pa + 2zQ? Py + xzQ?
n{—-)|szn - - 7= - = -
e2n) | pa xTQ? (53 +22Q?) (53 + 22Q?) — 22Q?py

fo2ﬁ?’2

‘I ((ﬁqzl +22Q%) (P 5+ x:fQ2)>

fgo q>} by (CE 4 . (332)
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3.2.3 Dipole contribution ®4

The combined contributions of diagrams 2, 3 and the diagram obtained from 3 via
(¢ <> q) reads

ol — P g TP (T, )
1|23 — Py |23 0
p'y pql + x.’]}'Q

(3.33)

Jm(E2) -a) (i (BLEEL) 1) e () -5 o

for a longitudinal photon and

. Uy, (1 —22)pt, | + P, v Dy op, T
B |y = pa(( P+ 3Py Vi p"{(an(m)—:ﬁ)

2(p3 + 22Q?) a?

a2
52 7()2 =2 =2

+xx 1

x (m (P @ +$:ﬁ§ In 423:3:@_ 5 |+ =

1% pq1 pql-i-xan €

+In? (?) T +6} (3.34)

for a transverse photon.

This set of diagrams is invariant under the QED gauge transformations. They are
directly related to the NLO photon wave-function.

The contribution of diagram 4 reads

7ot (77 ~+ - - - =2 | . =n)2)2
zzp (Up, v vp, ) T T Tz (5.2 +22Q?) ,
o, = A Tl () —m? (22 (=) [(In | =2—— 22
s pE+azQ? | (aZ) . (:c>+ n(a2) "\ Qa2 )T

+ 0y, Cjvp, (3.35)

for a longitudinal photon and

) Uy, (1= 22)p%, | + 2[poi i, v Dy T, (1 7 1 7
iy = pa ( Wgs + 5P, YD 0p, {m? (m> -5’ (5) (3.36)

ﬁfl + xxQ? 2

7 2.7 702 zZ (P2 + 22Q? :
+1n (aﬂz}) Q_';C:C In _,QIIQi 5 | +In (p_,ql — % ) + o + ﬂqujl_vaq
e P P+ 22Q (zpg — Tpy)

for a transverse photon.

The contribution of diagram 5 reads

— 4 — —
@iy = P U ) | ) (%) | w2 (55) +m2 (%)
Pyt + rzQ? a? 9 9 2
(pql + ﬂfﬂfQ
+ Uy, CF) Uy » (3.37)
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for a longitudinal photon, and

®ifs = -

Tp, (1 — QfU)péu + %[ﬁqlJ_a Y)Y pg lan <£> B lan <§>
Py + 22Q? 27 \a?

a2

T\ | 222Q? zzQ?
+ In (—) —5—In | =5 —
pql pql + xe

) + In(27)

) + Ty, CF' Vp, (3.38)

for a transverse photon.
The contribution of diagram 6 reads

Ot = — 2y (1 ) (0 (@) RPN (R T
1 ﬁq21 + 22Q? a?) | e (ﬁq21 + 27Q?)?2

—In? (g) + 1n? (?) _ S) + Tip, CF | Upq (3.39)

T

for a longitudinal photon and

7 , L .
. Upq ((1 —22) Py, t 3 [Ba11 71]) T ops (1 o (T 1. 5 2Z
- L D (2) - Ly (22
rTQ? + Py x a?
- =2 ~2)?
xT (pql + 270 ) 2 3 _ A6
+n(73) lln ( prene el Il el R S SCUE (3.40)

for a transverse photon.

As in the previous section, the C' functions do not contain singularities. They are
presented in appendix A.

Summing the contributions from all diagrams finally gives:

S
P =50+ O (3.41)

where the singular term reads

Sy T\ 3 rZTp? 1 . xz\ 1. o /2T 72
S T (32) 4] i (22 ) T () e ()T, o
= ()] P (e )~ o ()02 ()00 o)

and the regular terms read

x2£2,u4Q2
2
(zp7 — TPy)? (ﬁq% + x:zQQ)

3 i
Bl =505 n + 0y, (Cff + C + C vy, (343)

and

- 3. T r7Q? 2T Q?
p==P, |In — — — ——In| = —
om0 [ ((qu — Tpg)? (P + m:QQ)> PA P +xrQ?

+p, (CF + CTL + CF1) vy, (3.44)
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Note that the imwln (zg) term will never contribute, since in the cross sections STV will

actually always appear as %(SV +57)-
One can actually easily check that for diagrams 5 and 6 and for any photon polarization,

C =0y, (3.45)

Pa=0"

This way in appendix A we will only write the expressions for the Cy coefficients, the C
coefficients then being trivial to obtain.

4 The v* — gqqg impact factor

We will now derive the v* — ¢gg impact factor. In the body of this paper, it will be used to
construct a well defined cross section for dijet production, free of the soft and the collinear
singularities. The IR finiteness of the cross-section is discussed in details in section 7. The
complete expression for the v* — qgg cross section is included in appendix B.

The computation of this impact factor in dimension 4 was already presented in [19].
For the purpose of the present study we need its divergent part in dimension D, therefore
we will rewrite our results for an arbitrary value of D. The corresponding matrix element
for the EM current in the shockwave background reads

e~ (pyy0)
—icq [ 7" ,/NQ L (EVFOIT (B (ap, o, () ¥ (s0) €T 4C%) 0).,

(4.1)

2 7(t")} is the projector on the color

where c is the gluon annihilation operator and
singlet. We label the emitted gluon momentum as

2
“Py1 n
27;p7

P = zp;rn‘f + + ng_ (4.2)
Again, we will work with the reduced matrix element 7"*

—Zeq *15 pq +pq +pg 7p'y)

1/2]97 (2m) P~ 3\/2pq \/qu \/ng

which after subtraction of the noninteracting part can be parametrized as

T, (4.3)

2

— Lt (@US) - NJ(prs.pan)

Cc

_ N
T = gp €/ddp1¢ddp2¢ {5(pqu + pg2l + Py )P5—E

dps.1
+ / ﬁé(pqlJ_ +pq2J_ + Pgy1L — p31_)¢‘$

X [tr(UZU)tr(UsUS) — Notr(UrUD] (911,921 ng)} o (44)
There are four diagrams contribution to the matrix element 7", two of them are shown in

figure 3, the remaining one are obtained from them by the substitution p, < pg, @i < vg,
p1 <> p2 and the reversal of the order of the gamma matrices, which we will denote (¢ <> ).
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—Pq

Ea S A

Figure 3. LO diagrams for the v* — ¢gg impact factor. The momenta p1, ps and p3 go from the

shockwave to the quark, antiquark and gluon.
The expressions for the impact factors in D-dimensional space with a longitudinal

photon read
v Py, 2209 + 2 (VYD) Ve 1 (2Pg1v L — TqPgsu 1)

O =
E: pi  Ph P2
qu(:cq + z) <Q2 + xq(fzz)> <Q2 + qul + Tf; + 23)

and
Zp:yk Up,Ey(Pg + D)7 g

(I);)_ = (I)ZHZBZO + 52
— — G2
'xQ(pg - épq)Z <Q2 + zq(x(;-i-z)

> - (q e q_) : (4'6)

For a transverse photon, they read

* g +
. €5 Uy Y
ZL _ glpu~Pq (47)
0y - ), T ) Ta T P
TaTq (g +2) | @+ oty | (@ o T2, %
. N - €T, -
< [2g2g@? (V171) + (Boran! v Paas) + 4720l (wapls — Pl )
€T TN . R . R _
—Q?qu;u (’Yipqu) + 237qpfju (Pqu’)’i) - qupfju (pqu’ﬁ)] Upg — (g 4> Q)
and

A A Zp,Eg (Pq + Dy) vt (Viﬁqﬂ - 25”610272L> Upg _
D5 = Ofps—0 + | — 5 Fra (|- (48)
— = q2
2x47q (1 — xq) (pg - épq> (Q2 + xq(lq_mq)>

5 Construction of the v*P — qqP’ cross section

Let us define the reduced matrix element Az such that the v*P — gqP’ cross section reads

1
do = 2m)? 6P (py + po — pg — pg — ) | As|*dps. (5.1)
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We will need the parametrization of the proton matrix elements in the shockwave back-
ground

(P (9h) [T(tr (U= UT - )= No) [P(00) =200 () Fpy .y, (1) =200 F(21), (52
(P )Tt (U UD (U0 )~ Netr(U3UT )| P00)) =276 (5 ) Epy g, (21,1

= 27r5(p00,) <2J_7 xj_) (5'3)

We dropped the dependence on the proton transverse momenta po; and pj, for conve-
nience, and we assumed the following proton state normalization:

(P ()| P(po)) = (2m) P~ 8(pge )67 2 (D00 1)dsps (5.4)

The corresponding Fourier transforms read
/ddzlei(zl'pL)F(zL) =F(p.), (5.5)
/ddzdemlei(“'“)“(”'quﬁ'(zl, 1) =F(qL,pL). (5.6)

These hadronic matrix elements naturally appear when we insert the Wilson line opera-
tors between the proton states and we extract the overall momentum conservation delta
functions. The matrix element for the dipole operator reads

(P'(p)|T(tr (U2 U3) = No)lpro, pa.]| P(po)) (5.7)
(=1 p1al)
= (2m)" 6 (p1L+P2s +PooL) /ddﬂez P (po) IT <t7” (UZQLUTZQL> _Nc> |P (po))-
For the double dipole operator the analogous formula has the form:

(P'(p)|T (tr (UL U tr(UsUS) — Notr (UL U)) [p11pas, pas]|P(po)) (5.8)
= (2m)%(p11 + P21 + P31 + PooL)

x / dlzydla et e ) (P () T (tr (U UL tr (U, UT 2 ) — Netr(UsUT ))|P(pg)>
2

In our kinematics, momentum conservation reads

8P (py + po — pg — pg — Ph) = 6(pgy )6 (0 + Pt — p1)8D(peL + Par — PyL + Por0L), (5.9)
with the phase space measure

dpfdpgy  dpfdipg  dpl dip),
2p (27‘r)d+1 2pq (27‘r)d+1 2]) (27.‘.)(14-1
The reduced matrix element As includes the LO and NLO dipole contributions and the
NLO double dipole contribution, as defined in section 3. It reads:

dp3 (5.10)

—2p_e Ea d d
Az = Oq_/d p11dipas
VN, (2m)P~1

1—c¢ N2—1
: [W‘””pm—m){ 6 + ri—¢ @?}F(m)

(4 )1+E Nc 2
L(1—¢) [d'ps1
(47r)1+e / (271.)

121
+ s (5(pq1J_ + P2l —Py1L — ng)(I)O‘F (p 7p3J_>:| . (511)

2
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Since the photon in the initial state can appear with different polarizations, we construct

the density matrix from the cross sections

doyr = dovr dorr , dory = dop. (5.12)
dorr, dopr

Each element of this matrix has a LO contribution dog, an NLO contribution do; involving
two dipole operators and an NLO contribution dog involving a dipole operator and a double-
dipole operator.

doj; = dogyr +dorgr + doayyg. (5.13)

The leading order cross section can be written as

oem@2 ()"

(27T)4(d_1) Nc 21'52'82

doojr = dxd:fddqu_ddp@_(s (1 e i‘) (6[55?}7)

X /ddpuddpuddpydepszs (Pg1L + Pg21) 6 (P11 + p2or1)

X @ (p1e, par) @ (pro, pri) F (%) F* (p1/221) : (5.14)

The dipole x dipole NLO cross section is given by

I (1-¢) (NE—l)( aenQ;  (py)”

d dfdd dd (1= —17 *
(47r)1+€ N, 271-)4(d—1) N, 27752 zdzd py1dpg1 6 (1—2—2) (E[geJ,y)

doyjr = o

p « (P12
X /ddpuddpuddp1uddp215(pqu+pq2¢)5(19111-1-17221)1:‘( 122¢)F ( 122L)

X [‘I’f (P11, P21) B (prri, P ) +®F (pro, pai) ®T (prry, pu)} (5.15)

We can separate this cross section into its divergent part and its convergent part. To
get the convergent part, one only has to replace ®1 in eq. (5.15) by ®15 from eq. (3.41)
and to set € to 0. The remaining divergent part reads

['(1—¢€) (N2—1
(4m)lte 2N,

(dovyr)div = s > (Sy + Sv) door. (5.16)

Replacing @9 by the contribution @4 from egs. (3.31), (3.32) which includes the BK
evolution (see the discussion in section 3.2.2), one gets a non-divergent dipole x double
dipole NLO contribution, which reads

P-o  am@ ()
(4m) e (27)@-D) N, 220752

dooyr = g dmdiddpqlddqu_é (1—z—1=) (515537)

d¥ps 1 dipgr |

(2m)*
183 s x (Pr2/L\ & (P12
X [‘I’g (P11, P21, p31) @y (P11, pori) F ( 5 ) F ( 5

P12\ &« [(P172
+ L (prry, porss para) @ (P, p2i) F (%) F ( 122 = ps/L) d (Pu)} . (5.17)

This expression is now finite so one can set € = 0.

X /ddpuddpuddpydepzm O (pg11 +Pg2L —p31) 6 (Pr1rL + P2ort +D33r1)

; P:u) d(p31)
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5.1 Results for the Born cross section

Using (3.7) and (3.8) and summing over helicities of the quark and the antiquark, one gets

32(p+)4x3i3
O (p11,p21)®F (P 1, P51) = = — T S (5.18)
hegies ( q21 + $$Q2)(pq21/ + 1’1’@2)
D B (1L, p2 ) (Ph L) = a — (5.19)
helicities (P + 22Q?) (D, + 22Q?)

and

8(pT)?zz[(1 — 22)?g" g"F — g% g + 9" g"FIpgrLrpqr L
(Pp +22Q?) (P + 22Q?)

> @4(prL,pal) @G (P p2L) =

helicities

(5.20)

As a result, the LO density matrix elements read
2

40‘6ng 2 2 N 2522 d*p11 DPqg L
daoLL = (27T)4ch$d17d pqld p(jL(; (1 — T — LE) T T Q X /WF (plql + 9 ) 5
(5.21)
20em@7 o
doorr = ﬁdwdwd%qld%@_é(l —x—7)zz(l —22)Q (5.22)
d*p1y PaqL d*p', (eL - pgrry) e\ |
© _ F ( 4 Paa ) / 1L q F ( .y Paa ) 7
l/ P+ xzQ? Plal 7 P+ 2zQ? Prat 2
and
aeng ) 2 - 2 ki lj kj li Kkl ij
doorr = N drdzd py1d*pg16(1 — v — z)[(1 - 22)*gT' g7 — g17 g1 + 9T g7] (5.23)

d?p11 (e Lipg1 k) Dqqg L d?p | (e 1pg1r11) Dqq L ’
F( qq ) / 11\E1jPq F( , qaq ) .
’ U pEtazqr -\t P2 4ez? Vet
5.2 Dipole - dipole NLO cross section do;

5.2.1 LL photon transition

Combining (5.15), (3.41) and (3.7), and summing over the polarization components e*®; +

£*<I>a' with the help of the gauge invariance relation ®; = %Cbaﬂ we get
T(1—¢) (N2—1 #r)
doipr = Qs (4 ( §Nc > (Sv + Sy )doort
@.Q? (N2 =1\ @emQ? P _
c _ 1 — —
+ ( N, ) 2n) chxdxd Pg1d pgLd(l —x — )

d(pr1r1 +P22'J_)F (p121_> F* (pmu_)

% d2 d2 d2 / d2 / 5 _
/ p11d°p21d py  d°py, 6(Pg1L + pa21) ﬁq21/+$«'f@2 9 9

61‘2562 ln 2j2ﬂ4Q2
P+ rzQ? (2Pg — Tp,)? (P p + 2TQ?)?

—\2
+ (52(;1 tr((CﬁL + 015” + C’ﬁ)ﬁﬂﬂ%)] + h.c. (5.24)
Y
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We will parametrize the finite contribution of the C functions as:

9 .
(szpi r(Ciipgr" Pg) = /0 dz[(¢a)rL]y + (¢ ¢ q), (5.25)

and
(Sp_) tr(CTPgy ™ Pq) /Ox dz[(¢n)ely 5—g + (4 < @), (5.26)

where n =5 or 6. The expressions for (¢,,)r are given in appendix A.
However for n = 6 the integral can be performed analytically to the end, so that:

(py )? o —22273p r2Q% + P2
Lt (CY P he) = = Lo [ (5.27)
s%py (P + 22Q?* — TpY) TPy

2227 72 4 22Q? — T2 72
R VOO i ik +31n< >—8
P2+ 27Q P2+ 21Q 2
2227 52 + 27Q?
+ 5 ‘;Ez — 3ln M +1
Py +2ZQ* — Ipy Tpy

5.2.2 LT photon transition

Using the same method as for the LI component, we get

doirr = o l;ijr)_lfe) <N§2]\;C 1) (Sv + 5v) door
+ (OZTQ) (N‘?N: 1) (Z:rr;‘?]\gfc da;di’deqldzp@_d(l —x—T)epy;
X /d2pud2pudgphd2p2fL5(pqu + pg21)d(p11r1 + paor 1 )F <p12u> F* (py;i)
x [%5)2 tr((CF + CP + C1)bay ho)' 327 (1 — 20)py0,
52 Ph + 22Q? (Pgi +22Q*) (B + 22Q?)

< 1 3B Q2 (xpy — xpy) 4 B xzQ? In zzQ?
(ﬁq% + m’cQ2)2(ﬁq21, + 22Q?) ﬁq21, ﬁqZI, 1+ 2702

n (pg)2 tr((C}f + CF) + CYba(' Parr L — 2xp1: 1 )7 )

2 (5.28)
s 2p5 27 (ﬁq%, + va'Q2>
Once more we will parametrize the contributions from the C' functions, as
(po )*r(Cipg((1—22)pgr . — 3P VL)Y Pe) .
1 : ()il + (a0 a),  (529)
SQP;F 0
(po )*tr(CFypa((1—22)ply  — 5P, Vi) )

s2p3 /0 dz[(¢n) 1)+l 5—g + (¢ ¢ @), (5.30)
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and

o i

(psz)”(cfﬁq’v Pq) = /0 d2[(64)7r]+ + (a4 @), (5.31)
T i

(poz) tr(C15g7"Dg) = /O dz[(¢n)r)+|pg + (0 < @), (5.32)

with n =5, 6. The values for (¢,,) are given in appendix A.
However, the contribution from diagram 6 can be computed to the end:

(pg )2tr(CFpa((1 = 22)plyr ) — 5[Dqr 1,71 Dy) i)’
1]] 2q+ =(1=2x)py, ~— =+ 27 (C?Hpq’)/ Pa),
S pfy p
(5.33)
and
(po ) —2z(1l - Qx)pqiu zpy

i In 5.34
2 tr( 1J_pq7 pq) q21 + 22Q? — T2 ﬁqu + 22Q?2 ( )

zz(1 — 22)p’ T2 D 2
+ EQ ) L 4Ly [P 41 +31n<pl2>—8
Py + 2TQ pq1 + 22Q) 1
—xipilj_ 9 . :Z'ﬁz
+——= |1 —6Lis [ -5———= +1
3p? [ pql + 22Q?

X T In 2y
(P +22Q* — Tp?)? P +2zQ?

+xx (:Upf]u — a_csz_)

1 7])12 _
+ — - 2In| ———= 1| —1 +(q < q).
(pq21 + 22Q? — Ip2) [ (pq1 + 22Q? (g4 q)
5.2.3 TT photon transition
The cross section for the TT transition reads
I'(1 — N2 -1
doirT = o (iﬂ')l-‘fg ( gN > (SV + S{k/) doorT (535)

Qg ch —1 ach
== ( ~ > B - dzdzd®p,) d*pg1 6(1 — x — Z)(eTichy,)
c 7T) NC

4
p « (P12
X /d2p1Ld2p2ld2p/u_d2p/u5(pqu + Pg2.)0(p11r L + pox 1 )F (—ﬁl) F (7122 l)

PqlLrPq1’ L1 2 ri lk rk li rl ik
573 - - - -2z +
2 + 22 Q) (G el )91 9T — 991 + 99T

3
X
{2
2Tt 2TQ? 2TQ?
x |In 5~ 252 e | T =2 In 2
(zpg — TPq)?* (Pn + 22Q?) P Py +22Q
(po
+ 252

)2 tr[(C’4l—|—C’5 +C )pQ(pql’J_(l 2'1:) [pql’la Y ]PY pQ]
+h'c"p1<—>p/1

ik

s2xx pql/—l—xeQ

The C' functions are given by:

(]; i 2) 2tr <Cfﬁq <p;1 L (1—-22) - % [ﬁqu,'ﬁD v*ﬁq) = /O Cd: [(aﬁ )TT} L tlaea,
(5.36)
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and

—\2
D ni j Lr. j A v ij _
(2(;3 tr (Clj_pq (p]qm (1-2z)-3 [pqm,vﬂ) 7+pq) —/0 dz [(¢})rr], |y—g+ (2 < D),
(5.37)

with n =5, 6. The values for ¢,, are given in appendix A. The contribution from diagram
6 finally reads:

(:Do‘2 )*

S

1. .
(Cu_]?q (PISVL (1-2z)— B [qu&ﬁﬂ) 7+Pq>

=T [gik(ﬁl “Pg1r) + p’ﬁpfﬂ/l + (27 — 1)phpl(§1m]

—I7p In Py
(D3 + 22Q? — Tp?)? P+ xTQ?

T xpl
+ = — —— [21n
Pa +27Q? — TP l (pql + 27Q? ]

2 2 +27Q? — TP,
L2 T~ P Q 229
V25 6 pq1+5mQ
k
Pq

-z [pélelt;l’L(l - 251”)2 - QL (qu D) —

1lpél’L]

-1 Tpy
_ __(1-3m | "
pﬁ+m7622fp2< <pq1 +IIQ2>>
1 — =2 +(Ei’ 2_@.—*2
- (3m ( >+4L P 7 @ I
pql + sz ,u pql + ‘er

+ (@ q). (5.38)

_ 2
T 52 7pr1 —ma | =3 - 2
(pql + z2Q? — Zp;’) pql + 2@
5.3 Dipole-double dipole cross section dos

5.3.1 LL photon transition

aem
asQ” Qq drxdzd®p,) d*pg1 06(1 — x — 7)

d =
O2LL = A (27r) N,

d?p:
/dQPud pord’p dPph, / ﬁ&?qu +pg2L — p3L)d(p1rrL + P2y +p31)
s

1 = /D121 D121
x5 P (22 ) [P (2)
pZ +azQ? \ 2 P 2

N awn | #T0F — P — P — 200Q%)
(P +22Q?) (P + 27Q?) — 22Q%*p7

xln(xf)ln(}ﬁé-+xf@%<ﬁﬁ-%mﬂ9%>

I£Q2ﬁ32

6271
2xx T Py _
i (Mln(en) () ”WD)}

L W)

PR tr((C3y + C3)bgvhy) | + hec. (5.39)
Y
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We will write

(sp_) tr(C’QHp(ﬂ Dq) / dz [(on) LL + (g q) , (5.40)

with n =5, 6. The values for ¢,, are given in appendix A.

5.3.2 LT photon transition
(6 Q CYemQ 9 ) ) ) ,
T ) ;fcdxda:d Pg1d’pg 1 d(1 —x — az)/d prid pardp dph, (5.41)

d*p3 1 d*pl
/ Wué(pqu_ + Pg2l + DPg31)0(P117 1 + P21 + P3z1)

doory, =

*

€Ti

S(ph = (P . (D2
_ (3{) QF( lu,ng)F < 12L>
pq1/+$a}Q 2 2

x | 2(1 - 22)pi i e i N (ﬁ)
W 0+ 22Q?) (] + 22Q?) — w2 Q%P7 \ e
n (ﬁng + 27Q?) (ﬁq% + 22Q?)
z2Qp3?

(s @ (F) roeo))

mtr[(%ll + C5)Pa(Pgr 1 (1 = 22) = 5lhgrr 1, 7'])7 " Pd]

6 ~ 191
- (ps{) 2F (plu) F (pl 21
pql + .T.’BQ 2 2

9 x ﬁ/2
({Qxx(l — 2$)Pq1u (M <7> In </132)

. (xx) Pq2/+$fQ
n
e2n (P2 T r7Q?)(p2 Dy + 22Q?) — 2TQ*pj 2

. ((pql’ +22Q%) (P -2' + $$Q2)>

7p3¢>

TTQ?pL?

1 ﬁq21/+$ﬂ_fQ2
=kl (e
Par rTQ

Again we will write

—\2
) g cz)} + B gt + cfinan ).

(p;);) tr(Cy1pgy " g) = /095 dz [(%)LTL dz+(q < q) , (5.42)
and
(Spjoi (CQHPq <pé1m (1—-2z)— % [ﬁﬂ/b’ﬁ]) ’Y+I5q> = /0 dz [(gbﬁl)TLL + (¢ q).

(5.43)
The values for (¢56)rr and (¢56)71 are given in appendix A.
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5.3.3 TT photon transition

o aemQ d2p3L
d =2 " qedzrd’p, d*ps 0(1 — x — /d d’po %0 d*pl /
O2TT e (277) N, xdZd py1 d pg1o( T —T) pira pa21 pu Pay (27r)d

(eTiet;) []?“ (pm ) P (pym
P+ 27Q? 2’ 2

—2 X }732
% ) 1 — 22)25k o1 kj i Kl 2 ( )1 e
({pql 1ipqrikl(1 —22)°gT' g7 — g1/ 91 + 9T g7] P2 +2eq? " \en) M\ 2

il (mm ) L P +azQ? P5 +2zQ?
n —5 in - - — - — oo
e2n) | 21Q? (Fh + 22Q%) (D + 27Q?) — 27Q*py

) +(q<—>Q)}
(v)°,

. <<ﬁq21 +22Q%) (53 + m@2)>
1
+ 25207 (C + C2J_) pq pqu (1 25”) ) [pql’J_7’Y ] Y pq +h'c'|p1,p3<—>p'1,p'3 .

) (g1 + Pg21 — p31)d(pr1ry + a1 +p31)

— — 9
rZQ?P;
]

(5.44)

As for the other contributions, we will write

051 (it (s 0~ 2 3 st ]) ) - [ 0o v )
(5.45)

The expressions of (qb )TT and (qﬁ )TT can be found in appendix A.

6 Cross section for the v*P — qggP’ transition

As in section 5 we define a reduced matrix element A4 such that the v*P — qggP’ cross
section reads

1
do(qqg) = 4s (QW)D 5P (py +1po = Pg = Pg — g — 1) |Aal*dpa (6.1)
where
8P (py + po = pg — pg — Py — 1) = 8 (powy) 8 (0 + ¢ + Py —pF)
X 8D (pg1 4 pgL + Pyl — Py + PoroL) (6.2)
with the 4-body phase space measure

dpfdpy  dpfdipgL  dpfdipg.  dpldip),
2pg (2m) 1 2pF (2m) 0L 2pg (2m) AL 2p (2m) AL

dp4 =

The reduced matrix element can be derived from section 4 and reads

—eg2pg € N Dol
Ay = 2q =y \Kﬂ# /ddpuddpu {5(Pqu+pqu+pgﬂ) Y N ( L )
7T

d .
+ /@;jf;_&(pqlL‘*'quL‘Fme p3L)P4F (plu,piu)} (6.4)

2
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This cross section has a contribution dos with 2 dipole operators, a contribution doy with
a dipole operator and a double dipole operator, and a contribution dos with 2 double
dipole operators,

do (449 = dog + doy + dos. (6.5)
The dipole x dipole contribution reads

Qs <Nc2 — 1> aeng (p0_)2 (

2\ TN, ) @ N, s E1eC8)

dozjr =

dzd? Pyl
z(2m)d
X / d%py 1 d%pay dp' | Ay (g1t + Pgas + Per)S(P11L + P22r1)

* P121 % 1201
Xq’?(]?u,pu)q)g (p/uap/u)F< 122 )F ( 122 ) . (6.6)

X dxgdrgd pqlddpql (1l —ag— 25— 2)

The dipole x double dipole contribution reads

do _ Qs Oéeng (pa)
4J1 2 (27 )4 - N, s2z 24

dzd? Dyl
z(2m)d
d?p3 1 d*p!
/d p1idipaid puddpquuﬂpqu +pg21 +Pg31)0(p1171 +p2or1 +p3z1)
T

* P121 Ppr2 1
X [<I>§(pu,pu)<1>f (p’u,p’u,pél)F< )F*( 5 ,pfu) d(ps1)

+ O (pr1,pas,psL) BE” (p1/221) F <pl?2l7p3¢) F* <p1/22¢> 5(1’@)} : (6.7)

(51aejﬁ)qudqu PaLdpaL (l—zqg—x5—2)
q

and the double dipole x double dipole contribution is given by

Qs aeng (pa)2 (EICX(E{]B)
2e (2m)4d-1) 2x 05 N2 —1

dzd® Dyl
z(2m)4

dp3 . dp!
/d prLd%pay dip | dopl 7‘“5(pqu +Dg21 +Pg31)0(P11/ L +Ppaz | +D3371)

(2m)*!

* = (P12 Pro1
X (pi{(le_up2J_7p3L)(pf (pivalzLang)F( 2 y D, 31.) F* ( 12 7ng) . (68)

dxgdrgd qu_ddpql

dosjr = (l—xg—x5—2)

We present the results for the products ®,®; in appendix B in D-dimensional space. They
can be used directly in dimension 4 to describe the exclusive production of 3 jets.

The cross sections here seem to have a singularity at z = 0. The dipole dipole part dos
describes gluon emission after the shockwave. Therefore it is natural for this term to have
soft and collinear divergences, which will be discussed in the next section. However, each
dos 45 also get logarithmically large terms from the gluons with fixed transverse momenta
integrated over a large area % <Kz <1

To apply these formulas for the exclusive production of 3 jets one has to restrict the
z integration with the rapidity cutoff 8(z — e") (2.24) from the definition of the impact
factor and use it only for the fast gluons (jets). As a result, the cross section gets explicit
dependence on the rapidity cutoff of the 3 observed jets.
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The situation is different in the inclusive case when one has to integrate over the
produced gluon. Since the z integration gives In s, one has to resum all such contributions.
One can do it via the evolution equation for the double dipole operator with a color singlet
projector following the logic of ref. [52].

However, since the main motivation of the present paper is to study the production of
a dijet with NLO accuracy, in the next section we will only extract the soft and collinear
divergences in these real terms to construct a well defined cross section for our process.

7 Cross section for the v*P — 2jets P’ exclusive transition

The expressions for v* — ¢q and v* — qgqg impact factors can be used to construct IR
stable cross sections for dijet production. Whatever the experimental conditions are, one
has to combine the ¢q and qgg production cross sections obtained above to cancel the soft
and collinear singularities in the virtual part. They cancel with the singular contribution
of gGqg production arising from the emitted gluon phase space area where the gluon is soft
or collinear to the quark or the antiquark.

We will explicitly show this cancellation on the example of the v*P — 2jetsP’ exclusive
production cross section experimentally studied in ref. [49]. By exclusive production we
understand that only two jets and the scattered proton are seen in the detector and there
is nothing else. Since we want our result for the cross section to be differential only in
the jets’ momenta, we integrate over the transverse momentum of the outgoing proton as
before. We define jets using the small cone algorithm, as in ref. [53].

Let us define a jet cone radius R2. For convenience, we will assume that R? < 1. Two
given particles will form a jet with a momentum equal to the sum of their momenta if they
both satisfy the following condition:

A¢? + AY? < R?, (7.1)

where A¢ is the azimuthal angle difference between the particle and the jet, and AY is
the rapidity difference between the particle and the jet. Let us consider for example a jet
built from the quark and the gluon. Its momentum will be given by
=92
Pj
2p+$]~

pj = xjpynk + ny +p,  wj=agtz D =Pyt Py (7.2)

> 2

In the small cone limit, p, + p, ~ ij_ up to a O(R) correction, so the jet is on-shell in
e}

this approximation. The azimuthal angle and rapidity differences read:

e . 1y 1 x“
A¢ = arccos p_)] Zig , AY =—In ;1192. (7.3)
19 19| 2 22p;
Introducing the variable
- Ty z
Ag = fpg . Pa (7.4)
J J
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which approaches 0 when the quark and the gluon are collinear, we get the condition for

the gluon to be inside the cone:
72,2

= b
A2 < RP i - (7.5)

xj

The corresponding condition for the quark reads

=2 92

S P

2 2 a
Ag < R=5 (7.6)

J
To obtain the 2-jet exclusive cross section in the small cone limit, we only need the con-
tributions for the (LO + NLO) ¢g production, and the part of the contribution of the ¢gg
production where the gluon is either soft or collinear to the quark or to the antiquark, so
that they both form a single jet.

We denote the jet variables as z;, ;, pj1 and pj,. In the case of the virtual contri-

bution one gets immediately the jet cross section by performing the following change of
variables in egs. (5.14)—(5.17):

(xapqi) — (xjvij)a (a_%pth) — (:Cj)pjj_)7 (77)

and by symmetrizing j < j.

For a given contribution do,, for partons in (6.5) or (5.13), we will denote the corre-
sponding contribution to the cross section for jets as do7,.

One can find the contribution of the collinear real gluons from the quasi-real electron
approximation [54]. Indeed, the real contribution with a jet formed by the quark and the
gluon and the other jet formed by the antiquark reads

B} L T1-¢N2-1
da—é]](xfbpq)‘col = dU(I)JI('xjapj) Qs (47T)1+€ ;N
c

ng, (7.8)
where n; is proportional to the “number of jets in the quark”

471' 1+e /$J dZ/ - dd&q M*?é tr(ﬁqyﬂﬁjwu)duy(l)g)
1 —€) A2< r

7 min(z2,(z;—z)2) (27‘-)d 2p;r2p;r (p(; +pg _p;)Z

n; =

Y xidz w- S
- / . d / R2j5 2 d'A,
o Z(ajj - 2) F(l — 6) 2 JAF<— 51 min(z2,(z;—2)2)

J

l(x] z) (dz* + 4z (zj — 2))
x?Ag '

X (7.9)

This result can also be obtained by taking the collinear limit in the squares of the real
impact factors, as shown in appendix B.
Here we introduced the jet j by performing the change of variables (7.2)

G 7y) = (B =50+ 5y By) s (,2) > (1 =3+ 2,2) (7.10)

and the jet j by
Pg = P;,  xg— x5 =1— 1y, (7.11)
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and integrated inside the jet cone (7.5)—(7.6). The contribution of the jet built from
the antiquark and the gluon is recovered via the j <+ j symmetry. In appendix B we
explicitly show that in the collinear limit the convolutions of the impact factors for real
gluon production reproduce the last line in eq. (7.9), while all the other factors come from
dosjr (6.6). The total collinear contribution reads

42222
1 ;T 3 Rpjpj 1 ;X 3
1, o wgagy 1 ([ PR\ 1, 5 (% w7
_ Cn? (22 it PO (2 I Y /AN Il -2 (A R R |
2n<a2>+2n(az->n<ﬁj—.2> 2"\ g T th®

J

In the soft gluon limit, the real cross section has the form

N2-1T(1—¢) 477 L p*f * dz dip
d / =d / c 517 S / q hatad g ,
O3s1ls0ft = 00110 1 (dm)iTe pg i Dg)| 2z (2m)d
(7.13)
as shown in appendix B. We have to integrate this formula over
1 Py
_ + g +

Wy =5 (’va + zzﬁ) < E<py, (7.14)

where w, is the emitted gluon energy and E is the energy resolution. The small energy
limit for the gluon occurs when all the components of the gluon momentum approach 0
simultaneously. We achieve this by rescaling the gluon transverse momentum as

Dy = 2U (7.15)

and going to the limit z — 0. In this limit the integration area reads

T 2F
2 (1 + “+2> <<, (7.16)
(py) Dy
and we have
. =\ 2
2F Dj pj
== —2eqd 4 (7 — f)
S = /"v zd_3dz/ a u{l oL (7.17)
o @2<(pi)2 (22 1) T(1 — €)mr2 (ﬁ_ &) (g_ &)
2P~y 11:3 Xy

as shown explicitly in appendix B. We have restored the rapidity cutoff a which of course
will play a role to regularize the soft divergence.

However, in the sum nj +nj; + S the region with a gluon both soft and collinear to
the quark or to the antiquark is calculated twice. To avoid double counting we restrict
the integration in S so that the gluons sit outside the cones (7.5). The new integration
region reads

0= {11’2 < (pF)? <+ — 1) } N Qe (7.18)

SN2 R252 7=\2 R*p?
sz{<ﬁ—pf> > 20 }m{(a’—pf> >t (7.19)
Zj .I‘j .’L‘j xT=
J
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Let us denote S’ the new definition of S with this integration area:

2B (B — )"
=dln{—r )1 AI(R.E 7.20
n< 7 ) B ((R%?xj?)(m@?x?) +4I(R, E), (7.20)

where we defined

. N2
28 . (ﬁ — &)
I(R,E) = —/ﬁ dz/ di  \w o m) (7.21)
0 z ﬂ2>(p¢)2(%—1)}ﬂ9n0 T <_'_ 5) (ﬁ_ ﬁﬂ)
#Py

The integral I(R, E) is convergent and depends neither on « nor on e. In the appendix C,

we show that this integral gives a contribution which is 1/s suppressed.

2B (Pjzj — =95)"
S = 4ln< >ln - J . (7.22)
Ozp$ ( (R2pj2$?) (RQPEQQC?)

Combining (7.12) and (7.22) we have

. (.263]5} — :@]3'3)4 I 4E?
x?x]zR4ﬁ2ﬁ]2 z5(p)?
i e 7w
+21n<32j) f—ln _,]—ju_,Q —ln2<J2j)
o € (x5 — %;P5) &
=2

3 164 T, iP; 3 2n?

° “m ()1 2
T <R4*2*2> n<x3> " <x3ﬁj2> c 3 "

Adding the singular part of the virtual correction (3.42), one finally cancels the In « and %

Finally,

S/+nj+n3: 2

(7.23)

divergences and gets:

Sk =8"+mn;+n;+ Sy + Sy

}ln —( P _xjﬁiyl In 74]52 +§
2 SR vjzi(py)? ) 2

=2
iP5 13 — 72
+1n(8)—1n<‘”f>1n iy Som (7.24)
2 x; T3P, 2

This demonstrates the IR finiteness of our cross section.

=4

To get the IR-safe exclusive diffractive dijet production cross section in the small cone
approximation, one has to take the gq production cross section from section 6, rename the
quark momenta via (7.7), and substitute Sy +.5;, — Sg in eq. (5.24) for the LL transition,
in eq. (5.28) for the LT transition, and in eq. (5.35) for the TT transition.
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8 Summary and prospects for further studies

Using the QCD shock-wave approach [20, 55, 56], we have obtained for the first time the
~v* — qq impact factor with one loop accuracy. Combined with our previous study of the
v* — qgg impact factor [19], we calculated the cross section for exclusive diffractive dijet
electroproduction off the proton. For this specific example, we have shown in a detailed way
the cancellation of UV and IR soft, collinear and rapidity divergencies. All presented results
were obtained without any collinear or soft approximations, in an arbitrary kinematics:
i.e. for nonzero incoming photon virtuality, arbitrary ¢—channel momentum transfer and
invariant mass of the produced state.

There are several theoretical developments to be pursued based on our study.

First, after applying a suitable Fierz projection, one can obtain the NLO impact factor
for the v(*) — p—meson transition in arbitrary kinematics, therefore extending the forward
result of ref. [57]. At leading twist, this process is dominated by the v; — py, transition,
while transitions with other polarizations start at twist 3. The impact factor for the
transition 77 — pr in the forward limit was obtained at LO in ref. [58, 59], including both
the kinematical twist 3 (the so-called Wandzura Wilczek (WW) [60] contribution, where
the produced meson Fock state is only made of a ¢¢) and the genuine twist 3 contributions
(i.e. including a qgg Fock state). The present result opens the way to a computation of LO
~v* — p transitions for arbitrary polarizations and kinematics (using our ~v*) = ¢Gg Born
order result), as well as of the NLO *) — p impact factor in the WW approximation,
using our one-loop 'y(*) — qq result.

Second, one could extend the results of our studies to massive quarks. This would
allow for a study of diffractive open charm production, measured at HERA [61], and
studied in the large M limit based on the direct coupling between a Pomeron and a qq or
a qqg state, with massive quarks [17]. In the context of the Color Evaporation Model or
studying a process where in the NRQCD formalism the color octet contribution is expected
to dominate, the required NLO ~®*) — J /¥ impact factor could be obtained.

Third, there are two ways to apply our result to phenomenology. A linearization pro-
cedure of the U operators allows one to make connection with the linear BFKL regime. On
the other hand, one can also construct a phenomenological model for the matrix elements
of the Wilson operators acting on the proton states to approach the saturated regime of
the proton or nucleus target.

Fourth, although we here restricted ourselves to a color-singlet exchange in the ¢t—chan-
nel, and thus to diffractive processes, an extension to the octet case can be performed, i.e.
to the inclusive case. At LO, such a study was done in ref. [62]. In this case, one encounters
a quadrupole Wilson line operator whose NLO evolution equation was derived in ref. [63].

Fifth integrating our results for the ¢q¢ and qgg cross sections w.r.t. the external mo-
menta, one can directly obtain the results for NLO ~* — ~* which were presented in
refs. [55, 56]. A detailed comparison is left for further studies.

On the phenomenological side, the applications of our results are multiple, and are
expected to improve essentially the precision of models based on the kp—factorization
picture, since several observables could now be made accessible theoretically with NLO
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accuracy. Indeed, it is known that passing from LO to NLO impact factors can have major
effects in BFKL predictions. The only available process for which such a complete NLO
description was obtained [64-69] is Mueller-Navelet dijet production [70]. In particular,
the azimuthal decorrelation was recently extracted by CMS [71] and confronted with its
very good theoretical description of refs. [72, 73]. Furthermore, the fact that the t—channel
exchanged state in our present computation is very general allows one to study not only
the linear BFKL regime, but also saturation effects in a proton or a nucleus, here with
NLO accuracy.

First, the NLO impact factor of the present study could be used to describe exclusive
dijet diffractive electroproduction [49], as well as non-exclusive dijet diffractive electropro-
duction, available at HERA [74]. In the limit Q? — 0, our general result could be also
applied to photo-production of diffractive jets [75, 76], with a hard scale given by the in-
variant mass of the produced state, and a precise comparison, now at NLO in the BFKL
framework, could be performed with the NLO collinear factorization approach [77, 78].
More generally, at future ep and eA colliders, like EIC [79] and LHeC [80], a large set
of observables will give a possibility to enter the saturation regime in a controllable way,
since the saturation scale becomes perturbative for large center of mass energy and/or
large values of A. This includes photoproduction of heavy quarkonia, exclusive diffrac-
tive production of light mesons, e.g. p—meson, either in electroproduction or in large t
photoproduction. In particular, our result allows one to use diffractive dijet production,
considered as a very promising observable to probe the color glass condensate and more
generally to perform proton and nucleus tomography at low x, in connection to Wigner
distributions, now beyond some recent LO analyses [81, 82].

Second, before the advent of future high energy and high luminosity ep and e A colliders,
ultraperipheral collisions (UPCs) at high energy which provide a source of photons from
a projectile proton or nucleus, are perfect playgrounds in order to probe the high-energy
partonic content of the target proton or nucleus. These are already accessible at the
LHC. In particular, during the Run I of the LHC, the LHCb collaboration have measured
exclusive photoproduction of J/¢ and ¢(25) mesons [83, 84| in pp collision (later extended
to T in ref. [85]), while the ALICE collaboration measured this process in pPb [86] and
PbPb [87-89] collisions. CMS very recently released a similar analysis for PbPb [90]. The
physics potential of UPCs will improve very significantly thanks to several very forward
detectors which are installed, under test, or planned in each of the four LHC experiments, in
particular the CMS-TOTEM Proton Spectrometer, AD-ALICE, HERSCHEL at LHCb and
AFP at ATLAS [91]. For example, the protoproduction of large invariant mass diffractive
dijet could be studied in UPC during Run II at LHC.4

Note. We are aware of a similar computation based on old-fashioned perturbation the-
ory [93] for the NLO ~* — ¢g wavefunction. The results of this study should match our
results for ®J;, see egs. (3.33), (3.34), when setting the shockwave momenta p;; and pa
to 0. Previous results by the same author [94] were confirmed by our previous study [19].

4In the usual collinear picture, a recent study of this process has been performed in ref. [92].
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A Finite part of the virtual correction

A.1 Building-block integrals

Throughout this section, we will need the following integrals

a9 (1%

If(q_iu (1‘27 Al; AQ) = 1/ r 7 —( J—) TS (Al)

TSC= )2+ A (= @)%+ A 17
e

L(q1, @, A1, Ag) = 1/ - a1 -, (A.2)
T (f— @)%+ Ay (f— 72)? + Asg
1 9 (1%

Iéf(qi, 527 Ala AQ) = / r —(—J—) T (A3)
T (= q)2+ A1 |(T— @)%+ Ay

. () 0k

PR, @y A1, Ag) = 1/ - -<-L L> —. (A.4)

g (f—§1)2+A1 (f—§2)2+A2 I?

The arguments of these integrals will be different for each diagram so we will write them
explicitly before giving the expression of each diagram, but we will omit them in the
equations for reader’s convenience.

Explicit results for the first 3 integrals in (A.1)—(A.4) are obtained by a straightforward
Feynman parameter integration. We will express them using the following variables:

(73 + Arz) — \/(5122 + A12)2 + 44500

P1 = 272 ) (A5)
12
(73 +A )Jr\/(*2 +A)? +4G3A
412 12 USp) 12 a2
p2 = 2772 ’ (AG)
12
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where Aij = Al — Aj

One gets:
Ik — q]fj_
D= @@ ) @89 - (@7~ @ + bua) (@0 — A0

2

12

( +A2 ql2+§22(A1+A2)+A2 (A21_2q1)]n[< —P1 ><]—_p2>:|
(p1 = p2) G q12 1—pm —pP2

Ao (G2 +Ap)°
+ (6722+A2)1H M +(1H2)}, (A7)
A1 (q2 +A2)
1 =) (58]
=7 In 7 A8
’ q122 (pl - PQ) |:<1 — pP1 —pP2 ( )

and
2(p1 — p2) (Q12) 1—m —pP2 2(112 A2

Please note that in some cases the real part of A or Ay will be negative so the previous

results can acquire an imaginary part from the imaginary part +140 of the arguments.
The last integral in (A.4) can be expressed in terms of the other ones by writing

PF =1y (CI{quﬂ) + 112 (qgﬁlﬁ + qgﬂﬁl) + Iz <Q%qu21> , (A.10)

1 [@&Parie — (@1 - @) g2k

s 2 (A.ll)
[Q1 qy" — (Q1 'Q2) }

N 9
Q- G2 @7 +A L 22 o
X [( 5 )1H< lAl >QTL+(Q2'Q21)I§+{C]22 (q1 - G12) + 218 — Do (G1 - G }-71]

qy
1 A
Ly = . [%252 - q})ﬂ In <q1 A, 1> (A.12)
N 0 (q1 - ¢2) [( + Aq) (qukh) <QIJ_I<:I3>]

O o o2
179" ) +(q1 - @2 S
- ( 1 42 ) ( )2 5 [(q22 +A2) (q1LkIf) + (CIukI?f)] + (1 A 2) )
1[i2a - @ @)’

Iy = Iil(o2) - (A.13)

This last expression makes it seem that there is a singularity when ¢ and ¢5 are collinear
or anticollinear. However, this singularity is non-physical and only appears when project-
ing on the particular basis of 2-dimensional symmetric tensors (q{qlf, q{qlg + nglf, q%qé“).
One can show that it disappears when projecting on the non-minimal basis (q{q’f, q{q’QC +
q%q’f, ng’g, gik) For a further study, the reader is referred to the appendix of ref. [95].
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A.2 Diagram 4

Here the integrals from section A.1 will have the following arguments:

Ay =(z—2)(T+2) Q% AQ:—MQ’Q—iO. (A.14)

Let us write the impact factors in terms of these variables. They read:
(longitudinal NLO) x (longitudinal LO) contribution:

4(z—2)(T+2)

(1) = ——— 3 (= 2) (z+ 1) B+ gy (207 - 20— 2) (2 + ) ]
(A.15)
(longitudinal NLO) x (transverse LO) contribution:
(Ba)p = (1= 20)pg1r, (¢4)pp — 4 — 2)(T + 2)(1 — 22 + 2) (@2 - Porr) g p, + @ P L) IT
(A.16)

(transverse NLO) x (longitudinal LO) contribution:

(¢a)iry, = 2{[@ —Z—2)¢5 @11k + (—82F — 6z + 222 + 32 + 1)qh¢]2¢k]ff
— 2[4:22 —x(324+5)+ (2 + 1)2]q2U§Iik +x—z2—2)(-q1) I’
+ Ll(z — % —2)¢5, +2(2(x — 2)? = 5z + 324+ 1)¢¢ ]

—Z[2(x — 2)* = bz + 3z + 1|1}

xx(1l — 22 ) . )
+ ¥[QQQLI¢IM + I — ¢ (2q01 kI + 12)]} , (A.17)

(transverse NLO) x (transverse LO) contribution:

(¢0)fr = [(x=2—22)(@—2—2)(@ - Hip )i 1 + =+ 1) (@1 - @) Py — (@1 Prr)as ) 1]
+2Z(go 11 — (x — Z)CJuk](Pf]yLIjk - giquyufkl)
+2(z — 2)[(2Z + 2)(@ - Porr) — T(q1 - o)1V
+ (1= 2) (@ Pp) @y — (@2 Ppn)a] ) — (1= 22)(Z =z + 2) (@1 - ) Py )T
-2 [(w —2)(2q], — (22 + 2)a3, )Pgr Lk
+ (1= 20) (402 = B2+ 5 + (2 + 1)) quriply | T
—z(Z—x) (2(30—,2)2 —51‘+3z—|—1)p;11[§

+Z (T + 2) (pquI — g7pqu i I})
I [ (1=2)(@ - Fipr) = 21+ 2= 2)(@ - F)
+((1-2)

@y — 21+ —2)q )k
—(@-2)((Z—2+2)d, —7(2(x—2) —5x+3z+1)qh)p§1,J
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+1T [gf (z—24+2)(q1 - Pgrr) 2k +(1=2)(G2 - Py )11k — (2+1) (@1 - @) Pgrv 1k)

+aq] (& =2+ 2) 2Pl — (2 + 1)g5 1P 1k)

+ q%;((m —&—22)(x — T —2)q; 1 pqr ik + (1 - Z)QlLkPZl’J_)

— (1 —22)((1 — 2z + 2)g5 g1 — (22* + 32 — (8% + 62) + 1)qh‘J2Lk)P21/L]

+ H;j (z — @)2pg1'L(QQ2link + 15 — ¢}y (I + 2q2.1117))

+ pﬁ]l’L(Q{L(b + 221 K IT) — 2q21 £ 77 — Ig)

+ 97 (@ - Do) T2 + 20211 IF) + g1k (2q2 ™ + I§))] : (A.18)
A.3 Diagram 5

Here the integrals from section A.2 will have the following arguments:

S z . r—z\ ., Z.
A= Pq1 = Pg> Q2 = ( - >p3 - (A.19)
z(x—z), _ _
A= (zzx)(pqzz +22Q%), A= (z—2)(T+2)Q%, (A.20)

With such variables, it is easy to see that the argument in the square roots in (A.6) is a
full square, so that
r7Q? _z(T+2)
= T(r—2)
In terms of the variables in (A.19), the impact factors read:
(longitudinal NLO) x (longitudinal LO):

P1 = (A.21)

4z — 2)(—22(T + 2) + 22 + 2)

[i(fv —2)Io — (2quik — @ (24 2) qaix) IT |
(A.22)

(¢5)1r =

(longitudinal NLO) x (transverse LO):

(¢5)pr = (7 — )Py (05)L1,
Y —z)(x—2—=z _ j j
A )(x ) (0t — 2@+ 205 ) Pt (gLett —glil) » - (A:29)
(transverse NLO) x (longitudinal LO):

(@), =2 |2 —2-2) @ @) —2(@— 2" QP+ (S -2) 3| i

2 )
+ - [JJQQJ_]{; (—8;8;1_6 —6xz+ 222 + 32+ 1) +2q1 1k (23;2 —o? 4 22)] th{g
T
—l—2q§'lqu_k(a?—:E—z)]{“—1—2E (m(Sx—3)—6mz+2z2+z)Ii
x

2 . .
+ = ogh (0 =2 - 2) +qiy (823 — 622 (2 +2) + 2 (2+3) (22 +1) — 222)] I

4 ,
- [(x — ) (B4 2) Qg+ (4x2 — 2 (3245)+ (2 + 1)2) quk} ik

4 ) . )
- ;xa? (x — ) [qgﬂg]’k +1I5—qi, (qQLkI{C + Ig)} , (A.24)
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(transverse NLO) x (transverse LO):
(6)r = =20 = 2) [2(@ - ) = 22+ 2)(@ - )| 17
n [—m QP + (@ -+ 22)(& — 3+ D)@ P
— (q1 - Pgr) ((Z +1)gh, — 22 (22 — 2) Qh)
(@B - (o4 D) e |
2%(£Q2Lk + (z — 2)q11x) <giqu1fufkl - pzqujk>
+ 7@ - 2) @ - 22Q%y . — (= (@ - Fr)ad,
(

2

S i r—x - _ L. .
+ Z—l)((D'qu')thrT((x — )@+ (@ —a+2) (G- @) phy | 1

€r—x B .

+2 [ - (z(42® — 3z +5)z + (2 + 1)*)qork + (& — 2)(Z + 2)q11k) Ply s
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- — (x(23: —z— 2)q%L + zq{L> pql’Lk‘:| ik

M (222 — 6az + 2 + x(8c — 3)) gl I}

2 . .

[m—x < T—x+42)¢, + <6(z+2)x—8x2— (z+3)(22+1)+21> qh)pf]w_

+ (1= 2) (g7 (@2 - Byv) + 5Pl ) + (22 + 2 = 3)(gF (@1 ) + Q'fwém)} Iy
] k

+ (3 ) pql’J_I3 (3$ - Z)gj_pql’J_kI{i

|: qlll {( -+ Z)QQJ_(]lJ_k — (22’ — 6xz + 3z — 8xx =+ 1)Q2J_qu_

2
z _ ..
—2(Z—z+22— )qukqu} +2(x — 2)2°Q%9 pgr 1k

+(1—2)qik (93 (@2 - pqrr) + qéLpél’l>
+ (& =T+ 2)qa1k — 2q11%) (97 (@1 - Pr) + q1 1 Pr 1)
+gY ((a:Jr;)q —(z+ (@ )) Pql Lk

-~ B . . . . z . .
+ (@—2-22)(@ 2= 2l — =+ Vasaals +220 = 2)=giral ) ppas] IF

+— [(ﬂf - a?)zpél/l(qukfm + I3) — pf11/l(q2J_kIJk + 1) + ¢ pgr 1k (qe I + )
+ (B + al?) (7@ ) + o Pl — (1= 201100, )] (A.25)

A.4 Diagram 6

For this diagram we will introduce the variable

o r—2z\ 4 Z
q= < )PS—pl. (A.26)
T €T
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Then the impact factors read:
(longitudinal NLO) x (longitudinal LO):

(6)LL = —4x72Jy (A.27)
(longitudinal NLO) x (transverse LO):
(¢6)],r = (1 —22)ply, | (¥6)LL (A.28)
(transverse NLO) x (longitudinal LO):
(¢6)iTL =2z [(1 - 295)p22LJ0 - Jﬁ] ) (A.29)
(transverse NLO) x (transverse LO):
(¢6) T — = [(‘/L‘ - j)Qp(ijZLpglu_ - 93{ (ﬁ(j? 'ﬁql’) - pél’lpégl] JO
+ {(fU - 'i')pZ{l’Lgﬁ_k — pav kg +pf11’J_gj_k} JrL- (A.30)
We introduced
_ 2k _'72 + T 2
Tk = M% In Pap + 220" , (A.31)
27\ gt e @+
and
9 — 2 252
L f”(fQ Z)TZQ In T w7 ) (A32)
v(Pg +22Q%)  wz(Ph +22Q?)  \ 2(z — 2)(0h + 22Q%) + @

B Real correction
Here we present the convoluted impact factors from section 5.

B.1 LL photon transition

8p+4

®F (p1i,p2rpsL) ®F (P, phy 5 )" = <
z

Lg (dZQ + daq (zq + Z)) (xqﬁgfﬂ — 2P ) (TgPg3 — Zﬁqy)

X
— — =2 = 2
xq (g + 2)2 <(593+pq1) + Q2) <(1%32)ql)2 + p%3 + 1%11 + Q2>

(zq+2)

(4zqwq + 22 — d2?)(xgPg3 — 2pg2)(TqPg3r — 2Pq1’)
(g + 2) (wq + 2) (B2 4+ 2) (pq2§593)2 + pqz + Q2

zq(zg+2) z

Now (g < ¢) stands for p, <> pg, pg) > pé), Tq > Tg.

2 2
— (1‘12/ +Q2> (Q2_|_ ql’ + 42/ + 93/>

> + (¢ q). (B.1)

DS (p1i,p21) @5 (P) 1, ph1)" = @f (P11.p21,0) P (ph1.ph,0)" +ATT + BT, (B.2)
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Here the first term in the r.h.s. is responsible for the emission of the gluon before crossing
the shockwave, A describes the emission after the shockwave and B is the interference

term. A and B are given by

A 8:U(jp,‘*y'4 (d2? + dzq (zg + 2))
=— - . =
J’.‘I(pg - %)2 (ﬂcq(;j-i-z) + Q2> (xq(?:]_’_z) + Q2>
8p1t (22 — d=* + dagaq) (Fy — )7y — 27
oz 27 _ a2 [ Par’ A Pq1 - 2 +lae ), (B.3)
7y = 22720~ 27 (e + @) (s + @)
and
B+ — 8py !
- q2’ 2 ﬁq21’ 5522’ Py 2
2@+ 2) | sy T@) | 2y T T @
) gy 22— d9) 5y - 2w, ~ i)
— DG p
7y = %7)? <$q(zz1+z +Q )

+-Dq) Py — 7-Dqv')
= + (g + Q)

- (dz +4zg (g + z)) (Py
(ﬁg B %)2 <x Ia):zz-i-z) +Q >
(B.4)

+ (11,24 2).
On one hand in the collinear region (7.1) only the first term of AT in (B.3) gives a

nonvanishing contribution in the small cone approximation. Using the variables defined

4 (dz?+4aj (z—2))

(7.4), (7.10), (7.11), the first line of AT+ becomes
8:qu$4 (d22+4:1;q (:L‘q+z)) (a:J— )(1— ZL'j)
- 7, P2 Daor? D; Dol
w‘l(pg_ %)2 (xq(;ffrz) +Q2) (xq(ﬁfrz) +Q2) (IJ (iitj > (azj(]liatj) +Q2)
_ (I)JF(I)H 1(xj—=2) (dz +4x; (acj—z)) . B5)
4 23 A2
=
which coincides with the integrand for n; defined in (7.9)
On the other hand if we use the soft gluon approximation by renaming
Py =21 (B.6)
and taking z — 0, we obtain
® (le_vp2L) (I)é‘r(pllj_7pl2j_)*‘z—>0
)
T Tg _
L s+ 0z, (B.7)

1
q)+(le_7p2J_) q)(—)i_(plljgpéj_)* 2 ~
(&) 2)
Tq
which is the soft gluon emission factor
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B.2 TL photon transition

) 4p+3
/ / / *
(I)EL(plj_7p2J_7p3J_) (I)I(plj_ap2j_7p3j_) - 52 72 72 1 72 72 72
CEE LR ICTE T 0
2 ((Prn)GL — (Grp) PL) (dz + 42y — 4) = (GP)piy 1 (20, = 1) (4 (g — 1) g — d2?)
X
P, ’
221.17 (Z + xq)?) ( :cq(z(i:c ) ( Zq ij-xq )
L? <(13ﬁq1)Hi — (Hpp)P ) (dz + dag — 2) — (HP)pl, 1 (224 — 1) (2(2 — d2) + dzgzg)

2
2oy (o ) (s +20)? (@ + i ) (@ + ey )

L HLGd+d=2) + 2 (24iv§))$jz +(qe ) (B.8)

z2(z+2q)2 (2 +25) <Q + Grry
Here
Gi = 9”(717231 - 21%217 Hi = xqu?,’l - ZPZyu Pi = xqpf;u - prjZJ_' (B.9)
Similarly to the longitudinal to longitudinal photon transition, we write
®4(p11,p2r) B (011, P51 )" = P4(p11,par, 0) DL (ph . ph,,0)* + AT + BT, (B.10)
where A and B are now given by

4p¢3a:
- ﬁ_Z ’
ASA% (.Z'q + z) (l‘q + z) <xq(:1:[f12+z) + Q2> <xq ;qlJrz +Q >
2 (4zg+ dz — 2) ( i1 (Pplg) — ALy (ﬁ(ﬁ&q))
+ (205 = 1) (ByB)php 1 (Ao + 2(2 - d2))]
4p¢3xq (225 — 1) (d2® + daq (24 + 2)) pé2l

- - o + (¢ < q) (B.11)
g2 2/
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and
Aﬂquq (dz +dz—2242x,— 4a;qa:q)
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Pq2/
z+9:q >
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ﬁq21 Q2 4 Pqv
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—dzz)
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+
2 (24ag)3 3<Q2+p9 +pq1+pq2> <Q2+
(B.12)

+ (g4 a)
Here we used the following variables
Xi = xqpfu - pryu = Pﬂprov Ji = xqp;L - prﬂm = Hﬂpg:m
K =xqpy; — quZ/J_ Gﬂpg_o (B.13)
Similarly to the case of a longitudinal photon, in the collinear region i.e. when A, — 0
only the last line of A" gives a divergent contribution, which will be proportional to the
, (7.

square of the Born impact factor. Using the jet variables (7.10), (7.11) we write
1 (z) — 2) (d2® + 4z (2, — 2)) 1
A2 +0(A;Y). (B.14)
J

‘bé(puap2ﬂ¢]§(?h7p,u) (I)Z ‘I) 4

Again the integrand of n; appears as in (7.9). In the soft gluon region we can also write

using (B.6):
~ S\ 2
- 1 (%q - fi)
®% (pro,p2r) Py (pllj_7p/2j_) |20 *24)6@8_* ﬂq 5 - —— + o(z™Y, (B.15)
e
Tq Tq

which is the soft gluon emission factor, coming from A**
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B.3 TT photon transition
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+
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1 Y i ok
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((d=4)2+2) [2H" ((Piga )y = Foriige ) PE ) +2(H50) (9 (Ppiar )+ Pl vl )]
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1
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22xrqxg (2+xg)? (Q2+xq(zq+1%)) (Q + q(;lm )>

% |g ((Gon)(Pin) ~(Cop) (Prp:) ) + (Fipbip) (GLPE -G PL)

+ 2(Gi) (Pipk+PEpiy (1-220)) ~2(Gi) (Phpiy L+ PLohy . (1-21,))]

+ (éﬁ) {PZuPél/L*PéuPZl/L (1*2%)24%]1C (ﬁqlﬁql’)] (d752+4m6 (Z+~T¢7))}

+ (11,2233 ick) |+ 9. (B.16)

Once more we write

DL (p11,par ) PE(P) L, ph1)" = ®i(p1e, por, 0)RE (), ph,,0)* + A% + B*. (B.17)
Then
_2p+2

L — : - {#((d-1)2-2)
AZAZ (q+2) % (xg+2) 2 (;%(;’[?FZ)JFQQ) <x (;1+z)+Q2>

X |(22q—1) (20— 1) Py 1P (Ao +2(2—d2)) +4uag ((Fpbi) g +vh 1 pba. )|
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+ ((ﬁql’ﬁ) ((17612A )9t +A1J_pq2J_>+AqJ_pq1’L(pq2A )— A’;LA%L(ﬁql’ﬁ@))
A((d—4)2+2)+2 (2= 1) (dz+dag~2) plp . (A5, (B By~ AL (5 )
+ 2 (2wg—1) ply) (dwg+dz—2) < zL(ﬁQQAQ)_Aqu_(ﬁ@AQD}
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and
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Here we introduced
VI = 24Py — 2Dg11 - (B.20)
Once again in the collinear region, i.e. when A, — 0, only the last line of A gives a

divergent contribution, which is proportional to the square of the Born impact factors.
Using the jet variables (7.10), (7.11) we obtain

ke 1 (2 = 2) (d2 + 4w (2 — 2))
04 x?Ag

+0(Aa;Y). (B.21)

D% (p11, 21 )PE (P L. ph, )" = PhO q

Again the integrand of n; appears as in (7.9).
In the soft gluon region we can also write, using (B.6):

. 1
®% (pro,par) @5 (P, phy ) [2m0 = ;%‘D'S*

which is the soft gluon emission factor.

C Integral I(R, F)

Here we will consider the integral (7.21)

N =\ 2
2B . pj _ Pi
I(R.E) = _/0@ % { “ < ), (C.1)

a2>(p¢)2( 23—1)}05% m (ﬁ_ ﬁ)z (g_ &)2 ’
#Pry T X
N2 R252 S\ 2 R272
_ D _ p
an = U — & > 2J N U — & > 2J s (CZ)
€ ZL‘j :B3 €T=

see eq. (7.18). Introducing the variable y = ZQJTE+ — 1, one gets
Y

S N2
. ;P
rE - [ du (Ij 1‘)
(R, E) = ; — —.
o YTl Hazsyeping.. T (4_&> (ﬁ_&>

The change of the integration order plus integration w.r.t. y yields

O
I(R,E):_/QM:(6_23)2(”;‘_@)2111 <1+ (;)2) (C.4)
z; x;

Next, introducing

v:max<pj,pj>, (C.5)
Til 1%
one can split the integration area into 2 parts

Qe = Dy Uy, ey = {02 < (20030 Qey, Qe = {102 > (20)?). (C.6)
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In the first domain ﬁ+22 < (2?22
. . gp“/ ) (ry) . . .
this maximal value into the logarithm and expanding it

=0 (%) . Hence one can estimate this integral by putting

} 5 _ 7))
/ du Tj x5
anl

i 2 1 du (%—%)2
(@) (an) () <0 (2) . :(4_@32(1_@.)2-

Although the integral in the r.h.s. of this inequality contains In R, we neglect terms
~ O (%) in the Regge limit. In the second domain one can write

; 5 _ 7\
/ du Tj x5
2
QnCQ

B ) o (i) —o(l). e

where the latter integral is easy to take. Finally,

I(R,E) =0 <h‘R> . (C.9)

S

Therefore we neglect this contribution.
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