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Abstract

In this paper, we study the restoration of gauge symmetry and up to half the supersymmetry (N = (2, 0)

or N = (1, 1) in two dimensions) for N = 2 non-Abelian Chern–Simons theories in the presence of a 
boundary. We describe the boundary action which is a supersymmetric WZW model coupled to the bulk 
Chern–Simons theory. Unlike the N = 1 case, higher supersymmetry (N = (2, 0)) will endow the group 
manifold of the WZW model with a complex structure. Therefore, the N = (2, 0) WZW model in our paper 
is constructed via a coset space Gc/G, where G is the same as the gauge group in the Chern–Simons action.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The low energy effective action for M2-branes with manifest N = 8 supersymmetry is de-
scribed by a Chern–Simons-matter theory called BLG theory [1–5]. This theory is based on a 
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Lie 3-algebra. The requirement of a finite dimensional algebra with positive definite metric re-
stricts the application to essentially only 2 M2-branes. However, the ABJM theory generalizes 
the BLG theory to a Chern–Simons-matter theory describing any number of M2-branes, but 
with only manifest N = 6 supersymmetry. The gauge sector of this theory is described by two 
Chern–Simons theories with the gauge group Uk(N) × U−k(N), where ±k are the levels for 
the two Chern–Simons theories [6]. In fact for the only suitable finite dimensional 3-algebra the 
BLG theory can be re-written in a form which demonstrates that the ABJM action for N = 2 is 
equivalent to the BLG action [7].

It is possible for M2-branes to end on other objects such as M5-branes, M9-branes, and 
gravitational waves. This is relevant for heterotic string theory [8–10] while general boundary 
conditions for multiple M2-branes were studied in [11]. In fact, the study of multiple M2-branes 
ending on M5-branes in a C-field background has led to the proposal of a novel quantum ge-
ometry using the 3-algebra structure [12], rather different from previous attempts to describe 
noncommutative strings based on a single M2-brane [13–15]. Also, the BLG action with an 
infinite-dimensional 3-algebra has been proposed as the action for an M5-brane in a large C-field 
background [16]. So, it is important to analyze the ABJM theory in the presence of a boundary.

The connection between three-dimensional Chern–Simons theories and two-dimensional con-
formal field theories is well known [17]. In the presence of a boundary we can impose appropriate 
boundary conditions [18,19], with the result that a component of the gauge field appears linearly 
in the action. It can thus be integrated out, imposing a constraint. A WZW model on the boundary 
is obtained as a solution to this constraint. In this way the bulk gauge potential gets replaced by 
the boundary WZW degrees of freedom. Alternatively, it is possible to define a boundary action 
by requiring the gauge transformation of the boundary action to exactly cancel the boundary term 
generated from the gauge transformation of the bulk action [20]. For ABJM theory the matter 
sector is gauge invariant even in the presence of a boundary, so only the gauge invariance of the 
Chern–Simons theories in presence of a boundary has to be restored.

A very similar issue is that boundary terms break the supersymmetry of a theory. This is be-
cause in general the supersymmetry transformations of supersymmetric actions give rise to total 
derivatives, and hence on a manifold without a boundary, these total derivatives vanish. However, 
in the presence of a boundary it is only possible to restore at most half the supersymmetry by 
imposing appropriate boundary conditions [21,22]. There are various constraints generated from 
supersymmetry on the possible boundary conditions [23–27]. These boundary conditions are 
imposed on-shell, and so the off-shell supersymmetry is still broken. As most supersymmetric 
theories are quantized using path integral formalism, and path integral formalism uses off-shell 
fields, it is important to try to construct actions which preserve some supersymmetry off-shell. 
It is possible to restore part of the off-shell supersymmetry by adding new boundary terms to 
the original action, such that the supersymmetric transformations of these boundary terms cancel 
the boundary pieces generated by the supersymmetric transformations of the bulk theory. This 
approach was developed by Belyaev and van Nieuwenhuizen and applied to many examples, in-
cluding three-dimensional Abelian gauge theories with N = 1 supersymmetry in the presence of 
a boundary [28]. This approach has also been used to analyze an Abelian version of the ABJM 
theory, in presence of a boundary, in N = 2 superspace [29]. The invariance of the full non-
Abelian ABJM theory, in the presence of a boundary, under both gauge and supersymmetric 
transformations has only been discussed in detail in N = 1 superspace [30]. The supersymme-
try of a matter-Born–Infeld action, in the presence of a boundary, has been discussed in N = 2
superspace [31]. In the application to ABJM theory the analysis done for the supersymmetric 
invariance of the matter sector will follow from a similar analysis done for the gauge sector. So, 
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in this paper, we will only analyze the gauge and supersymmetric invariance of N = 2 Chern–
Simons theories in the presence of a boundary. We note that the superspace boundary actions for 
N = 2 non-Abelian Chern–Simons theories were presented in [32] in the context of systems of 
D3-branes with boundaries on 5-branes in type IIB. In this paper we discuss detailed properties 
of such boundary actions and give expressions for the component actions. As well as giving a 
more explicit description of the N = 2 systems with boundary, we expect these results will be 
important for attempts to generalize to higher supersymmetry where superspace formulations 
become less practical. One obvious motivation is to study ABJM theory with a boundary where 
we can expect to preserve up to 6 supercharges, either N = (4, 2) or N = (6, 0) corresponding 
to M2-branes ending on M5-branes or M9-branes respectively.

2. Boundary supersymmetry

In this section we will review an approach by Belyaev and van Nieuwenhuizen to construct-
ing supersymmetric theories on manifolds with boundaries [28], see e.g. [29–32] for related 
applications. The key concept is to introduce new degrees of freedom on the boundary in or-
der to compensate for the variations of the bulk theory which no longer vanish when there is a 
boundary. Since a boundary breaks some translation invariance, it is not possible to preserve all 
supersymmetry, but half the original supersymmetry can be preserved.

In this section we will review the techniques to derive the required boundary action, first 
for N = 1 and then for N = 2 supersymmetry. We will specifically work in three spacetime 
dimensions with a two-dimensional boundary. Following the notation in [28] we use coordinates 
xμ where μ ∈ {0, 1, 3} in the bulk. We take x3 ≤ 0 so we have a boundary at x3 = 0 with 
boundary coordinates xm where m ∈ {0, 1}, and 

∫
d3x∂3X = ∫

d2xX.

2.1. N = 1 supersymmetry

Let us first define our notation and review the minimal case of N = 1 supersymmetry. We 
first introduce the spinor θα as two component anti-commuting parameters with odd Grass-
mann parity and let θ2 = 1

2θαθα = − 1
2θαCαβθβ , where Cαβ is an anti-symmetric tensor used 

to raise and lower spinor indices and CαβCγσ = δ
γ
[αδσ

β] (see Appendix A.1). The generators 
of N = 1 supersymmetry in three dimensions can be represented by Qα = ∂α − (γ μθ)α∂μ. 
These generators of supersymmetry satisfy {Qα, Qβ} = 2(γ μ∂μ)αβ . We can also construct super-
derivatives Dα = ∂α + (γ μθ)α∂μ, such that Dα commutes with the generators of supersymmetry, 
{Dα, Qβ} = 0. The generators of N = 1 supersymmetry in the bulk can be decomposed into 
Q± = P±Q where P± = (1 ± γ 3)/2 so that εαQα = εP−Q + εP+Q = ε−Q− + ε+Q+. The 
super-derivatives in the bulk can be similarly decomposed as Dα = D−α + D+α . The bulk su-
percharges satisfy,

{Q+α,Q+β} = 2(∂++)αβ, {Q−α,Q−β} = 2(∂−−)αβ,

{Q+α,Q−β} = 2(P+)αβ∂3,

where (∂++)αβ = (P+γ m)αβ∂m and (∂−−)αβ = (P−γ m)αβ∂m, and

{D+α,D+β} = −2(∂++)αβ, {D−α,D−β} = −2(∂−−)αβ,

{D+α,D−β} = −2(P+)αβ∂3.

Now, let us discuss a general N = 1 supersymmetric invariant action in the presence of a 
boundary [28]. The bulk action of N = 1 supersymmetry is
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S =
∫

d3x

∫
d2θ
, (1)

where 
 = a + θψ − θ2f and the supersymmetry transformations are

δa = εψ,

δψ = −εf + (γ με)∂μa,

δf = −ε(γ μ∂μ)ψ. (2)

Thus, under these supersymmetric transformations generated by Qα , the action transforms as 
δS = − 

∫
d3x∂μ(εγ μψ). So, the action (1) is invariant under the supersymmetric transforma-

tions generated by Qα , in the absence of boundary. However, in the presence of a boundary, 
the supersymmetric transformations generated by Qα produce a boundary term. Thus, if we as-
sume that a boundary exists at x3 = 0, then the supersymmetric transformations of the action 
δS = − 

∫
d3x∂3(εγ

3ψ) will generate a boundary term. This breaks the supersymmetry of the 
resulting theory.

We can preserve half of the supersymmetry of the resulting theory by either adding or sub-
tracting a boundary term to the original action. Now if Sb = − 

∫
d3x∂3
|θ=0 is the boundary 

term added or subtracted from the bulk action with N = 1 supersymmetry, then we have

δ(S ± Sb) = ∓2
∫

d3x∂3ε
±ψ±. (3)

Hence, the action S∓ = S ± Sb = ∫
d3x

(
(
∫

d2θ ∓ ∂3)

) |θ=0 preserves the supersymmetry 

generated by ε∓Q∓, which is only half of the N = 1 supersymmetry. It is not possible to simul-
taneously preserve both of the supersymmetries generated by ε+Q+ and ε−Q−, in the presence 
of a boundary.

As described in [28], one can construct boundary superfields by projecting bulk superfields 
onto the boundary. In this paper, we denote the induced value of bulk quantities on the boundary 
by putting a prime (′) on them. For example, 
′ is a boundary superfield derived from the bulk 
superfield 
. Similarly, the boundary supercharges will be denoted by Q′± = ∂± − (γ mθ)±∂m. 
Note that the bulk and boundary supercharges are related by Q′± = Q± ± θ±∂3, so we can write 
Q′± = M−1± Q±M±, where M± = exp(±θ−θ−∂3). The bulk super-derivatives are similarly re-
lated to the boundary super-derivatives as follows, D′± = D± ∓ θ±∂3 = ∂± + (γ mθ)±∂m, and so 
D′± = M−1∓ D±M∓. Now we can write the N = 1 boundary superfields explicitly in terms of the 
bulk superfields, e.g. 
′± = M−1± 
|θ∓=0 defines a boundary superfield 
′± = a′ + θ±ψ ′± from 
the bulk superfield 
. Note that this is arranged so that the boundary supersymmetry transforma-
tion is induced by the bulk supersymmetry transformation. Indeed it is easily seen that we have 
δ′
′± = M−1± δ
.

In the action, 
∫

d2θ can be replaced by D2 along with restriction to θ = 0. According to the 
commutation relations

D2 ∓ ∂3 = ±iD∓D±. (4)

Therefore, we can also write S± as:

S∓= ±i

∫
d3xD∓D±
|θ=0

= ±i

∫
d3x(D′∓ψ ′±)|θ∓=0,

(5)

where ψ ′± = (D±
)|θ±=0 is a boundary superfield.
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2.2. N = 2 supersymmetry

Now, we can extend the method for N = 1 supersymmetry to N = 2 supersymmetry. To this 
end, we first expand the N = 2 superspace Grassmann coordinates θα , θ̄ α in terms of real N = 1
coordinates θα

1 , θα
2 , as well as the generators and the spinor derivatives:

θα = 2−1/2(θα
1 + iθα

2 ), θ̄α = 2−1/2(θα
1 − iθα

2 ),

Qα = 2−1/2(Q1
α − iQ2

α), Q̄α = 2−1/2(Q1
α + iQ2

α),

Dα = 2−1/2(D1
α − iD2

α), D̄α = 2−1/2(D1
α + iD2

α).

(6)

Now Q1
α commutes with Q2

β , and Qi
α and Qj

β have the same commutation relationships as those 
of the supercharges in N = 1 supersymmetry, as do the Dn

α . The super-derivatives Di
α commute 

with the generators of the supersymmetry Qj
β , {Di

α, Qj
β} = 0.

We can now expand a general N = 2 supersymmetric action into N = 1 superfields:

S= −
∫

d3x

∫
d2θd2θ̄
(θ, θ̄ )|θ=θ̄=0

=
∫

d3x

∫
d2θ1d

2θ2
(θ1, θ2)|θ1=θ2=0.

(7)

The N = 2 superfield 
(θ1, θ2) can be decomposed as


(θ1, θ2) = a1(θ1) + ψ1(θ1)θ2 − f1(θ1)θ
2
2

= a2(θ2) + ψ2(θ2)θ1 − f2(θ2)θ
2
1 , (8)

where a1(θ1), a2(θ2), ψ1(θ1), ψ2(θ2), f1(θ1), f2(θ2) are N = 1 superfields in their own right.
According to the previous subsection, we know that, in the presence of a boundary, to re-

store ε1∓Q1∓ or ε2∓Q2∓ supersymmetry, we need to add a boundary term ∓∂3
∫

d2θ2
 or 
∓∂3

∫
d2θ1
. A general action which recovers half of the N = 2 supersymmetry is

S1∓2∓ =
∫

d3x

(∫
d2θ1 ∓ ∂3

)(∫
d2θ2 ∓ ∂3

)

(θ1, θ2)

∣∣∣
θ1=θ2=0

. (9)

If we preserve the supersymmetry corresponding to ε1∓Q1∓ and ε2∓Q2∓, then we will obtain 
a boundary theory with N = (2, 0) or N = (0, 2) supersymmetry. However, if we preserve the 
supersymmetry corresponding to ε1±Q1± and ε2∓Q2∓, we will obtain a boundary theory with 
N = (1, 1) supersymmetry.

We can also describe (9) in terms of boundary fields. The boundary supercharges will be 
denoted by Q′

i± = ∂i± − (γ mθi)±∂m. Again we can relate the projection of the bulk supercharges 
to the generators of supersymmetry on the boundary as Q′

i± = Qi± ± θi±∂3, so we can write 
Q′

i± = M−1
i± Qi±Mi±, where Mi± = exp(±θ i−θi−∂3).

The bulk super-derivatives are related to the boundary super-derivatives as follows, Di± =
D′

i± ± θi±∂3, where D′
i± = ∂i± + (γ mθi)±∂m, are the boundary super-derivatives and so, D′

i± =
M−1

i∓ Di±Mi∓.
We get (D2

1 ∓ ∂3)(D
2
2 ∓ ∂3) = −D1∓D1±D2∓D2±. So, the action which preserves the super-

symmetry generated by ε∓
1 Q1∓ and ε∓

2 Q2∓ can also be written as

S1∓2∓ = −
∫

d3xD1∓D1±D2∓D2±
(θ1, θ2)
∣∣
θ1=θ2=0. (10)
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Furthermore, we can write this action in terms of boundary fields as

S1∓2∓ = −
∫

d3xD′
1∓D′

2∓(
′
2±1±(θ1∓, θ2∓))

∣∣
θ∓

1 =θ∓
2 =0, (11)

where 
′
2±1± = D2±D1±
(θ1, θ2)

∣∣
θ±

1 =θ±
2 =0 is a boundary superfield. One may note that the 

action above can only describe (2, 0) or (0, 2) supersymmetry, but it is easy to write down S1±2∓
in a similar way.

3. Chern–Simons theory

In this section we will apply the discussion in the previous section to explicitly describe super 
Chern–Simons theories in the presence of a boundary. In addition to restoring some supersym-
metry, we also have to consider the effect of the boundary on the gauge symmetry. We will show 
that restoring this gauge symmetry is possible and that doing so leads to a WZW model on the 
boundary, coupled to the Chern–Simons theory in the bulk.

3.1. N = 1 Chern–Simons theory

Now, let us review and discuss N = 1 Chern–Simons theories with boundaries [28–30].

N = 1 Abelian Chern–Simons theories

For simplicity, we first discuss Abelian Chern–Simons theories. The action of an N = 1
Abelian Chern–Simons theory with gauge group H (with an implicit trace) is [33,34]

S1
A =

∫
d3xd2θ�αωα, (12)

where � is a spinor superfield, with components

� = χ − θM + (γ μθ)vμ − θ2[λ + (γ μ∂μχ)]
and ωα = DβDα�β is a super-covariant field strength. The gauge transformation is

δg�α = Dα
 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δgχ = ψ,

δgM = f,

δgvμ = ∂μa,

δgλ = 0,

(13)

i.e. δg(χ, M, vμ, λ) = (ψ, f, ∂μa, 0). The action (12) is only supersymmetric and gauge invariant 
up to a boundary term. To restore half of the supersymmetry, according to the previous section, 
we can add a boundary term to the bulk action, i.e.

S1∓
A =

∫
d3x(

∫
d2θ ∓ ∂3)[�αωα]∣∣

θ=0

=
∫

d3x
(
λλ−4εμνρvμ∂νvρ ∓ ∂3(2χ±λ±)

)
.

(14)

In the following discussion, without loss of generality, let us just consider S1−
A , as the manipu-

lation of S1+ can be done in a similar manner with the opposite chirality. In order to simplify the 
A
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discussion, we can introduce another (1, 0) supersymmetric invariant boundary term S1−
sb [29] to 

cancel the coupling term of the non-propagating gaugino —

S1−
sb = −2i

∫
d3x∂3

∫
dθ+�−(D′+�+)|θ−=0

= −2
∫

d3x∂3

∫
dθ+γ m�̂−�̂+

m

= 2
∫

d3x∂3(vmvm + χ+λ+ + χ+γ m∂mχ−),

(15)

where �̂− and �̂+
m are (1, 0) superfields A.2, with

�̂− = χ− + (γ mθ)−vm,

�̂+
m = vm + θ−( 1

2γmλ+ + ∂mχ−).
(16)

Here, we mainly followed the discussion in [29], and see also [28]. Actually, this boundary term 
is not necessary for the discussion of restoration of supersymmetry and gauge symmetry.1 But, 
in the following, one can see that this term can naturally give us the kinetic term of the boundary 
action and can give us useful hints for finding the boundary action of the N = 2 non-Abelian 
Chern–Simons action. In [12,30], without introducing such a term, one can add the kinetic term 
of the boundary action by hand since it is supersymmetric invariant and gauge invariant.

Then the action becomes

S1−
A =

∫
d3x

(
λλ − 4εμνρvμ∂νvρ + 2∂3(χ

+γ m∂mχ− + vmvm)
)
. (17)

The variation of the action under the gauge transformation is

δgS
1−
A = ∫

d3x4∂3(ψ
+γ m∂mχ− + ∂++av−−).

Here, note that ∂±± = (γ m∂m)∓± = ±∂0 +∂1 and v±± = ±v0 +v1. So, this action already partially 
restored the gauge symmetry, namely

δgv−− = ∂−−a, δgv = ∂3a,

δgM = f, δgχ+ = ψ+.
(18)

Therefore, one can set χ+ and M to be zero, since we can always choose specific f and ψ+. 
However, the gauge transformation for χ− and v++ will still break the gauge symmetry of the 
action, and the gauge transformation of v++ is usually related to those of v−− and v3 (13). To 
solve this problem, it is possible to couple this theory to another boundary theory, such that the 
total action is gauge invariant. So let us consider a boundary term:

S1−
A,b = S1−

A (�g) − S1−
A (�), (19)

where �g = ig(D′− − i�)g−1 denotes the gauge transformation of � by the scalar superfield g =
exp(i
′), where 
′ = a + θ−ψ− is a (1, 0) scalar superfield. Note that its bosonic component is 
a group element of the gauge group. Viewing S1−

A (�g) as a general gauge transformation by g, 
the term S1−

A,b should indeed be a boundary term, since S1−
A (�) should be gauge invariant in the 

1 However, if the action is not further modified, it is required to ensure that the boundary Euler–Lagrange equations 
produce standard consistent boundary conditions, without overconstraining the system [28].
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absence of the boundary. Now, the total action S1−
A (�) + S1−

A,b will clearly be gauge invariant if 
we choose �g to be gauge invariant, and this can be realized by defining the gauge transformation 
of g as

g → gu−1 , � → �u. (20)

An easy way to understand this boundary term is to consider � = 0; then there is no con-
tribution from the bulk action. We have �g = −i(D′−g)g−1 = D′−
′. Note that the gauge 
transformation parameter g is a (1, 0) superfield, which only leads to nonzero gauge transfor-
mations of χ− and vm. So, �g = D−
 = δg(χ−, vm) = (ψ−, ∂ma). Combined with the gauge 
transformation (18), �g = (ψ−, ∂μa) we can obtain:

S1−
A,b= 2

∫
d3x∂3(iψ−∂++ψ− + ∂++a∂−−a)

= −2i

∫
d2xdθ−(∂++
D′−
′).

(21)

Obviously, this is a standard (1, 0) supersymmetric action. It is easy to check that the action is 
invariant under the (1, 0) supersymmetric transformation:

δ−a = ε−ψ−,

δ−ψ− = ∂−−aε+.
(22)

Moreover, one can write the action as a (1, 0) Abelian WZW model, since 
′ corresponds to 
the group element g = exp(i
′) with gb ∈ H :

S1−
A,b = 2i

∫
d2xdθ−(∂++gg−1D′−gg−1). (23)

We only considered the special case � = 0 in the above situation, which means we restricted 
the gauge field v = 0 and there is no gauge symmetry. Actually, we can restore the gauge field 
by replacing the partial derivative ∂++ with D++ = ∂++ − iv++ and D′− with super-covariant 
derivative ∇′− = D′− − i�−. Also, replacing 

∫
dθ− with ∇′−, we have the final form of the bound-

ary action,

S1−
A,gWZW = 2i

∫
d2x∇′−[(g−1D++g)(g−1∇′−g)]|θ−=0. (24)

N = 1 non-Abelian Chern–Simons theories

Now, one can consider non-Abelian Chern–Simons theories. The natural guess of the bound-
ary term is a non-Abelian WZW model, which turns out to be just the case. The non-Abelian 
Chern–Simons action with group G [33] is

S1
nA =

∫
d3xd2θ�α�α, (25)

where �α = Wα − 1
3 [�β, �αβ ], with Wα = DβDα�β − i[�β, Dβ�α] − 1

3 [�β, {�β, �α}] being 
the super-covariant field strength and �αβ = − i

2 [D(α�β) − i{�β, �α}]. Then the action which 
preserves the half of supersymmetry ε−Q− is
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S1−
nA=

∫
d3x(d2θ − ∂3)(�

α�α)

=
∫

d3x[−4εμνρ(vμ∂νvρ − 2i

3
vμvνvρ) + λαλα

− 2∂3(χ
+λ+ − 2i

3
χ(γ μvμ)χ)].

(26)

We can also introduce a supersymmetry invariant boundary term to kill the gaugino coupling 
term in the boundary as we did in the Abelian Chern–Simons case. One may note that the last 
term in (26) can be canceled by a half supersymmetric boundary term ∼ ∫

dθ+γ m�̂−�̂+γm�̂−
and one may note that we set χ+ to be zero because of the similar reason in Abelian case (18).2

Then the action becomes

S1−
nA=

∫
d3x[−4εμνρ(vμ∂νvρ − 2i

3
vμvνvρ) + λαλα

+2∂3(iχ−γ m∂mχ− + vmvm)].
(27)

Now, let us consider the finite gauge transformation g = gb + θ−ψ−. g+ = g+
b + θ−ψ+− with 

gg+ = 1. Therefore,

g+
b = g−1

b ,

ψ+− = −g+
b ψ−g+

b .
(28)

Choosing � = 0, then �g = δg(χ−, vμ) = (−iψ−g−1
b , −i∂μgbg

−1
b ). One can write down the 

desired boundary action explicitly:

S1−
nA,b= 2[−

∫
d2xg−1

b ∂mgbg
−1
b ∂mgb

+ i

∫
d2xψ+− (γ m∂m + γ m∂mgbg

−1
b )ψ−

+ 2

3

∫
d3xεμνρ{g−1

b ∂μgbg
−1
b ∂νgbg

−1
b ∂ρgb}]

= 2i

∫
d2xdθ−(g−1∂++g)(g−1D′−g)

+2i

∫
d3xdθ−[(g−1∂++g), (g−1∂3g)](g−1D′−g).

(29)

The action is invariant under the transformation:

δ−gb = ε−ψ−,

δ−ψ− = ∂−−gbε+.
(30)

Therefore, after we restore the gauge field, the action is consistent with the gauged (1, 0)

non-Abelian WZW action S1−
nA,gWZW with gb ∈ G in [30]:

2 From the (1, 0) superfield �̂+ in (106) one can see δε−Q−χ+ = iε−(−M + v3). Since M is absent in the action and 
the gauge symmetry of M is naturally hold, one can always compensate M by a gauge transformation to set the variation 
of χ+ zero. Hence, we can choose χ+ to be zero and keep the value unchanged under the supersymmetric variation.
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S1−
nA,gWZW= 2i

∫
d2x∇′−[(g−1D++g)(g−1∇′−g)]

+2i

∫
d3x∇′−{[(g−1D++g), (g−1D3g)](g−1∇′−g)}|θ−=0.

(31)

3.2. N = 2 Chern–Simons theory

We will now apply the results of the previous section to N = 2 Chern–Simons theory. The 
restoration of supersymmetry has previously been considered in the Abelian theory [29] and the 
non-Abelian gauge and supersymmetry invariant superspace actions have been presented in [32]. 
However, the non-Abelian actions have not previously been analyzed in detail.

The action for an N = 2 Chern–Simons theory on a manifold without boundaries can now be 
written as [35]

S2 =
∫

d3x

1∫
0

dtd2θd2θ̄V Da(e−tV D̄ae
tV ), (32)

where the parameter t should not be confused with time x0. The N = 2 vector superfield V can 
be expanded into N = 1 component superfields as

V (θ1, θ2) = A1(θ1) + θ2�1(θ1) − θ2
2 (B1(θ1) − D2

1A1(θ1)), (33)

where A1 and B1 are N = 1 real superfields which depend on θ1, and �1 is a real spinor super-
field, with components summarized by

A1 = a + θ1ρ − θ2
1 F,

B1 = b + θ1η − θ2
1 k,

�1 = χ − θ1M + (γ μθ1)vμ − θ2
1 [λ + (γ μ∂μχ)].

(34)

For a manifold without boundaries, this action is invariant under N = 2 supersymmetry transfor-
mations generated by Qa and Q̄a and also invariant under the following gauge transformations

eV → ei�̄eV e−i�, (35)

where � and �̄ are chiral and anti-chiral superfields respectively. However, in the case of a 
boundary, both supersymmetry and gauge symmetry are broken. To preserve half of the super-
symmetry, we can modify the action to

S∓∓(V ) =
∫

d3x

1∫
0

D1∓D1±D2∓D2±dt[V Da(e−tV D̄ae
tV )]

∣∣∣
θ1=θ2=0

. (36)

To restore the gauge symmetry, we need to couple other boundary terms. Let us now discuss 
what boundary terms are required.

N = 2 Abelian Chern–Simons theories

For simplicity, let us first discuss the Abelian case. After integrating out one of the spinor 
coordinates θ2, the bulk action of the Abelian N = 2 Chern–Simons theory can be rewritten as:

S2
A =

∫
d3xd2θ1(B1B1 + �α

1 ω1α + 1
Dα

1 (D1αB1A1 − B1D1αA1)), (37)

2
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where ω1 is the super-covariant field strength and ω1α = D1βD1α�1β . In the presence of a 
boundary, we need to consider (37) by adding some boundary terms to recover half of the 
N = 2 supersymmetry on the boundary. In the following discussion, we mainly focus on the 
action which preserves (2, 0) supersymmetry, although it is also possible to preserve (1, 1) su-
persymmetry. These two cases are related to each other, with (1, 1) supersymmetry resulting from 
changing the chirality of one of the supercharges in (2, 0) supersymmetry. After considering the 
boundary effect, the action (36) in components [29] is:

S2−−
A =

∫
d3x

(
2kb + ηη + λλ − 4εμνρvμ∂νvρ

+ 2∂3(vmvm + iχ−γ m∂mχ− + iρ−γ m∂mρ− + ∂ma∂ma − 1

2
bb)

)
.

(38)

One may note that here we also introduced some (2, 0) supersymmetric invariant action to cancel 
the gaugino couplings as in N = 1 super Chern–Simons theory and following the same reason 
below (18) the gauge transformations of ρ+, χ+, M , v−− and v3 lead to the invariance of the 
action. However, the action is still not gauge invariant because of the gauge transformations of a, 
v++, ρ− and χ−. As in the N = 1 Chern–Simons case, we can also introduce another boundary 
term:

S2−−
A,b ((eV )′) = S2−−

A ((eV )g,ḡ) − S2−−
A (eV ). (39)

Here, (eV )g,ḡ denotes the gauge transformation of (eV ) by g = exp(i�′) and ḡ = exp(i�̄′),

(eV )g,ḡ = ḡ exp(V )g−1, (40)

where �′ and �̄′ are (2, 0) scalar chiral and anti-chiral superfields, respectively. In Abelian case, 
this transformation is equivalent to replacing V with V �′,�̄′ = V + i(�̄′ − �′). We introduce 
the components of �′ as �′ = c + θ−ψ− + iθ−θ̄−∂−−c and those of �̄′ as �̄′ = c̄ − θ̄−ψ̄− −
iθ−θ̄−∂−−c̄. Therefore, we can represent (39) with S2−−

A,b (V ′) = S2−−
A (V �′,�̄′

) − S2−−
A (V ). If 

we choose the gauge transformation of g and ḡ as

g → gu−1, ḡ → ḡū−1, eV → (eV )u,ū (41)

the total action S2−−
A (eV ) + S2−−

A,b ((eV )′) is gauge invariant with (eV )g,ḡ being gauge invariant.
In order to find the explicit form of the boundary term, for simplicity, let us first consider 

V = 0. Then V �′,�̄′ = δg,ḡV = i(�̄′ − �′) and the nonvanishing field components are:

δg,ḡ(a, ρ−, χ−, vm)= (δg,ḡA1(a,ρ−), δg,ḡ�1(χ−, vm))

= (i(�̄′ − �′)|θ−
2 =0, iD

′
2−(�̄′ − �′)|θ−

2 =0).
(42)

Since both A1 and �1 are N = 1 superfields depending on θ1, we have the constraint “|θ−
2 =0” in 

the second line. For convenience, we note that we can alternatively use the chirality of the (2, 0)

superfields �′ and �̄′ to write:

δg,ḡ�1= iD′
2−(�̄′ − �′)|θ−

2 =0

= D′
1−(�̄′ + �′)|θ−

2 =0.
(43)

Then, V �′,�̄′
can be represented by
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δg,ḡ(a, ρ−, χ−, vm)= (δg,ḡA1(a,ρ−), δg,ḡ�1(χ−, vm))

= (i(�̄′ − �′)|θ−
2 =0,D

′
1−(�̄′ + �′)|θ−

2 =0)

= (
A,D′
1−
B)

= (c2,ψ2−,ψ1−, ∂mc1).

(44)

Here, we define (1, 0) scalar superfields 
′
A = c2 + θ−

1 ψ2− = i(�̄′ − �′)|θ−
2 =0 and 
′

B = c1 +
θ−

1 ψ1− = (�̄′ + �′)|θ−
2 =0. One may note that this definition with the constraint “|θ−

2 =0” is not 

allowed without the change (43), since D′
2− can eliminate θ−

2 .
Therefore, we can write down the required boundary action

S2−−
A,b (V ′)= S2−−

A (V �′,�̄′
) − S2−−

A (V )

= 2
∫

d3x∂3(∂mc1∂
mc1 + iψ1−γ m∂mψ1−

+ iψ2−γ m∂mψ2− + ∂mc2∂
mc2)

= −2i
∫

d2xdθ1−
(
∂++
′

AD′
1−
′

A + ∂++
′
BD′

1−
′
B)

)
.

(45)

There are some important properties of this action.
First, this action is obviously (1, 0) supersymmetry invariant. Actually, the last line of (45)

is a combination of two standard (1, 0) actions. Now, we show that this combination is a single 
(1, 0) action. For an Abelian gauge group, we can consider the flat target space coordinates to be 

̃′

M = (
′
A, 
′

B), with the metric ηMN being:

ηMN =
(

δAA 0

0 δBB

)
= δMN. (46)

M, N range in {A, B}.
We now rename θ1− as θ̃1−. Then, the action (45) is

S2−−
A,b = −2i

∫
d2xdθ̃1−ηMN∂++
̃′MD̃′

1−
̃′N, (47)

which is just the standard (1, 0) sigma model.
We now represent the (1, 0) sigma model as a (1, 0) WZW model [36], treating the target 

space M as a group manifold for semi-simple Lie group. Then there are left- and right-invariant 
vielbeins LI

M and RI
M , respectively, on the group manifold, they satisfy

dLI + 1

2
f I

JKLJ LK = 0, dRI − 1

2
f I

JKRJ RK = 0, (48)

where I, J, K range in {A, B} (the same indices as M, N ) and are tangent space indices, i.e. Lie 
algebra indices, f I

JK are the structure constants and LI = LI
Md
̃′M .

When we consider an Abelian group, the situation becomes simple, where

LI
M = δI

M, RI
M = δI

M, f I
JK = 0. (49)

LI
M is the same as RI

M .
With respect to the variation of 
̃′, one can find the Noether currents

J I− = LI
MD−
̃′M = D−
̃′I , J I++ = RI

M∂++
̃′M = ∂++
̃′I , (50)

which satisfy
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∂++J I− = 0, D−J I++ = 0. (51)

Now we use a group g̃ = exp i(
̃′I tI ) instead of 
̃′ to specify M , and group generators tI
satisfy

[tI , tJ ] = f K
IJ tK. (52)

Since the generators tI are two commuting copies of the generators of H , in the Abelian case our 
group field g is valued in H ×H . Here, one may note that this g̃ = exp(i(�̄′ + �′) + i ∗ (i(�̄′ −
�′)) is a boundary field rather than a gauge transformation parameter.

The supersymmetric sigma model can then be represented by a (1, 0) WZW model:

S2−−
A,WZW = 2i Tr

∫
d2xdθ̃1−(g̃−1∂++g̃)(g̃−1D̃′

1−g̃), (53)

with currents being

J− = J I tI = g̃−1D−g̃, J++ = J I++tI = (∂++g̃)g̃−1. (54)

One may note that there is no WZ term, since we just considered the Abelian case. One can 
also restore the gauge fields in the action to obtain a gauged (1, 0) WZW model.

S2−−
A,gWZW = 2i Tr

∫
d2x∇̃′

1−[(g̃−1D++g̃)(g̃−1∇̃′
1−g̃)]|θ̃−

1 =0. (55)

Moreover, the action (53) should be (2, 0) supersymmetry invariant. Spindel et al. [37,38]
proved that a (1, 0) sigma model is invariant under (2, 0) supersymmetry if the target space 
admits a complex structure which means the vanishing of Nijenhuis tensor. In the following, we 
will show that our group manifold endows just such a complex structure.

We first redefine the coordinates such that an almost complex structure JM
N is endowed with 

the standard form:

JM
N =

(
0 −1

1 0

)
. (56)

It is easy to check that the almost complex structure satisfies the following conditions:

JM
N JN

L = −δM
L , JM

N ηML + JM
L ηNM = 0,

∂pJM
N = 0, NL

MN = JP
MJL[N,P ] − JP

N JL[M,P ] = 0.
(57)

The last equation in (57) means the vanishing of the Nijenhuis tensor. Of course, for a flat even-
dimensional manifold, we can define a global constant complex structure, so this condition is 
trivially satisfied. Therefore, our action (47) is invariant under an N = (2, 0) supersymmetry 
[36–38].

Now, let us manifestly write down the (2, 0) action. Without changing the action, we can 
introduce a new Grassmann coordinate θ̃−

2 , and extend 
̃′ to be a N = (2, 0) superfield (which 
means the superfields 
̃′, 
′

A and 
′
B become (2, 0) superfields), with a chirality constraint:

D̃′−
̃′
M = iJN

M D̃′−
̃′
N, (58)

(D̃′
1− − iD̃′

2−)
̃′
A = −i(D̃′

1− − iD̃′
2−)
̃′

B,

with θ̃− = (θ̃− + iθ̃−)/
√

2 and D̃′− = (D̃′ − iD̃′ )/
√

2. In components, this is
1 2 1− 2−
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D̃′
1−
′

A = −D̃′
2−
′

B,

D̃′
2−
′

A = D̃′
1−
′

B.
(59)

One may note that this just means that 
′
A = i(�̄′ − �′) and 
′

B = (�̄′ + �′) without the 
constraints �′|θ−

2 =0 and �̄′|θ−
2 =0, and θ̃−

2 is θ2−. Therefore, this chirality constraint naturally 
exists in our model.

Based on this constraint, we have

S2−−
A,b = −2i

∫
d2xdθ̃1−∂++
̃′

M(D̃′
1)−
̃′M

= −2i

∫
d2xdθ̃2−∂++
̃′

M(D̃′
2)−
̃′M.

(60)

Therefore,

S2−−
A,b = −2i

∫
d2x[dθ̃−∂++
̃′

M
¯̃
D′−
̃′M + (c.c)]. (61)

This action is just a (2, 0) action. So, we have proved that the boundary action for the N = 2
Chern–Simons action is a (2, 0) sigma model [36].

Furthermore, we can also write this (2, 0) model as a (2, 0) WZW model, with the group 
element g̃ = exp(i
̃′I tI ).

S2−−
A,WZW = 2i

∫
d2x[dθ̃−(g̃−1∂++g̃)(g̃−1 ¯̃

D′−g̃) + (c.c)]. (62)

Because of the existence of the complex structure, we can also introduce complex group 
generators ti from the real group generators tI , by defining

ti =
√

1

2
(tA + itB),

tī =
√

1

2
(tA − itB) = (ti)

∗
(63)

where A and B indicate the two copies of the generators of H , but both A and B take the value 
i in these relations. It is easy to see that the group element g can be equivalently written as

g̃ = exp(i
̃′I tI ) = exp i(
̃′i ti + 
̃′ī tī ), (64)

where 
̃′i =
√

1
2 (
̃′A − i
̃′B) and 
̃′ī =

√
1
2 (
̃′A + i
̃′B). Since ti and tī are the generators 

of complex group HC , we say the group field g̃ is valued in HC group. Actually, in Abelian 
case, H(n, R) × H (n, R) is equal to H(2n, R) which by general redefinitions can transform to 
H(n, C). Here, (n, R) means that in group H(n, R), there are n parameters valued in R.

After we turn on the gauge fields, we have a (2, 0) gauged WZW model on the coset space 
HC/H :

S2−−
A,gWZW = 2i

∫
d2x{∇̃′−[(g̃−1D++g̃)(g̃−1 ¯̃∇′−g̃)] + (c.c)}|θ̃−=0. (65)

Another interesting property of this boundary action is that the (2, 0) WZW model simply 
reduces to a (1, 0) WZW model when we fix the gauge transformation parameters �′|θ−

2 =0 and 

�̄′|θ−
2 =0 to be real or purely imaginary. This can give us a useful hint for the discussion in the 

N = 2 non-Abelian Chern–Simons case.
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From (44), it is easy to see that if we restrict �′|θ−
2 =0 and �̄′|θ−

2 =0 to be imaginary, i.e. 

(�̄′ +�′)|θ−
2 =0 = 0, we only have the gauge transformations for A1, which we denote as δgAA1.

δgAA1 = δgA(a,ρ−) = (c2,ψ2−). (66)

Then, the required boundary action S2−−
A,bA is a (1, 0) model.

S2−−
A,bA= S2−−

A (V gA) − S2−−
A (V )

= 2
∫

d2x(∂++c2∂−−c2 + iψ2−∂++ψ2−)

= −2i

∫
d2xdθ1−∂++
′

AD′
1−
′

A

= 2i

∫
d2xdθ1−(g−1

A ∂++gA)(g−1
A D′

1−gA),

(67)

where gA = exp(i
′
A) ∈ HA.

Also, one can fix (�̄′ − �′)|θ−
2 =0 = 0, and then only consider the nontrivial gauge transfor-

mations of �1: δgB�1 = D′
1−(�̄′ + �′)|θ−

2 =0. Then the boundary term S2−−
A,bB needed is

S2−−
A,bB= S2−−

A (V gB) − S2−−
A (V )

= 2
∫

d2x(∂++c1∂−−c1 + iψ1−∂++ψ1−)

= −2i

∫
d2xdθ1−∂++
′

BD′
1−
′

B

= 2i

∫
d2xdθ1−(g−1

B ∂++gB)(g−1
B D′

1−gB),

(68)

where gB = exp(i
′
B) ∈ HB . This is also a (1, 0) sigma model.

Actually, one can understand the reduction of the supersymmetry in another way that after we 
fix the parameters, the complex structure is lost and then only a (1, 0) action left.

Remark: there exists an interesting correspondence, i.e., the gauge transformation of ∂ma is 
just like that of vm, and the gauge transformation of ρ− is like that of χ−. The correspondence can 
be understood in the following way. First, 
′

B corresponds to the transformation of �1: δgB�1 =
(ψ1−, ∂mc1). When we only consider the transformations of �1, S2−−

A (V gB) is equivalent to

S2−−
A (V gB) = S2−−

A (V ) + S1−
A (�

gB

1 ) − S1−
A (�1), (69)

where S1−
A (�1) is defined in the same way as that in the N = 1 Chern–Simons case. Therefore, 

the boundary term S2−−
A,bB is

S2−−
A,bB= S1−

A (�
gB

1 ) − S1−
A (�1). (70)

Second, 
′
A actually corresponds to the transformation of �2 = iD′

1−(�̄′ − �′): δgA�2 =
(ψ2−, ∂mc2). We can also rewrite S2−−

A (V gA) as

S2−−
A (V gA) = S2−−

A (V ) + S1−
A (�

gA

2 ) − S1−
A (�2). (71)

The boundary term S2−− is
A,bA
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S2−−
A,bA= S1−

A (�
gA

2 ) − S1−
A (�2). (72)

Both �1 and �2 are N = 1 spinor superfields and transform in the same way, as do (ρ−, ∂ma)

and (χ−, vm). One can note that the boundary action (47) is the combination of (67) and (68). 
Based on this hint, we now consider the non-Abelian case.

N = 2 non-Abelian Chern–Simons theories preserving N = (2, 0)

In the non-Abelian case, the situation becomes complicated without using the Wess–Zumino 
gauge, or at least the Ivanov gauge. The Chern–Simons action is an infinite series when written 
in component form, since the commutators do not vanish. Therefore, it is very hard to show an 
explicit derivation for the boundary theory. Based on our result in the Abelian case, we propose 
the boundary action contains S2−−

nA,gWZW :

S2−−
nA,b= 2i[

∫
d2xdθ̃−(g̃−1∂++g̃)(g̃−1 ¯̃

D′−g̃)

+
∫

d3xdθ̃−[(g̃−1∂++g̃), (g̃−1∂3g̃)](g̃−1 ¯̃
D′−g̃) + (c.c)],

(73)

with group field g̃ valued in GC group. When we define g̃ = g̃b + θ̃−ψ̃−, in components, the 
action is:

S2−−
nA,b= 2[−

∫
d2x(g̃−1

b ∂++g̃b)(g̃
−1
b ∂−−g̃b)

+ i

∫
d2xψ̃+− (γ m∂m + γ m∂mg̃bg̃

−1
b )ψ̃−

+ 2

3

∫
d3xεμνρ(g̃−1

b ∂μg̃b)(g̃
−1
b ∂νg̃b)(g̃

−1
b ∂ρg̃b)].

(74)

Now, let us put our effort to justify this action is the right result.
First, when we consider the gauge group G being an Abelian group, we see that the non-

Abelian WZW action (73) reduces to the Abelian action (62). Therefore, the group elements 
should become group elements valued in H × H or HC .

Second, we know that the bulk theory of the N = 2 Chern–Simons action can be written as 
an N = 1 Chern–Simons action with a term of an auxiliary field:

S2−−
nA,b =

∫
d3x

∫
d2θ1(�1�1 + B2

1 ). (75)

If we only preserve N = (1, 0) supersymmetry on the boundary, we only need to restore the 
gauge symmetry and supersymmetry of the N = 1 Chern–Simons theory which we know is the 
N = (1, 0) non-Abelian action (29) with group field valued in group G. This can be given by the 
N = (2, 0) non-Abelian action (73) by restricting g̃ ∈ GC to the subgroup G, i.e. g̃ ∈ G.

To satisfy the above two requirements, there are two possible (minimal) choices: (2, 0) non-
Abelian WZW model with group elements valued in G × G or GC . One may note that in the 
Abelian case, we introduced two groups H ×H and HC , which are equivalent in that case, since 
all generators commute with each other. There are two types of gauge transformations with pa-
rameters exp[i(�̄′ + �′)] and exp[i × (i(�̄′ − �′))]. However, in the non-Abelian case, G × G

is not equal to GC . So the question is which one is the right choice. The reason we choose GC is 
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shown as follows.3 First of all, it is obvious that the superfield transformation rule involves GC

since � is complex. Second, if the right group is G × G, there should be two real subgroups G. 
However, in the non-Abelian case, when restricting to the imaginary part by setting �′ = −�̄′, 
i.e., g−1 = ḡ = M = exp[i × (i(�̄′ − �′))], the gauge transformation rule is

(expV )M = M expV M, (76)

((expV )M)N = NM(eV )M−1N−1 = (NM)(eV )(MN). (77)

In general, NM does not equal MN , so the imaginary part does not give rise to a closed subgroup 
of GC , unless we are in the Abelian case. While restricting �′ = �̄′ and then g = ḡ = exp[i(�̄′ +
�′)], we get the standard gauge transformation rule as

(expV )M = M expV M−1, (78)

((expV )M)N = NM(eV )M−1N−1 = (NM)(eV )(NM)−1. (79)

This forms a subgroup G of GC . This is consistent with the fact that a non-Abelian GC has 
only one real subgroup G by restricting the group elements real. Therefore, we choose GC group 
instead of G × G.

After we turn on the gauge fields, we obtain the gauged (2, 0) WZW model:

S2−−
nA,b= 2i[

∫
d2xd∇̃−(g̃−1∂++g̃)(g̃−1 ¯̃∇′−g̃)

+ ∫
d3xd∇̃−[(g̃−1∂++g̃), (g̃−1∂3g̃)](g̃−1 ¯̃∇′−g̃) + (c.c)].

(80)

N = 2 non-Abelian Chern–Simons theories preserving N = (1, 1)

One should also obtain a (1, 1) WZW model when preserving ε1+Q1+ and ε2−Q2− (or 
ε1−Q1− and ε2+Q2+) on the boundary simultaneously. Then, to preserve the gauge symme-
try, considering the transformation of V by ĝ = exp(i
̂′) which is a (1, 1) superfield belonging 
to G, we also propose the boundary action being a (1, 1) WZW model [39]

S2+−
nA,b=

∫
d2xd2θ̂

¯̂
D′ĝ+D̂′ĝ

+2
∫

d3xd2θ̂ ĝ−1∂3ĝ
¯̂
D′ĝ+γ3D̂

′ĝ,

(81)

where D̂′ =
(

D̂′+
D̂′−

)
and D̂′± = D′±. (Here we use ̂ to denote fields in this case to hopefully 

avoid confusion with the fields discussed in the (2, 0) case.) We can redefine the components of 
ĝ = ĝb + θ̂ ψ̂ − θ̂2f̂ and ĝ+ = ĝ+

b + θ̂ ψ̂+ − θ̂2f̂ +. ĝ and ĝ+ satisfy the constraint g+g = 1:

ĝ+
b = ĝ−1

b ,

ψ̂+ = −ĝ+
b ψ̂ĝ+

b ,

f̂ + = −ĝ+
b f̂ ĝ+

b − ψ̂+ψ̂ĝ+
b .

(82)

The action in components can be written as

3 We thank the anonymous referee for comments to clarify this issue.
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S2+−
nA,b= 2(

∫
d2x∂++g+∂−−g +

∫
d3x

2

3
εμνρ∂μgg+∂νgg+∂ρgg+)

+ 2
∫

d2x(ψ+γ3γ
m∂mgg+ψ + ψ+γ m∂mψ)

+ 2
∫

d2x[−f +f + 1

2
ψ+γ3ψ(g+f − f +g)]

(83)

By construction, the (1, 1) action is invariant under the transformation:

δĝb = ε−ψ̂− + ε+ψ̂+,

δψ̂ = −εf̂ + (γ με)∂μĝb,

δf̂ = −ε(γ μ∂μ)ψ̂.

(84)

There is no kinetic term for the auxiliary field f̂ . Therefore, we can integrate it out by replacing 
it with its equation of motion:

f̂ = ψ̂ĝ−1
b P+ψ̂. (85)

Using this together with the constraint ĝ+ĝ = 1, we can eliminate the auxiliary field so that we 
are left with the following expression

S2+−
nA,b= 2

∫
d2x∂mĝ+

b ∂mĝb

+ 4

3

∫
d3xεμνρ Tr{ĝ−1

b ∂μĝbĝ
−1
b ∂νĝbĝ

−1
b ∂ρĝb}

+2
∫

d2x Tr ψ̂+(γ m∂m + γ3γ
m∂mĝbĝ

−1
b )ψ̂,

(86)

where we have used the identity

Tr{(ψ̂+ψ̂)2 + (ψ̂+γ 3ψ̂)2} = 0, (87)

which is valid for Majorana fermions. Then, we know that the (1, 1) action can be written as a 
free fermion action. The supersymmetry transformation is

δĝb = ε−ψ̂− + ε+ψ̂+,

δψ̂ = −ε(ψ̂ĝ−1
b P+ψ̂) + (γ με)∂μĝb.

(88)

We can also check the action by reducing it to a (1, 0) WZW model or a (0, 1) WZW model. 
When we choose to preserve only ε2−Q2− or ε1+Q1+: when the gauge transformation param-
eter is fixed to be a (1, 0) scalar superfield ĝA = ĝθ1+=0 then the required boundary action (81)
becomes a (1, 0) WZW model

S2+−
nA,bA= 2i

∫
d2xdθ̂−(ĝ−1

A ∂++ĝA)(ĝ−1
A D̂′−ĝA)

+2i

∫
d3xdθ̂−[(ĝ−1

A ∂++ĝA), (ĝ−1
A ∂3ĝA)](ĝ−1

A D̂′−ĝA);
(89)

and, when the gauge transformation parameter is fixed to be a (0, 1) scalar superfield ĝB =
ĝθ =0, the action (81) becomes a (0, 1) WZW model
2−
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S2+−
nA,bB= −2i

∫
d2xdθ̂+(ĝ+

B ∂−−ĝB)(ĝ+
B D̂′+ĝB)

+2i

∫
d3xdθ̂+[(ĝ+

B ∂−−ĝB), (ĝ+
B ∂3ĝB)](ĝ+

B D̂′+ĝB).

(90)

Actually, sharing the same bosonic terms, the combination of (90) and (89) can be the (1, 1)

WZW action (81) whereby the (1, 1) action can be written as a WZW action of free fermions 
[39,40].

After we turn on the gauge fields, we obtain the gauged (1, 1) WZW model:

S2+−
nA,b= −

∫
d2x∇̂′ 2(ĝ+ ¯̂∇′ĝĝ+∇̂′ĝ)

−2
∫

d3x∇̂′ 2(ĝ+∂3ĝĝ+ ¯̂∇′ĝĝ+γ3∇̂′ĝ)|
θ̂= ˆ̄θ=0

.

(91)

One difference with the (2, 0) WZW model is that the (1, 1) WZW model does not require the 
existence of a complex structure.

4. Conclusion

In this paper we first considered the addition of a boundary in N = 2 theories, and analyzed
the minimal additional boundary action which must be included to restore half the supersym-
metry. We then applied this formalism to N = 2 Chern–Simons theories. As is well known, 
this has the extra complication that the presence of a boundary also breaks the gauge symmetry. 
However, we showed that restoring the full gauge symmetry is possible, and that doing so leads 
to a supersymmetric gauged WZW model on the boundary. While performing this analysis in 
N = 2 superspace proved too technically challenging, we were able to work in N = 1 to derive 
the result. We could explicitly show that in the case of boundary N = (2, 0) supersymmetry, the 
manifestly N = (1, 0) sigma model possessed a complex structure so that the required conditions 
were met for enhancement of supersymmetry.

It is possible to use these results to analyze ABJM theory in the presence of a boundary. It is 
important to perform such an analysis, as the ABJM theory describes multiple M2-branes and 
multiple M2-branes can end on M5-branes, M9-branes or gravitational waves. By writing the 
ABJM theory in N = 2 superspace, it is possible to modify the original Lagrangian by introduc-
ing boundary terms which preserve half the supersymmetry. Furthermore, the matter Lagrangian 
will be gauge invariant by itself in the presence of a boundary, while the gauge sector of this 
theory can be made gauge invariant by adding new boundary degrees of freedom as presented 
in this article. These new boundary degrees of freedom will include WZW models with either 
N = (2, 0) or N = (1, 1) supersymmetry. Thus, it is possible to obtain the full gauge invari-
ant Lagrangian for the ABJM theory, which preserves half the manifest supersymmetry of the 
original theory in N = 2 superspace formalism. However, we are also free to include additional 
gauge- and supersymmetry-invariant boundary terms. Such terms are in part determined by the 
manifest supersymmetry, see e.g. [29] for a discussion of the boundary potential for ABJM the-
ory. The full N = 6 superconformal invariance should restrict the boundary potential to be a 
specific quartic potential. It would be interesting to perform a complete analysis for the non-
Abelian ABJM theory in N = 2 superspace formalism using additional R-symmetry constraints 
to derive the enhanced supersymmetric boundary action. It may be noted that the ABJM theory 
has also been formulated in N = 3 harmonic superspace [41]. It would thus also be interesting 
to analyze the ABJM theory in the presence of a boundary, in N = 3 harmonic superspace.
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Appendix A

A.1. Conventions

In this paper, we assume Lorentzian (− + +) signature. In our conventions,

θα = Cαβθβ, θα = θβCβα, θ2 = 1
2θαθα = − 1

2θβCβαθα. (92)

Here, we consider

Cαβ = −Cαβ =
(

0 −i

i 0

)
. (93)

γ 0β
α =

(
0 1

−1 0

)
, γ 1β

α =
(

0 1

1 0

)
, γ 3β

α =
(

1 0

0 −1

)
. (94)

γ
μ
αβ ≡ γ

μγ
α Cγβ = γ

μ
βα, γ μγ ν = ημν + εμνργρ,

P± = 1
2 (1 ± γ3), ε013 = 1.

(95)

Differentiation and integration is summarized by

∂αθβ = δ
β
α ,

∫
dθαθβ = δ

β
α ,

∫
d2θθ2 = −1. (96)

The supercharges and covariant derivative are

Dα = ∂α + (γ μθ)α∂μ, Qα = ∂α − (γ μθ)α∂μ,

Dα = −∂α − (θγ μ)α∂μ.
(97)

We obtain the following algebra

{Qα,Qβ} = 2γ
μ
αβ∂μ, {Qα,Dβ} = 0, {Dα,Dβ} = −2γ

μ
αβ∂μ. (98)

A.2. Decomposition: N = 1 → N = (1, 0)

We can first define the boundary supercharges

Q′∓ = ∂∓ − (γ mθ)∓∂m.

Q′∓ = ∂∓ − (γ mθ)∓∂m

(99)

Then, we have

Q′− = Q− − θ−∂3, Q′+ = Q+ + θ+∂3. (100)

The two operators Q′ and Q− are related as follows
−
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Q′− = Q− − θ−∂3 = exp(θ−θ−∂3)Q− exp(−θ−θ−∂3)

Q′+ = Q+ + θ+∂3 = exp(−θ−θ−∂3)Q+ exp(θ−θ−∂3)
(101)

Therefore, we write


 = exp(−θ−θ−∂3)(Â(θ−) + θ+Â+(θ−)). (102)

So, one can write down the half supersymmetric multiplets from a fully supersymmetric one. Let 
us first discuss the scalar multiplet

A= a + θψ − θ2f

= exp(−θ−θ−∂3)(Â(θ−) + θ+Â+(θ+)),
(103)

where hatted objects are now boundary superfields (1 + 1 dimension) whose supersymmetry is 
generated by ε−Q′− ≡ ε−(∂− − (γ mθ)−∂m). Then one can obtain the half multiplets:

Â = a + θ−ψ−,Â+ = ψ+ − θ−(f − ∂3a). (104)

The spinor multiplet can be decomposed in a similar way:

�∓= χ∓ − θ∓M + (γ μθ)∓vμ − θ2[λ + γ μ∂μχ]∓
�−= exp(−θ−θ−∂3)(�̂−(θ−) − θ−�̂−(θ−)]
�+= exp(−θ−θ−∂3)[�̂+(θ+) + (γ mθ)+�̂+

m(θ+)]
(105)

�̂−= χ− + (γ mθ)−vm,

�̂−= M + v3 − θ−[λ− − 2∂3χ− + (γ m∂mχ)−],
�̂+= χ+ + θ+(−M + v3),

(γ mθ)+�̂+
m= (γ mθ)+[vm + θ−( 1

2γmλ + ∂mχ)−].

(106)
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