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We consider a spinor quintom dark energy model with intrinsic spin, in the framework of Einstein-Cartan-Sciama-Kibble theory.
After constructing themathematical formalism of themodel, we obtain the spin contributed total energy-momentum tensor giving
the energy density and the pressure of the quintom model, and then we find the equation of state parameter, Hubble parameter,
deceleration parameter, state finder parameter, and some distance parameter in terms of the spinor potential. Choosing suitable
potentials leads to the quintom scenario crossing between quintessence and phantom epochs, or vice versa. Analyzing three
quintom scenarios provides stable expansion phases avoiding Big Rip singularities and yielding matter dominated era through
the stabilization of the spinor pressure via spin contribution.The stabilization in spinor pressure leads to neglecting it as compared
to the increasing energy density and constituting a matter dominated stable expansion epoch.

1. Introduction

The astrophysical observations show that the universe is
experiencing an accelerating expansion due to an unknown
component of energy, named as the dark energy (DE) which
is distributed all over the universe and having a negative
pressure in order to drive the acceleration of the universe [1–
9]. Various DE scenarios have been proposed: cosmological
constant Λ is the oldest DE model which has a constant
energy density filling the space homogeneously [10–13].
Equation of state (EoS) parameter of a cosmological fluid is𝜔 = 𝑝/𝜌, where 𝑝 and 𝜌 are the pressure and energy density
and the DE scenario formed by the cosmological constant
refers to a perfect fluid with EoS 𝜔Λ = −1.

Other DE scenarios can be constructed from the dynam-
ical components, such as the quintessence, phantom, K-
essence, or quintom [14–16]. Quintessence is considered as a
DE scenario with EoS𝜔 > −1. Such amodel can be described
by using a canonical scalar field. Recent observational data
presents the idea that the EoS of DE can be in a region
where 𝜔 < −1. The most common scenario generalizing
this regime is to use a scalar field with a negative kinetic
term. This DE model is known as the phantom scenario

which is also named as a ghost [17]. This model experiences
the shortcoming, such that its energy state is unbounded
from below and this leads to the quantum instability problem
[18]. If the potential value is not bounded from above, this
scenario is even instable at the classical regime known as the
Big Rip singularity [19]. Another DE scenario, K-essence, is
constructed by using kinetic term in the domain of a general
function in the field Lagrangian. This model can realize both𝜔 > −1 and 𝜔 < −1 due to the existence of a positive
energy density but cannot allow a consistent crossing of the
cosmological constant boundary −1 [20].

The time variation of the EoS of DE has been restricted by
the data obtained by Supernovae Ia (SNIa). According to the
SNIa data, some attempts have come out to estimate the band
power and density of the DE EoS as a function of the redshift
[21]. There occur two main models for the variation of EoS
with respect to time; Model A and Model B. While Model
A is valid in low redshift, Model B suffers in low redshift;
therefore, it works in high redshift values.Thesemodels imply
that the evolution of the DE EoS begins from 𝜔 > −1 in the
past to 𝜔 < −1 in the present time, namely, the observational
and theoretical results allow the EoS 𝜔 of DE crossing the
cosmological constant boundary or phantom divide during
the evolution of the universe [22–25].
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Crossing of theDEEoS the cosmological constant bound-
ary is named as the quintom scenario and this can be
constructed in some special DE models. For instance, if
we consider a single perfect fluid or single scalar field DE
constituent, thismodel does not allow theDEEoS to cross the𝜔 = −1 boundary according to the no-go theorem [26–31].
To overcome no-go theorem and to realize crossing phantom
divide line, some modifications can be made to the single
scalar fieldDEmodels. One can construct a quintom scenario
by considering two scalar fields, such as quintessence and
quintom [22].The components cannot cross the−1 boundary
alone but can cross it combined together. Another quintom
scenario is achieved by constructing a scalar field model with
nonlinear or higher order derivative kinetic term [27, 32] or a
phantom model coupled to dark matter [33]. Also the scalar
field DE models nonminimally coupled to gravity satisfy the
crossing cosmological constant boundary [34, 35].

The aforementioned quintom models are constructed
from the scalar fields providing various phantom behaviors,
but the ghost field may cause some instable solutions. By
considering the linearized perturbations in the effective
quantum field equation at two-loop order one can obtain
an acceleration phase [36–40]. On the other hand, there is
another quintommodel satisfying the acceleration of the uni-
verse, which is constructed from the classical homogeneous
spinor field𝜓 [41–44]. In recent years,many studies for spinor
fields in cosmology can be found [20], such as those for
inflation and cyclic universe driven by spinor fields, for spinor
matter in Bianchi Type I spacetime, and for a DE model with
spinor matter [45–50].

The consistent quintom cosmology has been proposed by
using spinor matter in Friedmann-Robertson-Walker (FRW)
geometry, in Einstein’s general relativity framework [51]. The
spinor quintom scenario allows EoS crossing −1 boundary
without using a ghost field. When the derivative of the
potential term with respect to the scalar bilinear𝜓𝜓 becomes
negative, the spinor field shows a phantom-like behavior. But
the spinor quintom exhibits a quintessence-like behavior for
the positive definite potential derivative [20]. In this quintom
model, there exist three categories of scenario depending on
the choice of the type of potentials; one scenario is that the
universe evolves from a quintessence-like phase 𝜔 > −1 to
a phantom-like phase 𝜔 < −1, another scenario is for the
universe evolving from a phantom-like phase 𝜔 < −1 to a
quintessence-like phase𝜔 > −1, and the third scenario is that
the EoS of spinor quintomDE crosses the −1 boundary more
than one time.

In this study, we consider the spinor quintom DE, in the
framework of Einstein-Cartan-Sciama-Kibble (ECSK) theory
which is a generalization of the metric-affine formulation
of Einstein’s general relativity with intrinsic spin [52–61].
Since the ECSK theory is the simplest theory including the
intrinsic spin and avoiding the big-bang singularity [62], it
is worth considering the spinor quintom in ECSK theory
for investigating the acceleration phase of the universe with
the phantom behavior. Therefore, we analyze the spinor
quintommodel with intrinsic spin in ECSK theory whether it
provides the crossing cosmological constant boundary. Then

if the model provides the crossing −1 boundary, we will find
the suitable conditions on the potential for the crossing −1
boundary.

2. Algebra of Spinor Quintom with
Intrinsic Spin

Themost complicated example of the quantum field theories
lying in curved spacetime is the theory of Dirac spinors.
There occurs a conceptual problem related to obtaining the
energy-momentum tensor of the spinor matter field from
the variation of the matter field Lagrangian. For the scalar
or tensor fields, energy-momentum tensor is the quantity
describing the reaction of the matter field Lagrangian to
the variations of the metric, while the matter field is held
constant during the change of the metric. But for the spinor
fields, the above procedure does not hold for obtaining the
energy-momentum tensor from the variation with respect
to metric only, because the spinor fields are the sections
of a spinor bundle obtained as an associated vector bundle
from the bundle of spin frames. The bundle of spin frames is
double covering of the bundle of oriented and time-oriented
orthonormal frames. For spinor fields, when one varies the
metric, the components of the spinor fields cannot be held
fixed with respect to some fixed holonomic frame induced by
a coordinate system, as in the tensor field case [63].Therefore,
the intrinsic spin of matter field in curved spacetime requires
ECSK theory which is the simplest generalization of the
metric-affine formulation of general relativity.

According to the metric-affine formulation of the gravity,
the dynamical variables are the tetrad (vierbein or frame) field𝑒𝑖𝑎 and the spin connection 𝜔𝑎𝑏𝑘 = 𝑒𝑎𝑗𝑒𝑗𝑏;𝑘 = 𝑒𝑎𝑗 (𝑒𝑗𝑏,𝑘 + Γ𝑗

𝑖𝑘
𝑒𝑖𝑏).

Here comma denotes the partial derivative with respect to
the 𝑥𝑘 coordinate, while the semicolon refers to the covariant
derivative with respect to the affine connection Γ𝑖𝑗𝑘. The
antisymmetric lower indices of the affine connection give the
torsion tensor 𝑆𝑖𝑗𝑘 = Γ𝑖[𝑗𝑘]. The tetrad gives the rela-
tion between spacetime coordinates denoted by the indices𝑖, 𝑗, 𝑘, . . . and local Lorentz coordinates denoted by the indices𝑎, 𝑏, 𝑐, . . ., such that 𝑉𝑎 = 𝑉𝑖𝑒𝑎𝑖 , where 𝑉𝑎 is a Lorentz vector
and𝑉𝑖 is a usual vector. Covariant derivative of a Lorentz vec-
tor is definedwith respect to the spin connection and denoted
by a bar: 𝑉𝑎|𝑖 = 𝑉𝑎,𝑖 + 𝜔𝑎𝑏𝑖𝑉𝑏 and 𝑉𝑎|𝑖 = 𝑉𝑎,𝑖 − 𝜔𝑏𝑎𝑖𝑉𝑏. Also
the covariant derivative of a vector is defined in terms of the
affine connection: 𝑉𝑘;𝑖 = 𝑉𝑘,𝑖 + Γ𝑘𝑙𝑖𝑉𝑙 and 𝑉𝑘;𝑖 = 𝑉𝑘,𝑖 −Γ𝑙𝑘𝑖𝑉𝑙. Local Lorentz coordinates are lowered or raised by the
Minkowski metric 𝜂𝑎𝑏 of the flat spacetime, while the space-
time coordinates are lowered or raised by the metric tensor𝑔𝑖𝑘. Metric compatibility condition 𝑔𝑖𝑗;𝑘 = 0 leads to the
definition of affine connection Γ𝑘𝑖𝑗 = { 𝑘𝑖𝑗 } + 𝐶𝑘𝑖𝑗 in terms of the
Christoffel symbols { 𝑘𝑖𝑗 } = (1/2)𝑔𝑘𝑚(𝑔𝑚𝑖,𝑗 + 𝑔𝑚𝑗,𝑖 − 𝑔𝑖𝑗,𝑚) and
the contortion tensor 𝐶𝑖𝑗𝑘 = 𝑆𝑖𝑗𝑘 + 2𝑆𝑖(𝑗𝑘). Throughout the
paper, the 𝐴 (𝑗𝑘) = (1/2)(𝐴𝑗𝑘 + 𝐴𝑘𝑗) notation is used for
symmetrization and 𝐴 [𝑗𝑘] = 𝐴𝑗𝑘 − 𝐴𝑘𝑗 is used for the anti-
symmetrization. With the definitions 𝑔𝑖𝑘 = 𝜂𝑎𝑏𝑒𝑎𝑖 𝑒𝑏𝑘 and 𝑆𝑗

𝑖𝑘
=
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𝜔𝑗
[𝑖𝑘]

+ 𝑒𝑎[𝑖,𝑘]𝑒𝑗𝑎, the metric tensor and the torsion tensor can
be considered as the dynamical variable instead of the tetrad
and spin connection.

A tensor density Α𝑖𝑗⋅⋅⋅
𝑘𝑙⋅⋅⋅

is given in terms of the corre-
sponding tensor 𝐴𝑖𝑗⋅⋅⋅

𝑘𝑙⋅⋅⋅
as Α𝑖𝑗⋅⋅⋅
𝑘𝑙⋅⋅⋅

= 𝑒𝐴𝑖𝑗⋅⋅⋅
𝑘𝑙⋅⋅⋅

, where 𝑒 = det 𝑒𝑎𝑖 =√−det𝑔𝑖𝑘. Therefore, we represent the spin density and
the energy-momentum density, such as 𝜎𝑖𝑗𝑘 = 𝑒𝑠𝑖𝑗𝑘 andΤ𝑖𝑘 = 𝑒𝑇𝑖𝑘. Here we call these tensors metric spin tensor and
metric energy-momentum tensor, since the spacetime coor-
dinate indices label these tensors and are obtained from the
variation of the Lagrangian with respect to the torsion (or
contortion) tensor 𝐶𝑖𝑗

𝑘
and the metric tensor 𝑔𝑖𝑗, respectively.

The metric spin tensor is written as 𝑠𝑘𝑖𝑗 = (2/𝑒)(𝛿ℓ𝑚/𝛿𝐶𝑖𝑗𝑘 ) =
(2/𝑒)(𝜕ℓ𝑚/𝜕𝐶𝑖𝑗𝑘 ), while the metric energy-momentum tensor
is given by 𝑇𝑖𝑗 = (2/𝑒)(𝛿ℓ𝑚/𝛿𝑔𝑖𝑗) = (2/𝑒)[𝜕ℓ𝑚/𝜕𝑔𝑖𝑗 −𝜕𝑘(𝜕ℓ𝑚/𝜕(𝑔𝑖𝑗,𝑘))]. Here, the Lagrangian density of the source
matter field is ℓ𝑚 = 𝑒𝐿𝑚. When the local Lorentz coordinates
are also used in these tensors as 𝜎𝑖𝑎𝑏 = 𝑒𝑠𝑖𝑎𝑏 and Τ𝑎𝑖 = 𝑒𝑇𝑎𝑖 , we
call 𝑠𝑖𝑎𝑏 and 𝑇𝑎𝑖 dynamical spin tensor and dynamical energy-
momentum tensor, respectively, and they are obtained from
the variation of the Lagrangian with respect to the tetrad𝑒𝑖𝑎 and the spin connection 𝜔𝑎𝑏𝑖 . The dynamical spin tensor
is 𝑠𝑖𝑎𝑏 = (2/𝑒)(𝛿ℓ𝑚/𝛿𝜔𝑎𝑏𝑖 ) = (2/𝑒)(𝜕ℓ𝑚/𝜕𝜔𝑎𝑏𝑖 ), and energy-
momentum tensor is 𝑇𝑎𝑖 = (1/𝑒)(𝛿ℓ𝑚/𝛿𝑒𝑖𝑎) = (1/𝑒)[𝜕ℓ𝑚/𝜕𝑒𝑖𝑎 −𝜕𝑗(𝜕ℓ𝑚/𝜕(𝑒𝑖𝑎,𝑗))].

Total action of the gravitational field and the source
matter in metric-affine ECSK theory is given in the same
form with the classical Einstein-Hilbert action, such as 𝑆 =𝜅 ∫(ℓ𝑔 + ℓ𝑚)𝑑4𝑥, where 𝜅 = 8𝜋𝐺 and ℓ𝑔 = −(1/2𝜅)𝑒𝑅 is
the gravitational Lagrangian density. Here Ricci scalar is
constructed from the spin connection containing curvature
tensor, such that 𝑅 = 𝑅𝑏𝑗𝑒𝑗𝑏, where 𝑅𝑏𝑗 = 𝑅𝑏𝑐𝑗𝑘𝑒𝑘𝑐 is the Ricci
tensor obtained from the curvature tensor𝑅𝑏𝑐𝑗𝑘 and finally this
curvature tensor is expressed in terms of the spin connection,
such that 𝑅𝑎𝑏𝑖𝑗 = 𝜔𝑎𝑏𝑗,𝑖 − 𝜔𝑎𝑏𝑖,𝑗 + 𝜔𝑎𝑐𝑖𝜔𝑐𝑏𝑗 − 𝜔𝑎𝑐𝑗𝜔𝑐𝑏𝑖. Variation of the
total actionwith respect to the contortion tensor gives Cartan
equations 𝑆𝑗

𝑖𝑘
− 𝑆𝑖𝛿𝑗𝑘 + 𝑆𝑘𝛿𝑗𝑖 = −(𝜅/2𝑒)𝜎𝑗

𝑖𝑘
and with respect to

themetric tensor gives Einstein equations in the formof𝐺𝑖𝑘 =𝜅(𝑇𝑖𝑘 + 𝑈𝑖𝑘), where 𝐺𝑖𝑘 = 𝑃𝑗
𝑖𝑗𝑘

− (1/2)𝑃𝑙𝑚𝑙𝑚𝑔𝑖𝑘 is the Einstein
tensor and 𝑃𝑗

𝑖𝑗𝑘
is the Riemann curvature tensor satisfying

𝑅𝑖𝑘𝑙𝑚 = 𝑃𝑖𝑘𝑙𝑚 + 𝐶𝑖𝑘𝑚:𝑙 − 𝐶𝑖𝑘𝑙:𝑚 + 𝐶𝑗
𝑘𝑚
𝐶𝑖𝑗𝑙 − 𝐶𝑗

𝑘𝑙
𝐶𝑖𝑗𝑚, where colon

denotes the Riemannian covariant derivative with respect
to the Levi-Civita connection, such as 𝑉𝑘:𝑖 = 𝑉𝑘,𝑖 + { 𝑘𝑙𝑖 } 𝑉𝑙
and 𝑉𝑘:𝑖 = 𝑉𝑘,𝑖 − { 𝑙𝑘𝑖 } 𝑉𝑙. Also for torsion-free general
relativity theory, curvature tensor turns out to be the Rie-
mann tensor. Right hand side of Einstein equations contains
an extra term 𝑈𝑖𝑘 which is the contribution to the energy-
momentum tensor from the torsion and it is quadratic in
the spin tensor, such as 𝑈𝑖𝑘 = 𝜅(−𝑠𝑖𝑗

[𝑙
𝑠𝑘𝑙𝑗] − (1/2)𝑠𝑖𝑗𝑙𝑠𝑘𝑗𝑙 + (1/

4)𝑠𝑗𝑙𝑖𝑠𝑘𝑗𝑙 + (1/8)𝑔𝑖𝑘(−4𝑠𝑙𝑗[𝑚𝑠𝑗𝑚𝑙] + 𝑠𝑗𝑙𝑚𝑠𝑗𝑙𝑚)). Therefore, the total
energy-momentum tensor is Θ𝑖𝑘 = 𝑇𝑖𝑘 + 𝑈𝑖𝑘.

In metric-affine ECSK formulation of gravity, a spinor
quintom field with intrinsic spin has a Lagrangian density of

the form ℓ𝑚 = 𝑒(𝑖/2)(𝜓𝛾𝑘𝜓;𝑘 − 𝜓;𝑘𝛾𝑘𝜓) − 𝑒𝑉, where 𝑉 is
the potential of the spinor field 𝜓 and the adjoint spinor𝜓 = 𝜓+𝛾0. The covariant derivative of the spinor field is
given as 𝜓;𝑘 = 𝜓,𝑘 − Γ𝑘𝜓 and 𝜓;𝑘 = 𝜓,𝑘 − Γ𝑘𝜓, where Γ𝑘 =−(1/4)𝜔𝑎𝑏𝑘𝛾𝑎𝛾𝑏 is the Fock-Ivanenko spin connection, and
then 𝛾𝑘 and 𝛾𝑎 are the metric and dynamical Dirac gamma
matrices satisfying 𝛾𝑘 = 𝑒𝑘𝑎𝛾𝑎, 𝛾(𝑘𝛾𝑚) = 𝑔𝑘𝑚𝐼, and 𝛾(𝑎𝛾𝑏) =𝜂𝑎𝑏𝐼. The covariant derivative of the spinor can be decom-
posed into the Riemannian covariant derivative plus a
contortion tensor 𝐶𝑖𝑗𝑘 containing term, such as 𝜓;𝑘 =
𝜓:𝑘 + (1/4)𝐶𝑖𝑗𝑘𝛾[𝑖𝛾𝑗]𝜓 and 𝜓;𝑘 = 𝜓:𝑘 − (1/4)𝐶𝑖𝑗𝑘𝜓𝛾[𝑖𝛾𝑗]. The
Riemannian covariant derivative of the spinor and adjoint
spinor fields for quintom DE are given: 𝜓:𝑘 = 𝜓,𝑘 +(1/4)𝑔𝑖𝑘 { 𝑖𝑗𝑚 } 𝛾𝑗𝛾𝑚𝜓 and 𝜓:𝑘 = 𝜓,𝑘 − (1/4)𝑔𝑖𝑘 { 𝑖𝑗𝑚 } 𝛾𝑗𝛾𝑚𝜓.
These covariant derivatives including the contortion tensor𝐶𝑖𝑗𝑘 are embedded in the spinor quintom Lagrange density.
However, the explicit form of the contortion tensor which
can be obtained from the Cartan equations is needed. Since
the right hand side of Cartan equations contains the spin
tensor density, we obtain the spin tensor from the variation of
the spinor Lagrangian with respect to the contortion tensor,
such that 𝑠𝑖𝑗𝑘 = (1/𝑒)𝜎𝑖𝑗𝑘 = −(1/𝑒)𝜀𝑖𝑗𝑘𝑙𝑠𝑙, where 𝜀𝑖𝑗𝑘𝑙
is the Levi-Civita symbol, 𝑠𝑖 = (1/2) 𝜓𝛾𝑖𝛾5𝜓 is the spin
pseudovector, and 𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3. Inserting the spin tensor
for spinor quintom field in the Cartan equations gives the
torsion tensor 𝑆𝑖𝑗𝑘 = 𝐶𝑖𝑗𝑘 = (1/2)𝜅𝜀𝑖𝑗𝑘𝑙𝑠𝑙 which will take place
in the spinor quintom Lagrange density [52–62].

The variation of the spinor quintom matter Lagrangian
density with respect to the adjoint spinor gives the ECSK
Dirac equation, such as

𝑖𝛾𝑘𝜓:𝑘 − 𝜕𝑉𝜕𝜓 + 38𝜅 (𝜓𝛾𝑘𝛾5𝜓) 𝛾𝑘𝛾5𝜓 = 0, (1)

and the variation with respect to the spinor itself gives adjoint
Dirac equation as

𝑖𝜓:𝑘𝛾𝑘 + 𝜕𝑉𝜕𝜓 − 38𝜅 (𝜓𝛾𝑘𝛾5𝜓)𝜓𝛾𝑘𝛾5 = 0. (2)

Then the total energy-momentum tensor of the spinor quin-
tom field is obtained from Θ𝑖𝑘 = 𝑇𝑖𝑘 + 𝑈𝑖𝑘. Here the metric
energy-momentum tensor is obtained by the variation of
spinor quintom Lagrange density with respect to the metric
tensor, such as

𝑇𝑖𝑘 = 2𝑒 [[
𝜕ℓ𝑚/𝜕𝑔𝑖𝑘−𝜕𝑗 (𝜕ℓ𝑚/𝜕 (𝑔𝑖𝑘,𝑗 ))]]

= 𝑖2 (𝜓𝛿𝑗(𝑖𝛾𝑘)𝜓;𝑗 − 𝜓;𝑗𝛿𝑗(𝑖𝛾𝑘)𝜓)
− 𝑖2 (𝜓𝛾𝑗𝜓;𝑗 − 𝜓;𝑗𝛾𝑗𝜓) 𝑔𝑖𝑘 + 𝑉𝑔𝑖𝑘,

(3)

and the spin contributing metric energy-momentum tensor
is obtained by substituting the spin tensor for spinor quintom
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field in 𝑈𝑖𝑘. Then the total metric energy-momentum tensor
is found to be

Θ𝑖𝑘 = 𝑖2 (𝜓𝛿𝑗(𝑖𝛾𝑘)𝜓:𝑗 − 𝜓:𝑗𝛿𝑗(𝑖𝛾𝑘)𝜓) + 34𝜅𝑠𝑙𝑠𝑙𝑔𝑖𝑘. (4)

Here, the semicolon covariant derivatives of the spinor field
in (3) are decoupled into colon covariant derivatives in (4)
and the contortion tensor containing parts of the decoupled
covariant derivatives are suppressed in the spin pseudovector𝑠𝑙 by the contribution of𝑈𝑖𝑘. In order to rewrite (4) in a more
convenient form for our further calculations, we multiply (1)
by adjoint spinor 𝜓 from the left and multiply (2) by spinor 𝜓
from right, such that

𝑖𝜓𝛾𝑘𝜓:𝑘 − 𝑉󸀠𝜓𝜓 + 38𝜅 (𝜓𝛾𝑘𝛾5𝜓) (𝜓𝛾𝑘𝛾5𝜓) = 0, (5)

𝑖𝜓:𝑘𝛾𝑘𝜓 + 𝑉󸀠𝜓𝜓 − 38𝜅 (𝜓𝛾𝑘𝛾5𝜓) (𝜓𝛾𝑘𝛾5𝜓) = 0, (6)

where 𝑉󸀠 = 𝜕𝑉/𝜕(𝜓𝜓) for which 𝜓(𝜕𝑉/𝜕𝜓) = (𝜕𝑉/𝜕𝜓)𝜓 =𝑉󸀠𝜓𝜓. By using (5) andwriting the symmetrizations explicitly
in (4), we obtain the total energy-momentum tensor Θ𝑖𝑘 of
the spinor field dark energy in the form of

Θ𝑖𝑘 = 𝑖4 (𝜓𝛾𝑖𝜓:𝑘 + 𝜓𝛾𝑘𝜓:𝑖 − 𝜓:𝑖𝛾𝑘𝜓 − 𝜓:𝑘𝛾𝑖𝜓)
+ 12 (𝑉󸀠𝜓𝜓 − 𝑖𝜓𝛾𝑙𝜓:𝑙) 𝑔𝑖𝑘.

(7)

We consider the spinor quintomDEmodel in FRWspacetime
whose metric is given as

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑡) [𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2] , (8)

and the corresponding tetrad components read

𝑒𝑖0 = 𝛿𝑖0,
𝑒𝑖𝑎 = 1𝑎 (𝑡)𝛿𝑖𝑎.

(9)

Therefore, by performing the Riemannian covariant deriva-
tives explicitly in (7), the time-like components Θ𝜓00 and the
space-like components Θ𝜓𝜄𝜄 of the space independent spinor
field dark energy energy-momentum tensor can be obtained,
such as

Θ00 = − 𝑖2 �̇�𝛾0𝜓 + 12𝑉󸀠𝜓𝜓 − 3𝑖8 𝐻𝜓𝛾0𝜓, (10)

Θ𝜄𝜄 = − 𝑖2𝜓𝛾0�̇�𝑔𝜄𝜄 + 12𝑉󸀠𝜓𝜓𝑔𝜄𝜄 − 3𝑖8 𝐻𝜓𝛾0𝜓𝑔𝜄𝜄. (11)

Here 𝐻 = �̇�(𝑡)/𝑎(𝑡) is the Hubble parameter and it
comes from the Levi-Civita connections in the Riemannian

covariant derivatives. We now write ECSK Dirac equations
(4) and (5) for a space independent spinor field as

𝑖𝜓𝛾0�̇� + 3𝑖4 𝐻𝜓𝛾0𝜓 − 𝑉󸀠𝜓𝜓
+ 38𝜅 (𝜓𝛾0𝛾5𝜓) (𝜓𝛾0𝛾5𝜓) = 0,

(12)

𝑖�̇�𝛾0𝜓 + 3𝑖4 𝐻𝜓𝛾0𝜓 + 𝑉󸀠𝜓𝜓
− 38𝜅 (𝜓𝛾0𝛾5𝜓) (𝜓𝛾0𝛾5𝜓) = 0.

(13)

The solution of (12) and (13) by adding them leads to

𝜓�̇� + �̇�𝜓 + 32𝐻𝜓𝜓 = 0, (14)

𝜓𝜓 = 𝑁𝑎3/2 . (15)

Here 𝑁 is the integration constant, and then, by using the
scale factor 𝑎 ∝ 𝑒𝛽𝑡 for a cosmological fluid [64], we can also
obtain 𝜓𝜓 = 𝑁𝑒−3𝛽𝑡/2. Using (13) in (10) leads to the energy
density

𝜌 = Θ00 = 𝑉󸀠𝜓𝜓 − 316𝜅 (𝜓𝛾0𝛾5𝜓) (𝜓𝛾0𝛾5𝜓) , (16)

and similarly using (12) in (11) leads to the pressure of the
spinor field dark energy

𝑝 = −Θ𝜄𝜄 = − 316𝜅 (𝜓𝛾0𝛾5𝜓) (𝜓𝛾0𝛾5𝜓) , (17)

respectively. Then the EoS of the spinor field is given as

𝜔 = 𝑝𝜌 = (3/16) 𝜅 (𝜓𝛾0𝛾5𝜓)2
(3/16) 𝜅 (𝜓𝛾0𝛾5𝜓)2 − 𝑉󸀠𝜓𝜓, (18)

where 𝛾0 = 𝛾0 for a FRW metric. We rewrite the EoS in the
form of

𝜔 = −1 + 𝛼, (19)

where

𝛼 = 6𝜅 (𝜓𝛾0𝛾5𝜓)2 − 16𝑉󸀠𝜓𝜓
3𝜅 (𝜓𝛾0𝛾5𝜓)2 − 16𝑉󸀠𝜓𝜓 . (20)

It is known that for 𝛼 = 4/3 the EoS of the spinor field is 𝜔 =1/3 and it behaves like radiation, but for 𝛼 = 1, 𝜔 = 0, and it
is normal matter. On the other hand, if 𝛼 < 2/3, the EoS 𝜔 <−1/3meaning that the spinor field behaves like a DE leading
to the acceleration of universe. The 𝛼 < 2/3 region allows us
to investigate the dynamical evolution of the spinor quintom
DE described in ECSK formalism with intrinsic spin.
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3. Dynamical Evolution of Spinor Quintom

From (20) we deduce that the spinor field can have an EoS of−1 < 𝜔 < −1/3 for 0 < 𝛼 < 2/3 and shows a quintessence-
like behavior, but it has𝜔 = −1 cosmological constant value if𝛼 = 0, and then it behaves like a phantom for 𝜔 < −1 if 𝛼 <0. Therefore, the spinor field exhibits a quintom picture by
crossing the cosmological constant boundary 𝜔 = −1 from
above or below this boundary depending on the sign of 𝛼 in
(20).

There exist three categories of spinor quintom evolution
depending on the behavior of the potential 𝑉. The quintom
scenario may exhibit an evolution starting from −1 < 𝜔
quintessence phase to 𝜔 < −1 phantom phase, called
Quintom-A. Another scenario may evolve from 𝜔 < −1 to−1 < 𝜔, Quintom-B scenario. The last quintom scenario
contains the evolution for crossing 𝜔 = −1 more than one
time, and it is called Quintom-C model.

Considering the quintom scenario in which the spinor
field comes from −1 < 𝜔 quintessence phase to 𝜔 < −1
phantom phase, we first need to find the condition 0 < 𝛼.
Since the energy density (16) must be positive definite, 𝑉󸀠 is
positive. Therefore, the condition of occurring −1 < 𝜔 phase
reads from (20) as

16𝑉󸀠𝜓𝜓 > 6𝜅 (𝜓𝛾0𝛾5𝜓)2 . (21)

Similarly, 𝜔 = −1 boundary occurs for
16𝑉󸀠𝜓𝜓 = 6𝜅 (𝜓𝛾0𝛾5𝜓)2 , (22)

and 𝜔 < −1 phantom phase occurs for

16𝑉󸀠𝜓𝜓 < 6𝜅 (𝜓𝛾0𝛾5𝜓)2 . (23)

Since prime denotes the derivative with respect to 𝜓𝜓, the
solution of (22) is found as 𝑉Λ = (6𝜅/16)(𝜓𝛾0𝛾5𝜓)2 ln𝜓𝜓,
in which the dynamical evolution of potential goes to the
cosmological constant boundary.

In order to obtain Quintom-A scenario, we define the
potential to be

𝑉 = (6𝜅16) (𝜓𝛾0𝛾5𝜓)2 ln𝜓𝜓 − (𝑐 − 𝜓𝜓)𝜓𝜓, (24)

for the early times of the universe. Then the potential leads
the EoS from (20) as

𝜔 = −1 + 16 (2𝜓𝜓 − 𝑐) 𝜓𝜓
16 (2𝜓𝜓 − 𝑐) 𝜓𝜓 + (3𝜅/16) (𝜓𝛾0𝛾5𝜓)2 , (25)

and the term (2𝜓𝜓 − 𝑐) in this potential satisfies −1 < 𝜔
quintessence scenario (21) with (15), since the scaling factor𝑎 is very small at the beginning of the evolution of the
universe.When𝜓𝜓 becomes equal to 𝑐/2, this potential leads
the spinor field to approach 𝜔 = −1 boundary (22). After
that scaling factor evolves to a greater value, then𝜓𝜓 reaches a
value smaller than 𝑐/2.This gives the condition (23) phantom
phase 𝜔 < −1. We illustrate this behavior in Figure 1
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Figure 1: Evolution of 𝜔 with potential (24) as a function of time.
For the numerical analysis we assume 𝑁 = 3, 𝑐 = 6, and 𝛽 = 1.
From [51].

by numerical analysis. According to the figure, 𝜔 starts its
evolution from above −1 to below −1. We set the crossing
cosmological constant boundary as at 𝑡 = 0. After crossing
the −1 boundary, spinor quintom picks up and is avoided
from a Big Rip singularity and then enters a stable matter
dominated expansion with 𝜔 = 0 value.

We can also find other important cosmological quantities,
such as luminosity distance, Hubble parameter, deceleration
parameter, and jerk and state finder parameters. For this we
use the Friedmann equations

�̈�𝑎 = −4𝜋𝐺3 (𝜌 + 3𝑝) , (26)

(�̇�𝑎)
2 = 8𝜋𝐺3 𝜌. (27)

By using (16) for the potential (24), we obtain spinor energy
density as

𝜌 = (3𝜅16) (𝜓𝛾0𝛾5𝜓)2 + (2𝜓𝜓 − 𝑐) 𝜓𝜓, (28)

and substituting (15) and (28) in (27) we obtain

𝐻 = �̇�𝑎
= √8𝜋𝐺3 √(−3𝜅𝑁28 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁𝑒−3𝛽𝑡/2.

(29)

Solving the differential equation in (29) gives the scale factor
as

𝑎 = exp
{{{
√8𝜋𝐺3 [

[
𝐶1 + 𝑡√2𝑁2 − 3𝜅𝑁28 − 𝑐𝑁

+ 𝑡2 3𝛽 (4𝑁2 − 3𝜅𝑁2/4 − 𝑐𝑁)
√2𝑁2 − 3𝜅𝑁2/8 − 𝑐𝑁 + ⋅ ⋅ ⋅]

]
}}}

,
(30)
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from which we obtain the redshift

𝑧 = −1 + exp
{{{
−√8𝜋𝐺3 [

[
𝐶1

+ 𝑡√2𝑁2 − 3𝜅𝑁28 − 𝑐𝑁

+ 𝑡2 3𝛽 (4𝑁2 − 3𝜅𝑁2/4 − 𝑐𝑁)
√2𝑁2 − 3𝜅𝑁2/8 − 𝑐𝑁 + ⋅ ⋅ ⋅]

]
}}}

.

(31)

Therefore, we can find the Luminosity distance

𝑑𝐿 = 𝐻0−1 [𝑧 + 12 (1 − 𝑞0) 𝑧2 + ⋅ ⋅ ⋅] , (32)

in terms of the measurable quantities present time Hubble
parameter 𝐻0 and deceleration parameter 𝑞0. Moreover, to
find the deceleration parameter, we use (16) and (17) for the
potential (24) and obtain the term in (26), such that

𝜌 + 3𝑝 = (−3𝜅8 ) (𝜓𝛾0𝛾5𝜓)2 + (2𝜓𝜓 − 𝑐) 𝜓𝜓, (33)

and inserting (15) and (33) in (26) we find

�̈�𝑎 = −4𝜋𝐺3 [(3𝜅𝑁24 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁𝑒−3𝛽𝑡/2] . (34)

Then, the deceleration parameter is obtained from (29) and
(34), such as

𝑞 = −𝑎�̇̈�𝑎2 = −𝐻−2 �̈�𝑎
= 12

(3𝜅𝑁2/4 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁𝑒−3𝛽𝑡/2
(−3𝜅𝑁2/8 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁𝑒−3𝛽𝑡/2 .

(35)

Also, we finally obtain the state finder parameters for spinor
Quintom-A by taking time derivative of (34), such that

(�̈�𝑎)
∙

= 12𝜋𝛽𝐺[(3𝜅𝑁24 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁2 𝑒−3𝛽𝑡/2] .
(36)

Then the state finder parameter is

𝑟 = ...𝑎𝑎𝐻3 = (�̈�𝑎)
∙𝐻−3 − 𝑞

= 9𝛽√32𝜋𝐺
(3𝜅𝑁2/4 + 2𝑁2) 𝑒−3𝛽𝑡 − (𝑐𝑁/2) 𝑒−3𝛽𝑡/2
((−3𝜅𝑁2/8 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁𝑒−3𝛽𝑡/2)3/2

− 12
(3𝜅𝑁2/4 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁𝑒−3𝛽𝑡/2
(−3𝜅𝑁2/8 + 2𝑁2) 𝑒−3𝛽𝑡 − 𝑐𝑁𝑒−3𝛽𝑡/2 ,

(37)

and one can obtain the second state finder parameter 𝑠 = 2(𝑟−1)/3(2𝑞 − 1).
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Figure 2: Evolution of 𝜔 with potential (38) as a function of time.
For the numerical analysis we assume𝑁 = 3, 𝑐 = 3, and 𝛽 = 1. From
[51].

For a Quintom-B model, the potential can be defined as

𝑉 = (6𝜅16) (𝜓𝛾0𝛾5𝜓)2 ln𝜓𝜓 − (𝑐 − 𝜓𝜓)2 , (38)

and then the EoS is obtained, such that

𝜔 = −1 + 32 (𝑐 − 𝜓𝜓)𝜓𝜓
32 (𝑐 − 𝜓𝜓)𝜓𝜓 + (3𝜅/16) (𝜓𝛾0𝛾5𝜓)2 , (39)

which lead to 𝜔 < −1 phantom phase (23) at the beginning of
the evolution of universe. With the increasing of the scale
factor, 𝜓𝜓 decreases to 𝑐 and the term 2(𝑐 − 𝜓𝜓) becomes
zero. This gives 𝜔 = −1 cosmological constant phase (22). As
the evolution continues 𝜓𝜓 gets smaller than 𝑐 and spinor
quintom reaches a quintessence scenario −1 < 𝜔 in (21). The
behavior of the spinor Quintom-B scenario is represented in
Figure 2 which states that the spinor field starts the evolution
from below 𝜔 = −1 to above 𝜔 = −1. Crossing from phantom
to quintessence phase continues in this phase with an EoS
value of −1 < 𝜔 < −1/3 which imitates a stable de Sitter
accelerated expansion for a scalar field dark energy model.

We proceed to find the other cosmological quantities; by
using (16) for the potential (38), we get the quintom energy
density

𝜌 = (3𝜅16) (𝜓𝛾0𝛾5𝜓)2 + 2 (𝑐 − 𝜓𝜓)𝜓𝜓, (40)

and inserting (15) and (40) in (27) we find

𝐻 = �̇�𝑎
= √8𝜋𝐺3 √(−3𝜅𝑁28 − 2𝑁2) 𝑒−3𝛽𝑡 + 2𝑐𝑁𝑒−3𝛽𝑡/2.

(41)
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By solving the differential equation in (41), we obtain the scale
factor as

𝑎 = exp
{{{
√8𝜋𝐺3 [

[
𝐶2 + 𝑡√2𝑐𝑁 − 2𝑁2 − 3𝜅𝑁28

+ 𝑡2 3𝛽 (2𝑐𝑁 − 4𝑁2 − 3𝜅𝑁2/4)
√2𝑐𝑁 − 2𝑁2 − 3𝜅𝑁2/8 + ⋅ ⋅ ⋅]

]
}}}

,
(42)

which gives the redshift as

𝑧 = −1 + exp{−√8𝜋𝐺3 [𝐶2
+ 𝑡√2𝑐𝑁 − 2𝑁2 − 3𝜅𝑁2/8
+ 𝑡2 3𝛽 (2𝑐𝑁 − 4𝑁2 − 3𝜅𝑁2/4)

√2𝑐𝑁 − 2𝑁2 − 3𝜅𝑁2/8 + ⋅ ⋅ ⋅]} .
(43)

Thus we obtain the Luminosity distance 𝑑𝐿 = 𝐻0−1[𝑧 +(1/2)(1−𝑞0)𝑧2+⋅ ⋅ ⋅ ] in terms of themeasurable quantities𝐻0
and 𝑞0. Then to find the deceleration parameter, we use (16)
and (17) for the potential (24) and obtain the term in (26),
such that

𝜌 + 3𝑝 = (−3𝜅8 ) (𝜓𝛾0𝛾5𝜓)2 + 2 (𝑐 − 𝜓𝜓)𝜓𝜓, (44)

and inserting (15) and (44) in (26) we obtain

�̈�𝑎 = −4𝜋𝐺3 [(3𝜅𝑁24 − 2𝑁2) 𝑒−3𝛽𝑡 + 2𝑐𝑁𝑒−3𝛽𝑡/2] . (45)

The deceleration parameter is obtained from (41) and (45) as

𝑞 = −𝑎�̇̈�𝑎2 = −𝐻−2 �̈�𝑎
= 12

(3𝜅𝑁2/4 − 2𝑁2) 𝑒−3𝛽𝑡 + 𝑐𝑁𝑒−3𝛽𝑡/2
(−3𝜅𝑁2/8 − 2𝑁2) 𝑒−3𝛽𝑡 + 𝑐𝑁𝑒−3𝛽𝑡/2 .

(46)

We can obtain the state finder parameters for spinor
Quintom-B from the time derivative of (45) as

(�̈�𝑎)
∙

= 12𝜋𝛽𝐺[(3𝜅𝑁24 − 2𝑁2) 𝑒−3𝛽𝑡 + 𝑐𝑁𝑒−3𝛽𝑡/2] ,
(47)

and the state finder parameter is

𝑟 = ...𝑎𝑎𝐻3 = (�̈�𝑎)
∙𝐻−3 − 𝑞 = 9𝛽√32𝜋𝐺

⋅ (3𝜅𝑁2/4 − 2𝑁2) 𝑒−3𝛽𝑡 + 𝑐𝑁𝑒−3𝛽𝑡/2
((−3𝜅𝑁2/8 − 2𝑁2) 𝑒−3𝛽𝑡 + 2𝑐𝑁𝑒−3𝛽𝑡/2)3/2 −

12
⋅ (3𝜅𝑁2/4 − 2𝑁2) 𝑒−3𝛽𝑡 + 𝑐𝑁𝑒−3𝛽𝑡/2
(−3𝜅𝑁2/8 − 2𝑁2) 𝑒−3𝛽𝑡 + 𝑐𝑁𝑒−3𝛽𝑡/2 ,

(48)
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Figure 3: Evolution of 𝜔 with potential (49) as a function of time.
For the numerical analysis we assume𝑁 = 3, 𝑐 = 3, and 𝛽 = 1. From
[51].

from which we can obtain the second state finder parameter𝑠 = 2(𝑟 − 1)/3(2𝑞 − 1).
Third case Quintom-C scenario can be obtained for the

potential

𝑉 = (6𝜅16) (𝜓𝛾0𝛾5𝜓)2 ln 𝜓𝜓 − (𝑐 − 𝜓𝜓)2 𝜓𝜓, (49)

which leads the EoS as

𝜔 = −1
+ 16 (𝑐 − 3𝜓𝜓) (𝜓𝜓 − 𝑐) 𝜓𝜓
16 (𝑐 − 3𝜓𝜓) (𝜓𝜓 − 𝑐) 𝜓𝜓 + (3𝜅/16) (𝜓𝛾0𝛾5𝜓)2 .

(50)

This potential provides two roots in 𝑉󸀠𝜓𝜓 for crossing the𝜔 = −1 boundary. The term coming from the derivative
of 𝑉 is −3(𝜓𝜓)2 + 4𝑐𝜓𝜓 − 𝑐2 which determines the sign of16𝑉󸀠𝜓𝜓 in (21)–(23). During the evolution of universe with
the increase in scale factor, 𝜓𝜓 decreases firstly to the value𝑐 which is the bigger root. This is a transition from phantom
phase to quintessence phase by crossing −1 boundary. After
continuing the evolution 𝜓𝜓 decreases to the second root𝑐/3 which is recrossing the −1 boundary as a transition from
quintessence phase to phantom phase again. This scenario is
obviously a Quinton-C scenario and is illustrated in Figure 3.
We see from the figure that the EoS of the quintom model
crosses the 𝜔 = −1 boundary twice, firstly from below 𝜔 =−1 to above 𝜔 = −1 and secondly from above to below𝜔 = −1, then it picks up and then is avoided from Big Rip
singularities, and finally it asymptotically evolves to a stable
matter dominated expansion epoch with a value of 𝜔 = 0.

Although considering the phantom scenarios normally
leads to the Big Rip singularities due to the unbound of EoS
from below 𝜔 = −1, our spinor quintommodel with intrinsic
spin in ECSK theory is avoided from the Big Rip singularities
by picking up to a bound value and approaching a stable
value, as seen in Figures 1 and 3. Diverging EoS of a dark fluid
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from a constant bound toward a lower singularity refers to
continuous increase in the pressure of the fluid.This scenario
is avoided in spinor quintom with intrinsic spin, which may
be interpreted as the intrinsic spin of the fluid quanta leads
to a bound pressure value. The increase of the pressure with
the energy density is bounded due to the effect of intrinsic
spin, then singular values of EoS are avoided, and the universe
enters a stable expansion in the final era.

We now obtain other cosmological quantities; by using
(16) for the potential (49), we get the Quintom-C energy
density as

𝜌 = (3𝜅16) (𝜓𝛾0𝛾5𝜓)2 + (𝑐 − 3𝜓𝜓) (𝜓𝜓 − 𝑐) 𝜓𝜓, (51)

and inserting (15) and (51) in (27) we find

𝐻 = �̇�𝑎
= √8𝜋𝐺3 √(−3𝜅𝑁28 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − 𝑐2𝑁𝑒−3𝛽𝑡/2 − 3𝑁3𝑒−9𝛽𝑡/2. (52)

We now solve the differential equation in (52) to obtain the
scale factor, such that

𝑎 = exp{√8𝜋𝐺3 [𝐶3+𝑡√4𝑐𝑁2 − 𝑐2𝑁 − 3𝑁3 − 3𝜅𝑁2/8
+ 𝑡2 3𝛽 (8𝑐𝑁2 − 𝑐2𝑁 + 9𝑁3 − 3𝜅𝑁2/4)

√4𝑐𝑁2 − 𝑐2𝑁 − 3𝑁3 − 3𝜅𝑁2/8 + ⋅ ⋅ ⋅]} ,
(53)

and this gives the redshift, such as

𝑧 = −1 + exp{−√8𝜋𝐺3 [𝐶3
+ 𝑡√4𝑐𝑁2 − 𝑐2𝑁 − 3𝑁3 − 3𝜅𝑁2/8
+ 𝑡2 3𝛽 (8𝑐𝑁2 − 𝑐2𝑁 + 9𝑁3 − 3𝜅𝑁2/4)

√4𝑐𝑁2 − 𝑐2𝑁 − 3𝑁3 − 3𝜅𝑁2/8 + ⋅ ⋅ ⋅]} .
(54)

Therefore, we can find the luminosity distance as 𝑑𝐿 =𝐻0−1[𝑧 + (1/2)(1 − 𝑞0)𝑧2 + ⋅ ⋅ ⋅ ] in terms of the quantities𝐻0
and 𝑞0. Here the deceleration parameter is again obtained by
using (16) and (17) for the potential (49) and obtaining the
term in (26), such that

𝜌 + 3𝑝 = (−3𝜅8 ) (𝜓𝛾0𝛾5𝜓)2
+ (𝑐 − 3𝜓𝜓) (𝜓𝜓 − 𝑐) 𝜓𝜓, (55)

and by substituting (15) and (55) in (26) we obtain

�̈�𝑎 = −4𝜋𝐺3 [(−3𝜅𝑁24 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − 𝑐2𝑁𝑒−3𝛽𝑡/2

− 3𝑁3𝑒−9𝛽𝑡/2] .
(56)

The deceleration parameter is obtained from (52) and (56) as

𝑞 = −𝑎�̇̈�𝑎2 = −𝐻−2 �̈�𝑎 = 12
⋅ (−3𝜅𝑁2/4 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − 𝑐2𝑁𝑒−3𝛽𝑡/2 − 3𝑁3𝑒−9𝛽𝑡/2
(−3𝜅𝑁2/8 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − 𝑐2𝑁𝑒−3𝛽𝑡/2 − 3𝑁3𝑒−9𝛽𝑡/2 .

(57)

By using the time derivative of (56), we obtain the state finder
parameters for Quintom-C model as

(�̈�𝑎)
∙ = 12𝜋𝛽𝐺[(−3𝜅𝑁24 + 4𝑐𝑁2) 𝑒−3𝛽𝑡

− 𝑐2𝑁2 𝑒−3𝛽𝑡/2 + 9𝑁32 𝑒−9𝛽𝑡/2] ,
(58)

and the state finder parameter is

𝑟 = ...𝑎𝑎𝐻3 = 9𝛽√32𝜋𝐺
(−3𝜅𝑁2/4 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − (𝑐2𝑁/2) 𝑒−3𝛽𝑡/2 + (9𝑁3/2) 𝑒−9𝛽𝑡/2

((−3𝜅𝑁2/8 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − 𝑐2𝑁𝑒−3𝛽𝑡/2 − 3𝑁3𝑒−9𝛽𝑡/2)3/2

− 12
(−3𝜅𝑁2/4 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − 𝑐2𝑁𝑒−3𝛽𝑡/2 − 3𝑁3𝑒−9𝛽𝑡/2
(−3𝜅𝑁2/8 + 4𝑐𝑁2) 𝑒−3𝛽𝑡 − 𝑐2𝑁𝑒−3𝛽𝑡/2 − 3𝑁3𝑒−9𝛽𝑡/2 ,

(59)

from which we can obtain the second state finder parameter𝑠 = 2(𝑟 − 1)/3(2𝑞 − 1).
4. Conclusion

By using the spinor field dark energy in a FRW geometry, a
consistent quintommodel, inwhich EoS crosses−1 boundary

without using a ghost field, has recently been obtained in the
framework of general relativity [51]. Here, we consider the
spinor field dark energy with intrinsic spin in the formalism
of metric-affine ECSK theory. We first introduce the ECSK
formalism and then define the model Lagrangian whose
variations with respect to the tetrad field and torsion tensor
give the total energy-momentum tensor consisting of metric
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and spin contributions. Also from the variation of Lagrangian
with respect to the spinor field we obtain the ECSK Dirac
equation. By using the total energy-momentum tensor and
ECSK Dirac equation, the energy density and the pressure
values of the spinor quintomDE are obtained, fromwhich the
EoS of the model is obtained for an arbitrary potential. The
dependence of the potential on the spinor field leads to the
evolution of potential with the change of scale factor, since the
scale factor increases by time. Constructing the ECSK spinor
potential suitably the quintom scenario is reached, for three
different cases as Quintom-A, Quintom-B, and Quintom-
C models. We also obtained the redshift values for three
quintom scenarios from the scale factors of each quintom
model. Then, we find other cosmological parameters, such
as the Hubble parameter, deceleration parameter, and state
finder parameters for three different potential values of each
quintom scenario, respectively.

The Quintom-A case exhibits the transition of EoS from
quintessence phase to phantom phase, evolving to a stable
matter dominated expansion with 𝜔 → 0. This scenario is
avoided from the Big Rip singularities due to the balancing
of energy density and pressure of spinor DE by intrinsic spin.
Similarly, in the Quintom-B scenario, the EoS of the model
evolves from phantom region 𝜔 < −1 to quintessence region𝜔 > −1 and approaches an EoS value of −1 < 𝜔 < −1/3
referring to a stable de Sitter accelerated expansion for a scalar
field dark energy model. On the other hand, the Quintom-
C scenario exhibits the evolution of EoS which crossed the
cosmological constant boundary 𝜔 = −1 more than one
time. The spinor Quintom-C firstly crosses the −1 boundary
from phantom epoch, and then it again enters the phantom
epoch from quintessence epoch. Then it converges to 𝜔 = 0
stable matter dominated expansion phase by picking up from
avoiding the singularities.

The proposed ECSK spinor quintom model differs from
the spinor Quintom model in the framework of general
relativity with the existence of matter dominated expansion
phases in cases A and C. In both Quintom-A and Quintom-
C cases, after the spinor field crosses the −1 boundary from
a quintessence epoch toward the phantom epoch, it suddenly
picks and enters the stable matter dominated expansion with𝜔 = 0. This can be interpreted as the intrinsic spin causes
to fix the pressure of the fluid to a certain value as the
energy density increases. After the spinor field reaches a very
large energy density value, this allows neglecting the pressure
relative to energy density value,which imitates a pressure-free
matter dominated era with zero EoS.
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