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We study fermion localization and resonances on a special type of brane-worldmodel supporting brane splitting. In suchmodels one
can construct multiwall branes which cause considerable simplification in the field equations. We use a polynomial superpotential
to construct this brane.The suitable Yukawa coupling between the background scalar field and the localized fermion is determined.
Themassive fermion resonance spectrum is obtained.The number of resonances is increased for higher values of Yukawa coupling.

1. Introduction

Brane-world scenarios have attracted considerable attention
in the literature during the last two decades because these
models can address some important issues in theoretical
physics problems such as hierarchy [1–3] and cosmological
constant problem [4, 5]. The branes in Randall and Sundrum
(RS) models are fixed in some points along extra dimension
and have a 𝛿 function form [1, 6]. This brane-world model is
very ideal and its formation has no dynamical mechanism.
But for realistic models thickness of brane should be consid-
ered. By now several thick brane construction mechanisms
have been developed such as thick branes generated from
pure gravity [7–11], fermion self-interaction branes [12, 13],
and thick brane scenarios with the gravity coupled to five-
dimensional scalar fields [14–21]. In the last scenario, the
scalar field configuration is usually a kink. It is found that
a single kink becomes unstable when it moves in a discrete
lattice with a large velocity while multikink solutions remain
stable [22]. This phenomenon is associated with interac-
tion between kink and radiation, and the resonances were
observed experimentally [23, 24]. Furthermore, in cosmology
we encounter models in which our universe is the result of
continuous collision of branes and nucleation and therefore
splitting of branes is a fundamental scenario in these models
[25–28].

Therefore, the universal aspects of thick brane splitting
in warped bulk are important. Such branes are constructed
from a complex 𝜙4 scalar field potential [29] or from a real 𝜙6
scalar field potential [30]. These branes can be constructed
from deformation of 𝜙4 scalar field potential as well [31–33].

Recently, Dutra and coworkers proposed a new model of
thick brane in which multibrane scenario arises from scalar
fieldmodels generating usual kink solutions [34]. It suggests a
special type of brane splitting. In this method superpotential
function and warp factor will decompose in a special form
and field equations will be simplified significantly. In this
work we deal with this thick brane model which arises from
polynomial superpotential.

The localization of spin 1/2 fermions on the brane is
very interesting and important. Usually, in five dimensions
fermion does not have a normalizable zero mode without
scalar-fermion coupling [35–43]. In five dimensions, with a
Yukawa scalar-fermion coupling, there may exist a massless
bound state and a continuous gapless spectrum of massive
Kaluza-Klein (KK) states [39], while, in some of other brane
models, there exist some discrete KK states and a continuous
gapless mass spectrum [44].

This paper is organized as follows. In the next section,
we present the brane model that is constructed in [34].
In Section 3 we investigate localization of the zero mode
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of the fermion field on the brane which is derived from
a polynomial potential. In Section 4 we study localization
of massive fermionic modes. Finally, in the last section we
present our conclusions.

2. The Model

We consider the following action in which two scalar fields
are coupled to gravity in 5 dimensions:

𝑆 = ∫𝑑4𝑥 𝑑𝑟√−𝑔 [14𝑅 − 12𝜕�푀𝜙1𝜕�푀𝜙1 − 12𝜕�푀𝜙2𝜕�푀𝜙2
− 𝑉 (𝜙1, 𝜙2)] ,

(1)

where 𝑔 = det(𝑔�푀�푁), 𝑀,𝑁 = 0, 1, 2, 3, 5. The coordinates
on the brane are represented by 𝑥�휇 (𝜇 = 0, 1, 2, 3) while the
coordinate in the bulk is shown by 𝑥5 = 𝑟. The line element is
written as

𝑑𝑠2 = 𝑔�푀�푁𝑑𝑥�푀𝑑𝑥�푁 = 𝑒2�퐴(�푟)𝜂�휇]𝑑𝑥�휇𝑑𝑥] + 𝑑𝑟2, (2)

where 𝜂�휇] is the usual Minkowski metric with diag(−, +, +, +)
and 𝑒2�퐴(�푟) is called the warp factor. For this brane-world
scenario, the equations of motion are obtained as

𝜙�耠�耠�푖 + 4𝐴�耠𝜙�耠�푖 = 𝑑𝑉𝑑𝜙�푖 , (𝑖 = 1, 2) ,
𝐴�耠�耠 + 23 (𝜙�耠21 + 𝜙�耠22 ) = 0,
𝐴�耠2 + 13𝑉 (𝜙1, 𝜙2) = 16 (𝜙�耠21 + 𝜙�耠22 ) ,

(3)

and the potential 𝑉(𝜙1, 𝜙2) can be written in terms of a
superpotential𝑊(𝜙1, 𝜙2) as

𝑉 (𝜙1, 𝜙2) = 12
2∑
�푖=1

(𝜕𝑊𝜕𝜙�푖 )
2 − 43𝑊2. (4)

Therefore, equations of motion can be reduced to the follow-
ing first-order equations:

𝑑𝜙�푖𝑑𝑟 = 𝜕𝑊𝜕𝜙�푖 ,
𝑑𝐴𝑑𝑟 = −23𝑊,

(𝑖 = 1, 2) .
(5)

But

𝑊(𝜙1, 𝜙2) = 𝑊1 (𝜙1) + 𝑊2 (𝜙2) ,
𝐴 (𝑟) = 𝐴1 (𝑟) + 𝐴2 (𝑟) . (6)

The first-order equations in (5) are converted to

𝑑𝜙�푖𝑑𝑟 = 𝜕𝑊�푖 (𝜙�푖)𝜕𝜙�푖 ,
𝑑𝐴 �푖𝑑𝑟 = −23𝑊�푖 (𝜙�푖) ,

(𝑖 = 1, 2) ,
(7)

for polynomial superpotential

𝑊�푖 (𝜙�푖) = 𝜆�푖 (𝜙�푖 − 𝜙3�푖3 ) , (𝑖 = 1, 2) ; (8)

𝜙�푖 and 𝐴 �푖 are given by

𝜙�푖 = tanh [𝜆�푖 (𝑟 − 𝑟�푖)] , (𝑖 = 1, 2) ,
𝐴 (𝑟) = 19

2∑
�푖=1

{tanh2 [𝜆�푖 (�̃� − 𝑟�푖)] − tanh2 [𝜆�푖 (𝑟 − 𝑟�푖)]}

− 49 ln( 2∏
�푖=1

sech [𝜆�푖 (�̃� − 𝑟�푖)]
sech [𝜆�푖 (𝑟 − 𝑟�푖)]) ,

(9)

where 𝑟�푖 is an integration constant, representing the center of
the kink. For solitonic solutions we consider 𝜆�푖 > 0 and �̃� is
defined as the average value of coordinates of center of the
kinks

�̃� = 12 (𝑟1 + 𝑟2) . (10)

In order for thismodel to support brane splittingmechanism,
we consider two symmetric kink solutions. Therefore, 𝜆1 =𝜆2 = 𝜆 and 𝑟1 = −𝑟2 = 𝑎. So �̃� = 0 and we can write (9) as

𝜙1 = tanh [𝜆 (𝑟 − 𝑎)] ,
𝜙2 = tanh [𝜆 (𝑟 + 𝑎)] ,
𝐴 (𝑟) = 19 {2 tanh2 (𝜆𝑎) − tanh2 [𝜆 (𝑟 − 𝑎)]

− tanh2 [𝜆 (𝑟 + 𝑎)]} − 49
⋅ ln(cosh [𝜆 (𝑟 − 𝑎)] cosh [𝜆 (𝑟 + 𝑎)]

cosh2 (𝜆𝑎) ) .

(11)

In Figure 1 we show the warp factor for different values
of 𝑎. For 𝑎 = 0 we have a single brane that warp factor has
a sharp peak. For 𝑎 > 0 a plateau is formed in the interior of
the branewhere the energy density vanishes.This is attributed
to the presence of a new phase inside the brane. The plateau
region in the brane grows when 𝑎 increases.

In the next section, we investigate localization of zero
mode of the fermion on the brane.
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Figure 1: Plots of warp factor 𝑒2�퐴(�푟) for 𝑎 = 0 (solid line), 𝑎 = 3.0
(dashed line), and 𝑎 = 5.0 (dotted line) and we put 𝜆 = 1.0.

3. Localization of Zero Mode

In order to get the mass-independent potential for KK
modes of fermion, we perform the following coordinate
transformation:

𝑑𝑧 = 𝑒−�퐴𝑑𝑟; (12)

by this transformation we get a conformally flat metric

𝑑𝑠2 = 𝑒2�퐴 (𝜂�휇]𝑑𝑥�휇𝑑𝑥] + 𝑑𝑧2) . (13)

In five dimensions, fermions are four component spinors and
their Dirac structure can be described by Γ�푀 = 𝑒�푀�푀Γ�푀 with
𝑒�푀�푀 being the vielbein and {Γ�푀, Γ�푁} = 2𝑔�푀�푁. Γ�푀 are the
gamma matrices in 5D flat space-time. The vielbein is given
by

𝑒�푀�푀 = (𝑒�퐴�̂��휇] 0
0 𝑒�퐴) , (14)

Γ�푀 = 𝑒−�퐴(�̂��휇]𝛾], 𝛾5) = 𝑒−�퐴(𝛾�휇, 𝛾5), where 𝛾�휇 = �̂��휇]𝛾], 𝛾]
and 𝛾5 are the usual flat gamma matrices in the 4D Dirac
representation. The action of a spin 1/2 fermion coupled to
the background scalar fields and gravity in five dimensions is

𝑆�푓 = ∫𝑑5𝑥√−𝑔 [ΨΓ�푀𝐷�푀Ψ − 𝜂Ψ𝐹 (𝜙1, 𝜙2) Ψ] , (15)

where the sign of coupling constant 𝜂 of the spinor Ψ to
scalars is arbitrary and represents a coupling to either kink
or antikink domain wall. For definiteness, we shall consider
only the case of a kink coupling and thus assume that 𝜂 > 0.𝐹(𝜙1, 𝜙2) is a function of 𝜙1 and 𝜙2 determining the form
of coupling between the fermion and scalars. The covariant

derivative is defined as 𝐷�푀 = 𝜕�푀 + 𝜔�푀 with the spin con-
nection 𝜔�푀 defined as 𝜔�푀 = (1/4)𝜔�푀�푁�푀 Γ�푀Γ�푁 and 𝜔�푀�푁�푀 is

𝜔�푀�푁�푀 = 12𝑒�푁�푀 (𝜕�푀𝑒�푁�푁 − 𝜕�푁𝑒�푀�푁)
− 12𝑒�푁�푁 (𝜕�푀𝑒�푁�푀 − 𝜕�푁𝑒�푀�푀)
− 12𝑒�푃�푀𝑒�푄�푁 (𝜕�푃𝑒�푄�푅 − 𝜕�푄𝑒�푃�푅) 𝑒�푀�푅.

(16)

The nonvanishing components of 𝜔�푀 are

𝜔�휇 = 12𝐴�耠𝛾�휇𝛾5 + �̂��휇, (17)

where the prime denotes the derivative with respect to 𝑧 and�̂��휇 = (1/4)𝜔�휇 ]�휇 Γ�휇Γ] is the spin connection derived from the
metric �̂��휇](𝑥) = �̂��휇�휇(𝑥)�̂�]](𝑥)𝜂�휇 ]. Here we neglect the back-
reaction from the fermion on the brane solution and the
scalar field is considered to be unchanged.Thus, by using the
metric (13), the equation of motion for fermion is

[𝛾�휇 (𝜕�휇 + �̂��휇) + 𝛾5 (𝜕�푧 + 2𝜕�푧𝐴) − 𝜂𝑒�퐴𝐹 (𝜙1, 𝜙2)]Ψ
= 0, (18)

where 𝛾�휇(𝜕�휇 + �̂��휇) is the Dirac operator on the brane.
For solving this equation, we separate variables with KK

and chiral decomposition [44, 45]

Ψ (𝑥, 𝑧) = 𝑒−2�퐴∑
�푛

(𝜓�퐿�푛 (𝑥) 𝑓�퐿�푛 (𝑧) + 𝜓�푅�푛 (𝑥) 𝑓�푅�푛 (𝑧)) . (19)

The 4D left-handed and right-handed fermions satisfy the
Dirac equations

𝛾�휇 (𝜕�휇 + �̂��휇) 𝜓�퐿�푛 = 𝑚�푛𝜓�푅�푛,
𝛾�휇 (𝜕�휇 + �̂��휇) 𝜓�푅�푛 = 𝑚�푛𝜓�퐿�푛, (20)

while the KK modes satisfy

{𝜕�푧 + 2𝜕�푧𝐴 + 𝜂𝑒�퐴𝐹 (𝜙1, 𝜙2)} 𝑓�퐿�푛 (𝑧) = 𝑚�푛𝑓�푅�푛 (𝑧) ,
{𝜕�푧 + 2𝜕�푧𝐴 − 𝜂𝑒�퐴𝐹 (𝜙1, 𝜙2)} 𝑓�푅�푛 (𝑧) = −𝑚�푛𝑓�퐿�푛 (𝑧) , (21)

with the following orthonormality condition

∫∞
−∞

𝑑𝑧𝑓�퐿�푛𝑓�퐿�푚 = ∫∞
−∞

𝑑𝑧𝑓�푅�푛𝑓�푅�푚 = 𝛿�푛�푚,
∫∞
−∞

𝑑𝑧𝑓�퐿�푛𝑓�푅�푚 = 0,
(22)

and the Schrödinger-like equations are obtained:

[−𝜕2�푧 + 𝑉�퐿 (𝑧)] 𝑓�퐿�푛 = 𝑚2�푛𝑓�퐿�푛, (23)

[−𝜕2�푧 + 𝑉�푅 (𝑧)] 𝑓�푅�푛 = 𝑚2�푛𝑓�푅�푛, (24)
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where the effective potentials are given by

𝑉�퐿 (𝑧) = 𝜂2𝑒2�퐴𝐹2 (𝜙1, 𝜙2) − 𝜂𝜕�푧 [𝑒�퐴𝐹 (𝜙1, 𝜙2)] ,
𝑉�푅 (𝑧) = 𝜂2𝑒2�퐴𝐹2 (𝜙1, 𝜙2) + 𝜂𝜕�푧 [𝑒�퐴𝐹 (𝜙1, 𝜙2)] . (25)

Because of the complexity of 𝐴(𝑟), we can not use relation
(12) to obtain analytical form of 𝑧(𝑟). Therefore we apply
numerical method to get pair of (𝑟, 𝑧):

𝜕�푧𝐴 = 𝑒�퐴(�푟)𝜕�푟𝐴,
𝜕�푧𝐹 = 𝑒�퐴(�푟)𝜕�푟𝐹.

(26)

By these relations, we can rewrite the potentials as a function
of 𝑟:

𝑉�퐿 (𝑧 (𝑟)) = 𝜂𝑒2�퐴 [𝜂𝐹2 − 𝜕�푟𝐹 − 𝐹𝜕�푟𝐴 (𝑟)] ,
𝑉�푅 (𝑧 (𝑟)) = 𝜂𝑒2�퐴 [𝜂𝐹2 + 𝜕�푟𝐹 + 𝐹𝜕�푟𝐴 (𝑟)] . (27)

By substituting 𝑚�푛 = 0 in (21), the left-handed and right-
handed zero modes of fermions are obtained as

𝑓�퐿0 ∝ exp [−𝜂∫�푧
0
𝑑𝑧�耠𝑒�퐴(�푧󸀠)𝐹 (𝜙1, 𝜙2)] ,

𝑓�푅0 ∝ exp [𝜂∫�푧
0
𝑑𝑧�耠𝑒�퐴(�푧󸀠)𝐹 (𝜙1, 𝜙2)] .

(28)

The normalization condition for localization of zero mode of
left-handed fermions on the brane is

∫∞
−∞

𝑑𝑧 exp(−2𝜂∫�푧
0
𝑑𝑧�耠𝑒−�퐴(�푧󸀠)𝐹 (𝜙1 (𝑧�耠) , 𝜙2 (𝑧�耠)))

< ∞,
(29)

and in 𝑟 coordinate, we have
∫∞
−∞

𝑑𝑟 exp(−𝐴 (𝑟) − 2𝜂∫�푟
0
𝑑𝑟�耠𝐹 (𝜙1 (𝑟�耠) , 𝜙2 (𝑟�耠)))

< ∞.
(30)

For right-handed fermion this condition is achieved by
replacing 𝜂 → −𝜂. For studying localization of zero mode
of fermion on the brane, we should determine the suitable
form of 𝐹(𝜙1, 𝜙2). The procedure for determining 𝐹(𝜙1, 𝜙2)
in this paper is similar to the methods used in [46, 47]. In
the following subsections we try to determine this function
by using the normalization condition.

3.1. 𝐹 = 𝜙1𝜙2. The integrand in (30) can be expressed as

𝐼0 ≡ exp [−19 {2 tanh2 (𝜆𝑎) − tanh2 [𝜆 (𝑟 − 𝑎)]
− tanh2 [𝜆 (𝑟 + 𝑎)]} − 2𝜂𝑟]
× (cosh [𝜆 (𝑟 − 𝑎)] cosh [𝜆 (𝑟 + 𝑎)]

cosh2 (𝜆𝑎) )4/9

⋅ (1 + 𝑒−2�휆(�푟−�푎)1 + 𝑒−2�휆(�푟+�푎))
−2�휂/�휆 .

(31)

Since 𝜂 > 0, when 𝑟 → −∞ we have

𝐼0 󳨀→ exp (−89 − 2𝜂𝑟) 󳨀→ ∞; (32)

therefore, the integral in (30) is divergent. So the left-handed
fermion zero mode can not be localized on the brane. On the
other hand, with 𝜂 → −𝜂, we can see that the zero mode of
right-handed fermions can not be localized on the brane too.

3.2. 𝐹 = 𝜙1 − 𝜙2. The integrand in (30) is written as

𝐼1 ≡ exp [−19 {2 tanh2 (𝜆𝑎) − tanh2 [𝜆 (𝑟 − 𝑎)]
− tanh2 [𝜆 (𝑟 + 𝑎)]}]
× (cosh [𝜆 (𝑟 − 𝑎)] cosh [𝜆 (𝑟 + 𝑎)]

cosh2 (𝜆𝑎) )4/9

⋅ (cosh [𝜆 (𝑟 − 𝑎)]
cosh [𝜆 (𝑟 + 𝑎)])

−2�휂/�휆 ,

(33)

from which we have

𝐼1 󳨀→ exp(±89𝑟) 󳨀→ ∞, when 𝑟 󳨀→ ±∞. (34)

Hence, left-handed zero mode can not be localized on the
brane in this case. Moreover, because 𝐼1 is independent of 𝜂,
therefore, we can conclude that right-handed fermion can not
be localized on the brane.

3.3. 𝐹 = 𝜙1 + 𝜙2. The integrand in (30) is expressed as

𝐼2 ≡ exp [−19 {2 tanh2 (𝜆𝑎) − tanh2 [𝜆 (𝑟 − 𝑎)]
− tanh2 [𝜆 (𝑟 + 𝑎)]}]
× (cosh [𝜆 (𝑟 − 𝑎)] cosh [𝜆 (𝑟 + 𝑎)]

cosh2 (𝜆𝑎) )4/9−2�휂/�휆 ;
(35)

therefore, we have

𝐼2 󳨀→ exp [± (89𝑟 − 4𝜂𝑟𝜆 )] , when 𝑟 󳨀→ ±∞. (36)

So the normalization condition for localization of left-handed
fermion zero mode is

𝜂 > 2𝜆9 . (37)

By changing 𝜂 → −𝜂 one can find the zero mode of the right-
handed fermion; however this mode can not be localized on
the brane.
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The effective potentials for left-handed and right-handed
KK fermion have the form

𝑉�퐿 = 𝜂 exp [29 {2 tanh2 (𝜆𝑎) − tanh2 [𝜆 (𝑟 − 𝑎)]
− tanh2 [𝜆 (𝑟 + 𝑎)]}]
× (cosh [𝜆 (𝑟 − 𝑎)] cosh [𝜆 (𝑟 + 𝑎)]

cosh2 (𝜆𝑎) )−8/9

⋅ {𝜂 (tanh [𝜆 (𝑟 − 𝑎)] + tanh [𝜆 (𝑟 + 𝑎)])2

− 𝜆(sech2 [𝜆 (𝑟 − 𝑎)] + sech2 [𝜆 (𝑟 + 𝑎)]
+ 23 (tanh [𝜆 (𝑟 − 𝑎)] + tanh [𝜆 (𝑟 + 𝑎)])
× {tanh [𝜆 (𝑟 − 𝑎)] + tanh [𝜆 (𝑟 + 𝑎)]
− tanh3 [𝜆 (𝑟 − 𝑎)] + tanh3 [𝜆 (𝑟 + 𝑎)]3 })} ,

𝑉�푅 = 𝑉�퐿󵄨󵄨󵄨󵄨�휂→−�휂 .

(38)

The values of potential in 𝑟 or 𝑧 = 0 and 𝑟 or 𝑧 → ±∞ are

𝑉�퐿 (0) = −𝑉�푅 (0) = −2𝜂𝜆 sech2 (𝜆𝑎) ,
𝑉�퐿 (±∞) = 𝑉�푅 (±∞) = 0. (39)

It can be seen that the asymptotic behaviors of two potentials
are the same when 𝑟 → ±∞, but opposite at the origin, 𝑧 = 0.
This reveals that only one of the massless left or right chiral
fermions can be localized on the brane.The shapes of effective
potentials are shown in Figure 2.The form of𝑉�퐿(𝑧) is volcano
type and therefore, there is no mass gap between the zero
mode and KK excitation modes. On the other hand, 𝑉�푅(𝑧)
is always positive at the brane location. We know that this
type of potential can not trap any bound state of right-handed
fermion and there is no zero mode of right-handed fermion.
This is consistent with our pervious knowledge that only one
chirality of massless fermion can exist.

The zero mode of left-handed fermion is written as

𝑓�퐿0 (𝑧) ∝ exp(−𝜂∫�푧
0
𝑑𝑧�耠𝑒�퐴(�푧󸀠) [𝜙1 (𝑧�耠) + 𝜙2 (𝑧�耠)])

= exp(−𝜂∫�푟
0
𝑑𝑟�耠 [𝜙1 (𝑟�耠) + 𝜙2 (𝑟�耠)])

= (cosh [𝜆 (𝑟 − 𝑎)] cosh [𝜆 (𝑟 + 𝑎)])−2�휂/�휆 .
(40)

Figure 3 shows the form of fermion zero modes on the brane.
One can see that the width of the function is increased with
splitting.

3.4.The Case𝐹 = 𝜙1+𝛽𝜙2. The integrand in (30) is expressed
as

𝐼3 ≡ exp [−19 {2 tanh2 (𝜆𝑎) − tanh2 [𝜆 (𝑟 − 𝑎)]
− tanh2 [𝜆 (𝑟 + 𝑎)]}] × (cosh [𝜆 (𝑟 − 𝑎)]

cosh (𝜆𝑎) )4/9−2�휂/�휆

⋅ (cosh [𝜆 (𝑟 + 𝑎)]
cosh (𝜆𝑎) )4/9−�훽(2�휂/�휆) .

(41)

Therefore, we have

𝐼3 󳨀→ exp[±(89𝑟 −
2 (𝛽 + 1) 𝜂

𝜆 𝑟)] ,
when 𝑟 󳨀→ ±∞.

(42)

So the normalization condition becomes

𝜂 > 4𝜆9 (𝛽 + 1) , 𝛽 ̸= −1. (43)

For 𝛽 = −1 the relation (42) is reduced to (34). Hence, left-
handed zero mode can not be localized on the brane. For 𝛽 =0 we have 𝜂 > 4𝜆/9. This means that coupling of fermion to
every subbrane can localize zero mode on the brane. For the
case 𝛽 = 1 the normalization condition is reduced to (37).
The zero mode of left-handed fermion is turned out to be

𝑓�퐿0 (𝑧) ∝ exp(−𝜂∫�푟
0
𝑑𝑟�耠 [𝜙1 (𝑟�耠) + 𝛽𝜙2 (𝑟�耠)])

= cosh [𝜆 (𝑟 − 𝑎)]−2�휂/�휆 cosh [𝜆 (𝑟 + 𝑎)]−2�훽�휂/�휆 .
(44)

The explicit forms of the potentials are

𝑉�퐿 = 𝜂 exp [29 {2 tanh2 (𝜆𝑎) − tanh2 [𝜆 (𝑟 − 𝑎)]
− tanh2 [𝜆 (𝑟 + 𝑎)]}]
× (cosh [𝜆 (𝑟 − 𝑎)] cosh [𝜆 (𝑟 + 𝑎)]

cosh2 (𝜆𝑎) )−8/9

⋅ {𝜂 (tanh [𝜆 (𝑟 − 𝑎)] + 𝛽 tanh [𝜆 (𝑟 + 𝑎)])2

− 𝜆(sech2 [𝜆 (𝑟 − 𝑎)] + 𝛽2sech2 [𝜆 (𝑟 + 𝑎)]
+ 23 (tanh [𝜆 (𝑟 − 𝑎)] + 𝛽 tanh [𝜆 (𝑟 + 𝑎)])
× {tanh [𝜆 (𝑟 − 𝑎)] + tanh [𝜆 (𝑟 + 𝑎)]
− tanh3 [𝜆 (𝑟 − 𝑎)] + tanh3 [𝜆 (𝑟 + 𝑎)]3 })} ,

𝑉�푅 = 𝑉�퐿󵄨󵄨󵄨󵄨�휂→−�휂 .

(45)
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Figure 2: The shapes of potentials: (a) 𝑉�퐿(𝑧) and (b) 𝑉�푅(𝑧), 𝑎 = 0 (solid line), 𝑎 = 3 (dashed line), and 𝑎 = 5 (dotted line).
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Figure 3: Fermion zero modes localized on the brane: 𝑎 = 1 (solid
line), 𝑎 = 3 (dashed line), and 𝑎 = 5 (dotted line).

The asymptotic behaviors of the potentials are

𝑉�퐿 (0) = 𝜂 {𝜂 (𝛽 − 1)2
− [𝜂 (𝛽 − 1)2 + 𝜆 (𝛽2 + 1)] sech2 (𝜆𝑎)} ,

𝑉�푅 (0) = 𝜂 {𝜂 (𝛽 − 1)2
− [𝜂 (𝛽 − 1)2 − 𝜆 (𝛽2 + 1)] sech2 (𝜆𝑎)} ,

𝑉�퐿 (±∞) = 𝑉�푅 (±∞) = 0.

(46)

It is realized that 𝑉�퐿(0) can be negative or positive, while,
for 𝜂 > 0 and 𝜆 > 0, 𝑉�푅(0) is always greater than 𝑉�퐿(0).
This means that localization of zero mode of the left-handed
fermion is more supported.

4. Resonances of Massive Modes

We can rewrite (23) and (24) as

𝑄†𝑄𝑓�퐿�푛 = (−𝜕�푧 + 𝜂𝐹𝑒�퐴) (𝜕�푧 + 𝜂𝐹𝑒�퐴) 𝑓�퐿�푛 = 𝑚2𝑓�퐿�푛,
𝑄𝑄†𝑓�푅�푛 = (𝜕�푧 + 𝜂𝐹𝑒�퐴) (−𝜕�푧 + 𝜂𝐹𝑒�퐴) 𝑓�푅�푛 = 𝑚2𝑓�푅�푛. (47)

From these equations, we can see that the tachyonic modes
in spectrum are excluded. With converting the equations of
motion for fermion to Schrödinger-like equations, we can
present a quantummechanical interpretation for𝑓�퐿�푛 and𝑓�푅�푛.
By studying resonantmodeswe are able to obtain information
about the coupling between massive modes and the brane.

In order to derive KK modes from (23) and (24) we
apply relative probabilitymethod [48–50]. Since (23) and (24)
are Schrödinger-like, we can interpret normalized |𝑓�퐿,�푅(𝑧)|2
as the probability of finding massive KK modes on the
brane. But the massive modes can not be normalized because
they are oscillating when far away from brane along extra
dimension. Therefore, the relative probability function is
defined as [48]

𝑃�퐿�푛,�푅�푛 (𝑚) = ∫�푧𝑏
−�푧𝑏

𝑑𝑧 󵄨󵄨󵄨󵄨𝑓�퐿�푛,�푅�푛 (𝑧)󵄨󵄨󵄨󵄨2
∫�푧max

−�푧max
𝑑𝑧 󵄨󵄨󵄨󵄨𝑓�퐿�푛,�푅�푛 (𝑧)󵄨󵄨󵄨󵄨2 , (48)

where 2𝑧�푏 is brane thickness approximately and 𝑧max = 10𝑧�푏
here. 𝑓�퐿�푛,�푅�푛(𝑧) is solution of (23) or (24) with two boundary
conditions:

𝑓�퐿�푛,�푅�푛 (0) = 1,
𝑓�耠�퐿�푛,�푅�푛 (0) = 0, (49)

for even parity, and

𝑓�퐿�푛,�푅�푛 (0) = 0,
𝑓�耠�퐿�푛,�푅�푛 (0) = 1, (50)
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Figure 4: Plots of relative probability for left-handed fermion resonances with 𝑎 = 1.0 (left column), 𝑎 = 3.0 (middle column), and 𝑎 = 5.0
(right column). Coupling constants are 𝜂 = 0.5 (first raw), 𝜂 = 1.0 (second raw), and 𝜂 = 2.0 (third raw). Solid lines and dashed lines
correspond to even and odd parity, respectively. In all cases 𝜆 = 1.0.

for odd parity. If 𝑚2 ≫ 𝑉�퐿,�푅max, 𝑓�퐿,�푅 will be approximately
a plane wave with 𝑃�퐿,�푅(𝑚) = 𝑧�푏/𝑧max = 0.1. For simplicity
we have chosen 𝛽 = 1. Figures 4 and 5 show plots of the
relative probability for different values of 𝑎 and 𝜂 for left-
handed and right-handed fermions, respectively. The masses
of resonances are presented in Table 1. The fermion resonant
wave functions for 𝜂 = 1, 𝜆 = 1, and 𝑎 = 5.0 are shown in
Figure 6.

From the figures, we can see that the spectra of massive
KK modes of left-handed and right-handed fermions are
almost the same which reveals that a Dirac fermion is
composed from left-handed and right-handed bound KK
modes. Furthermore for fixed value of 𝑎 the larger the value
of coupling parameter, the larger the number of resonances.
Also for fixed value of 𝜂, the larger value of 𝑎 leads to larger
number of peaks. The first peak is the most narrow and
the resonances will become broader with increasing 𝑚. This
means that first resonance has larger lifetime and the lifetime
declines with increasing the mass of peak.

We can also see from figures that there are successively
even and odd parity wave functions for left and right chiral
modes with the same values of 𝑚2. In other words, the zero
mode is beginning of left chirality with even parity spectra;
therefore the two first resonances (if exist) with the same 𝑚2
are odd parity left chiral mode and even parity right chiral
mode.Next the two second resonances (if exist) with the same𝑚2 are even parity left chiral mode and odd parity right chiral
mode.

FromFigures 4 and 5we can estimate the lifetime of every
resonance as the reciprocal of width of peak at half of the
height. With this definition we can find visually that heavier
resonances are broader and they have shorter lifetimes. For
evaluating this fact, we determine approximately the lifetimes
of resonances of right-handed fermions for 𝜆 = 1.0, 𝜂 = 1.0,
and 𝑎 = 5.0 for instance. From Figure 5 we can see that in
this case we have 4 resonances. The lifetimes of resonances
are 𝜏1 = 242.1894 for 𝑚1 = 0.327121, 𝜏2 = 41.3873 for𝑚2 = 0.645689, 𝜏3 = 12.4500 for 𝑚3 = 0.924378, and
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Figure 5: Plots of relative probability for right-handed fermion resonances with 𝑎 = 1.0 (left column), 𝑎 = 3.0 (middle column), and 𝑎 = 5.0
(right column). Coupling constants are 𝜂 = 0.5 (first raw), 𝜂 = 1.0 (second raw), and 𝜂 = 2.0 (third raw). Solid lines and dashed lines
correspond to even and odd parity, respectively. In all cases 𝜆 = 1.0.

3

2

1

0

−1

−2

−3

f
L
1

−100 −50 0 50 100

z

−100 −50 0 50 100

z

−100 −50 0 50 100

z

−100 −50 0 50 100

z

−100 −50 0 50 100

z

−100 −50 0 50 100

z

−100 −50 0 50 100

z

−100 −50 0 50 100

z

1.0

0.5

0.0

−0.5

−1.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

1.0

0.5

0.0

−0.5

−1.0

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

2.0
1.5
1.0
0.5
0.0

−0.5
−1.0
−1.5
−2.0

1.0

0.5

0.0

−0.5

−1.0

1.0
0.8
0.6
0.4
0.2
0.0

−0.2
−0.4
−0.6
−0.8
−1.0

f
L
2

f
L
3

f
L
4

f
R
1

f
R
2

f
R
3

f̃
R
4
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Table 1: Masses of resonances for different values of 𝜂 and 𝑎.
(a)

Left 𝜂 = 0.5 𝜂 = 1.0 𝜂 = 2.0
𝑎 = 1.0 Absent 1.185465 1.719258

𝑎 = 3.0 0.453441 0.562819;
0.994057

0.689911;
1.232968;
1.664278;
2.034932

𝑎 = 5.0 0.288833;
0.567862

0.337121;
0.646626;
0.924378;
1.198549

0.377447;
0.731511;
1.058468;
1.359395;
1.631559;
1.884065;
2.146727

(b)

Right 𝜂 = 0.5 𝜂 = 1.0 𝜂 = 2.0
𝑎 = 1.0 Absent 1.110830 1.711422

𝑎 = 3.0 0.442279 0.562819;
0.994057

0.689911;
1.232968;
1.662400;
2.027853

𝑎 = 5.0 0.283917;
0.561504

0.337121;
0.645689;
0.921857;
1.190822

0.377447;
0.731480;
1.058468;
1.359395;
1.631559;
1.882145;
2.139101

𝜏4 = 4.5196 for 𝑚4 = 1.190822. Therefore we can see that
the lighter resonances have longer lifetimes.

5. Conclusions

In this paper we have studied the issue of the localization of
fermion field on the double wall brane. This brane includes
two scalar fields coupled minimally to brane. For observing
whether the zero mode can be localized on this brane or not,
we use a Yukawa coupling between fermion and background
scalar fields. By investigating normalization condition,we can
see that fermion coupleswith summation of kinks.We can see
that by this coupling the zero mode of left-handed fermion
can be localized on the brane under the special condition.
This condition provides relation between coupling constant
and 𝜆 parameter. Also we found that the zero mode of right-
handed fermion can not be localized on the brane.

The massive mode resonances were investigated numer-
ically. From the volcano shape of effective potential for
left-handed fermions, it results that the spectrum is con-
tinuous and there is no gap between zero mode and KK
excitation modes. Also larger values of coupling constant
and the distance of subbranes support more resonances in
the spectrum. In one spectrum, heavier resonances have
broader peaks rather than lighter ones.Thismeans the lighter
fermions couple stronger to the brane rather than heavier KK

modes. Because of very narrow peak, we may not see light
resonances. Fortunately because of supersymmetric feature
of Schrödinger-like equation, we have successively even and
odd parity for left or right chiralitymodes with the samemass
in the spectrum. This helps us to search a small region when
a resonance peak is not seen. Therefore numeric procedure
becomes simple and fast. The lifetime of a resonance is
proportional to inverse of peak width at half maximum.
Hence generally, light resonances have longer lifetimes.
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