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1 Introduction

Accurate predictions for high-energy scattering processes at hadron colliders rely upon cal-

culations to higher orders in the perturbative expansion of QCD. Fully differential predic-

tions are needed, in order to correctly model the final-state cuts imposed in all experimental

analyses and directly compare theory with data. The calculation of higher-order corrections

is complicated by the fact that the real-emission and virtual corrections which contribute to

the cross section exhibit infrared singularities that cancel only after they are combined. At

next-to-leading order (NLO) in the strong coupling constant several well-established tech-

niques have been successfully applied for many years to accomplish this task [1–3]. In the

past several years, new schemes [4–11] have been proposed that enable calculations through

the next-to-next-to-leading order (NNLO) in perturbative QCD, and permit precision com-

parisons of theoretical predictions with data from the Large Hadron Collider (LHC).
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In this work we focus on the N -jettiness subtraction scheme for higher-order calcula-

tions [10, 11]. This conceptually appealing idea uses the N -jettiness event shape variable

τN [12] as a resolution parameter to isolate and cancel the double-unresolved singular limits,

where two partons become soft and/or collinear, that complicate the calculation of NNLO

cross sections. The idea of using a physical observable to isolate singularities and construct

subtraction terms at higher orders stems from the idea of qT -subtraction [6], which uses

the transverse momentum of a color-singlet object to accomplish NNLO computations for

color-singlet processes. This was further generalized to calculate top-quark decays [13]

and tt̄ production in leptonic collisions [14]. The N -jettiness subtraction scheme further

extends this idea to handle processes with arbitrary final-state jets. When τN is large, an

N + 1 jet configuration is guaranteed, leading to a NLO contribution to the N -jet process

that can be obtained with standard techniques. When τN is small, the NNLO results

can be obtained using an effective theory approach [15–19]. The N -jettiness subtraction

scheme has proven quite successful in enabling NNLO phenomenology. It has led to some

of the first calculations for vector boson production in association with a jet [10, 20–23] and

Higgs production in association with a jet [24] at the LHC through NNLO. It has also led

to first predictions for inclusive jet production at NNLO in electron-nucleon collisions [25],

and has reproduced known results for color-singlet production through NNLO [11, 26–28]

Color-singlet production through NNLO using the N -jettiness subtraction scheme has been

publicly released in the numerical code MCFM v8.0 [28].

The N -jettiness subtraction scheme relies upon the introduction of a cutoff τ cut
N that

separates the N + 1 jet configuration from the doubly-unresolved limit. The below-cut

region is expanded in τ cut
N /Q, where Q denotes the hard momentum transfer in the process,

in order to allow for an effective field theory calculation. The cutoff must be chosen

small so that the power corrections in τ cut
N /Q are negligible. However, the below-cut

and above-cut contributions separately depend on logarithms of τ cut
N /Q that only cancel

after the two regions are combined. Since these regions live in different phase spaces

and are numerically integrated separately, these logarithms introduce numerical noise that

challenge the efficiency of the method. Although the numerics can already be controlled

sufficiently for phenomenological applications, it is desirable for computational efficiency

to reduce the sensitivity of the method to the power corrections. An explicit calculation of

at least the leading power correction would allow N -jettiness subtraction to be used with

larger τ cut
N , reducing the computational cost of the approach.

In this work we discuss the analytic calculation of the dominant power corrections

through NNLO.1 In section 2 we show in detail the derivation of the leading-logarithmic

power correction at NLO for an arbitrary N -jet process. We summarize which features of

this result generalize to the NNLO level. In section 3 we explicitly calculate the leading-

logarithmic power correction at NNLO for color-singlet production mediated by both qq̄

and gg initial states. In section 4 we study the numerical impact of the power corrections

on the N -jettiness subtraction scheme. Our main results for the power corrections at

NNLO are summarized in section 3, in the form of simple analytic expressions amenable

to numerical implementation.

1Initial numerical results for these corrections have already been presented in refs. [28] and [29].
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2 Derivation of the NLO power correction

In this section we briefly review the leading-power factorization theorem and present a

detailed derivation of the leading-logarithmic power correction at NLO for an N -jet process.

We emphasize the features of the calculation which extend to the NNLO level.

2.1 Review of the leading-power factorization theorem

In the N -jettiness subtraction scheme [10, 11] for a generic collider process involving N

jets in the final state, the N -jettiness event-shape observable [12]

τN =
∑
k

min

[
pk · na
Qa

,
pk · nb
Qb

,
pk · n1

Q1
, . . . ,

pk · nN
QN

]
, (2.1)

serves as the resolution parameter between the N + 1 jet configuration and the doubly-

unresolved limit. Here, the pk denote the four-momenta of final-state QCD partons. The

na,b are light-like vectors for the initial beam directions and the ni are light-like vectors

denoting the directions of the final-state jets in the problem. The ni are determined by

pre-clustering final-state radiation using a standard jet algorithm. The Qi are variables

characterizing the hardness of the beam jets and final-state jets. The minimum in eq. (2.1)

defines the contribution of pk to τN according to which direction pk is closest. The small-

τN cross section is derived using the all-order leading-power factorization theorem for the

cross section [30], obtained using the Soft-Collinear-Effective Theory (SCET) [15–19]. We

schematically write the differential cross section in the small-τN limit as

dσ(τN ) ∼ Tr(H · SN ) ⊗ Ba ⊗ Bb
N∏
i

⊗Ji, (2.2)

where the operator definition of each components can be found in ref. [30]. The beam

function B [31, 32], the jet function Ji [33, 34] and the soft function SN for jets [35] and

for the massive case [36] are all known to the required NNLO level.

The results of eq. (2.2) expanded to fixed order in the strong coupling constant can

also be obtained using the method of regions [37]. This entails expanding the full QCD

matrix elements and the phase space consistently in τN assuming either a soft-momentum

scaling ps ∼ QτN or a collinear momentum scaling pc ∼ Q
(
1,
√
τN , τN

)
,2 which exhaust

the possible leading singular regions. In writing the collinear momentum scaling we have

adopted the usual Sudakov decomposition of pc. In the method of regions approach, the

collinear and soft behaviors are disentangled and the fixed order results of eq. (2.2) can be

recovered as the sum of soft and collinear contributions. To avoid double counting between

the collinear and soft regions, a zero-bin subtraction [38] is usually required in order to

reproduce the leading singular results of QCD.

The leading-power factorization theorem is exact only when τN → 0. Therefore in prac-

tical applications of N -jettiness subtraction a very small τ cut
N is introduced, and eq. (2.2) is

2We note that there is a collinear mode of this form for both the initial beam directions and the final-state

jet directions.
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used below τ cut
N . The below-cut cross section receives power corrections with the leading be-

havior αns log2n−1(τN ). Including the power corrections would allow larger τ cut
N to be used,

and could in principle improve the numerical performance of the N -jettiness subtraction

scheme.

2.2 Power corrections at NLO

In this section, we calculate the leading power correction at NLO to the N -jettiness factor-

ization theorem in eq. (2.2). We illustrate our derivation focusing on the τ1 measurement in

deep inelastic scattering (DIS). This general case contains both an initial-state hadron beam

and a final-state jet, allowing us to demonstrate all possible technical details. We define N -

jettiness using the hardness measures Q−1
a = x

√
s/sll and Q−1

1 = 2EJ/sll, where EJ is the

jet energy, although the derivation holds more generally. Although we show in detail the

derivation of the leading-logarithmic terms (log τ1 at NLO) in the leading-logarithmic power

correction (LLP ), the remaining terms which scale as τ1 can also be evaluated in a straight-

forward manner. We will present the NLO power correction for DIS, jet production in e+e−

collision and Higgs production in gg fusion in the end of this section, which represent the

possible cases for the N -jettiness NLO power correction. The NLO power corrections for a

generic N -jet process can be obtained as a linear combination of these three cases with color

factors assigned properly, plus corrections derived from the N -jet Born matrix element.

2.2.1 General features for LLP at NLO

Before showing the explicit calculation, we note that on general grounds, the NLO cross

section for measuring τN takes the form

dσ(1)

dτN
=

1

τN

∫ 1−f(τN ) dz

1− z
N (τN , 1− z) , (2.3)

where z parameterizes the energy of the final-state radiation and τN controls the collinear

singularity. As z → 1, the emission becomes soft and forces τN → 0, which justifies the

upper limit in the z-integral. Here the form of f(τN ) depends on the kinematic details.

f(τN ) starts at O(τN ) and vanishes as τN → 0. The numerator N is a regular function in

both limits z → 1 and τN → 1, and includes information from both the matrix element

and possible phase space cuts. If we expand N in terms of τN and 1− z

N (τN , 1− z) = N0(0, 1− z) + N1(0, 0) τN + . . . , (2.4)

we can see that N0 will give rise to the contribution covered by the leading-power fac-

torization theorem in eq. (2.2). N1 will generate the log(τN ) power correction, while the

remaining terms will contribute to terms linear in τN or higher orders in powers of τN .

Therefore determining N1 in which the emission becomes soft is our primary goal.

We begin by listing general features of the LLP that we find at NLO that hold true at

NNLO as well.

• The results are free of divergences. All ε-poles cancel among themselves in the power

corrections. This is a clear requirement of the LLP ; the differential cross section in τN

– 4 –



J
H
E
P
0
3
(
2
0
1
7
)
1
6
0

is a physical observable free of divergences, and it can be expanded in the small-τN
limit to obtain the LLP .

• The LLP comes solely from the soft limit. The configurations which contribute to the

leading-power expression in eq. (2.2) but not to its leading logarithms, do not give

rise to LLP . An example of a leading-power configuration that does not contribute

to the LLP is in the gl → qql channel, when one of the q is grouped with the beam

to contribute to τ .

• Soft quarks contribute to the LLP . Their contributions can be determined unam-

biguously from the leading power splitting kernels.

• Power divergences occur in the power corrections due to expanding terms such as

(1−z′+z′τN )−1 in terms of τN . The power divergence can be eliminated by rescaling

z′ = z/(1 − τN ). The rescaling leads to the appearance of derivatives of the parton

distribution functions (PDFs) ∂xf(x) in the power correction.

We have used both a rigorous QCD calculation and the method of regions to obtain

our results. We have checked that these two methods lead to identical expressions. In

the following discussion we present the calculation using the method of regions, since we

will later extend this approach to the NNLO level. A similar procedure has been applied

in refs. [39, 40] with focus on the threshold power corrections in Drell-Yan production.

We discuss the derivation using the DIS process as an example. In DIS, following the

N -jettiness definition eq. (2.1), the calculation can be organized by the beam and the jet

contributions depending on whether the radiation is grouped with the beam or with the jet

direction to contribute to the jettiness. We note that both the beam and jet contributions

are well-defined, IR-safe physical observables. The global N -jettiness is the sum of these

two contributions. In the method of regions, both beam and jet contributions receive their

dominant part from the configurations in which the radiation momenta become collinear

(scales as collinear) or soft (scales as soft) which will be defined later when we discuss the

beam and jet contributions. In each contribution, beam or jet, the final results will be the

sum of the collinear and the soft sectors, with proper zero-bin (overlap between collinear

and soft) subtracted out to avoid double counting.

2.2.2 Beam contribution

We consider the real-radiation correction to the DIS process: xPa + pb → l + q + k. At

NLO, the virtual corrections do not lead to power corrections, since their full contributions

to the cross section have already been included eq. (2.2). The phase space for this process

can be written as

dΦ
(1)
DIS =

1

(2π)2d−3
dx ddl δ(l2) ddq δ(q2) ddk δ(k2)

×δ(d)(xPa + pb − l − q − k) δ

(
τ1 −

2xB
2pb · l

Pa · k
)

Θ(pa, q, k) . (2.5)

Here, the measurement function Θ enforces that k is grouped with the hadron beam to

contribute to τ1 which defines the beam contribution. Pa and pb are the four-momenta for
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the incoming hadron and lepton respectively. The Bjorken-x relates the hadron momentum

Pa to the partonic momentum as pa = xPa. l denotes the outgoing lepton 4-momentum,

while q and k are the momenta for final-state partons. We always assume that k is po-

tentially unresolvable while q is always hard. The last δ-function involving τ1 defines the

jettiness observable τ1, in which xB ≡ (2pb · l)/(2Pa · (pb− l)). We note that this definition

makes τ1 dimensionless. The superscript on the differential phase space denotes that this

is an NLO expression.

To proceed, we parameterize the momentum k using the light-cone coordinates defined

by pµa and qµ:

kµ =
q · k
pa · q

pµa +
pa · k
pa · q

qµ + kµ⊥ . (2.6)

Note that in the beam contribution pa · k ∼ O(τ1Q
2) and k2

⊥ ∼ q · k pa · k as required by

the jettiness definition and the on-shell condition for k. Here q · k can either be large (of

order Q2) or small (of order Q2τ), which defines the collinear scaling and soft scaling of

the momentum, respectively. However for the collinear scaling, when we perform the phase

space integration, the momentum component q ·k will unavoidably reach a region in which

q · k ∼ Q2τ . In this region the momentum scaling overlaps with the soft scaling which

defines the zero-bin. We therefore need to subtract out the zero-bin in the collinear sector

to avoid double counting.

In the following, we detail the evaluation of the collinear scaling contribution q ·k ∼ Q2.

The soft ones can be obtained similarly by assuming q ·k ∼ Q2τ1. Writing k in terms of the

light-cone decomposition, the δ-function for energy-momentum conservation in eq. (2.5)

can expressed as

δ(d)

([
1− 2q · k

sll/z′

]
xPa + pb − l −

[
1 +

2pa · k
sll/z′

]
q

)
, (2.7)

where we have introduced a variable z′ = sll
2pa·q , with sll = 2pb · l. The collinear scaling

q ·k ∼ Q2 means 1−z′ ∼ O(1). Here we have dropped in the δ-function the k⊥ dependence.

This is allowed to the logarithmic accuracy in which we are interested, since any term linear

in k⊥ will vanish after being averaged over the solid angle of kµ⊥, while any k2
⊥ will scale as

τ1 (1− z′) which will not contribute to the logarithms in the power correction.3

From the τ1 definition in eq. (2.5) and the momentum conservation expression in

eq. (2.7), it is straightforward to find

2pa · k =
sll
z
τ1 , 2q · k =

sll
z

(
1− z

)(
1− τ1

)
,

2pa · q =
sll
z

(
1− τ1

)
, (2.8)

To avoid the possible occurrence of power divergences in deriving the power correction as

a consequence of expanding (1 − z′ + z′τ1)−1 in τ1, we have rescaled the variable z′ using

z′ =
z

1− τ1
, (2.9)

3Dropping k⊥ will affect the value of 2q · k but it has no overall effect on the final logarithmic power

correction.
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This fixes the ambiguity of order τ1 in defining O(1) variables. We note that the upper

bound of the z-integration is 1 − τ1. However, we can safely integrate z all the way to 1.

The range [1−τ1, 1] is where q ·k ∼ Q2τ1 and the zero-bin subtraction should be performed

as we discussed before. After correctly implementing the zero-bin subtraction, this range

receives no LLP .

The phase space in eq. (2.5) is factorized into a Born piece which only involves leading

power momenta which scale as O(Q), and a radiative phase space:

dΦ
(1)
DIS = dΦBorn × dΦR. (2.10)

The Born phase space is

dΦBorn = dxB
ddlδ(l2)

(2π)d−1

ddqBδ(q
2
B)

(2π)d−1
(2π)dδ(d)(xBPa + pb − l − qB) , (2.11)

with

xB = z x , qµB =
1

1− τ1
qµ. (2.12)

The radiative phase space is

dΦR =
(1− τ1)d−3

z

ddk δ(k2)

(2π)d−1
sll (1− τ1)

×dz

z
δ

(
sll(1− z)

z
(1− τ1)− 2q · k

)
δ

(
τ1 −

2z

sll
pa · k

)
Θ(pa, q, k) , (2.13)

where the first factor (1 − τ1)d−3/z is the Jacobian J (τ1, z) due to the variable change

from {x , qµ} to {xB , qµB} needed to obtain the Born phase space. Assuming the collinear

scaling q · k ∼ Q2, pa · k ∼ Q2τ1 and z ∼ 1, we find the phase space for the collinear sector

in the method of regions approach

dΦc
R = J sll Ω2−2ε

4(2π)3−2ε

dz

z

(
sll(1− z)

z
τ1

)−ε
Θ(pa, q, k) , (2.14)

where Ω2−2ε is the 2 − 2ε dimensional solid angle from k⊥. The phase space for the

soft sector and the zero bin can be derived straightforwardly from eq. (2.13) by assuming

q ·k ∼ Q2τ1 and dropping the q ·k dependence in the fist δ-function. The explicit form will

not be shown here. We also note that the measurement function Θ can be set to 1 in the

collinear sector up to the accuracy we are working with.

The contribution from expanding the PDFs in the beam sector is

fi(x) = fi

(xB
z

)
, (2.15)

which receives no power correction. There is also contribution from the flux

1

2xPa · pb
=

1

2xBPa · pb
z , (2.16)
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which again receives no power correction in τ1. Before we turn to the matrix element

evaluation, we notice that we can make the simplification

(2l · q)2 ∼ (2l · qB)2 − 2τ1 (2l · qB)2 ,

(2pb · q)2 ∼ (2pb · qB)2 − 2τ1 (2pb · qB)2 , (2.17)

where we have omitted terms of order O(τ2).

We now consider the squared matrix elements for this process assuming the same

collinear scaling as in the phase space. There are two partonic channels to consider, ql →
l′q′g and gl→ l′qq̄. We first note that in the beam sector the gl channel does not contribute

to the LLP , as discussed in our presentation of the general features of the NLO LLP . For

the ql channel, using the simplification of scalar products above we find that the matrix

element for the ql channel with a soft gluon reduces to

|M(1)
ql |

2 → 1

sll
|M(0)|2 (8παsCF )

2

τ1 (1− z)
, (2.18)

and for ql channel with an unresolved quark we have the matrix element

|M(1)
ql |

2 → 1

sll
|M(0)|2 (8παsCF )

1

τ1(1− z)
τ1. (2.19)

M(0) is the LO matrix element for ql → q′l′ with leading-power kinematics. For the

unresolved quark, the LLP comes from the configuration in which a quark is emitted from

the final state q but grouped with the beam to contribute to τ1. Although this “anti-

collinear-grouping” configuration does not contribute to the leading-power singular terms

in eq. (2.2), it does have an effect in the power correction. We further note that to get

eq. (2.19), instead of expanding the full NLO matrix element for real emission, eq. (2.19)

can be determined directly from s−1
gq Pqg(x) by relating sqg ∼ (1− z) and 1− x ∼ τ1.

Combining the phase space in eq. (2.14) and the matrix elements in eq. (2.18) and

eq. (2.19), we find the power correction from the collinear sector to be

1

ε

αsCF
π

(
1

2

) (
τ1sll
µ2

)−ε
dΦB|M0|2 , (2.20)

where from the effective theory point of view,
√
τsll fixes the collinear scale, as expected.

Following similar procedure by assuming q · k ∼ τQ2, we find the contribution from

the soft scaling is

− 1

ε

αsCF
π

(
1

2

) (
τ2

1 sll
µ2

)−ε
dΦB|M0|2 , (2.21)

Once we combine these, we arrive at the following logarithmic power correction from the

beam contribution:

dσ̂
(1)
beam = −dσ̂(0)αsCF

π

(
1

2

)
fq(xB)L , (2.22)

where dσ̂0 = dΦB|M0|2 and L = log
(
τ1sll
τ21 sll

)
. The ratio in the logarithm reflects the scale

hierarchy between the collinear and soft sectors. In the power corrections, no remaining

singularities in ε should arise. All the ε poles must cancel amongst soft and collinear re-

gions since the beam contribution itself is a well defined physical observable. We indeed

find that they do.
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2.2.3 Jet contribution

We next study the jet contribution following the same steps as for the beam region. Mo-

mentum conservation for xPa + pb → l + q + k can be simplified to

δ(d)

([
1− 2q · k

z′ sll

]
xPa + pb − l −

[
1 +

2pa · k
z′ sll

]
q

)
. (2.23)

Unlike the beam contribution, we have defined z′ = 2pa·q
sll

. The one-jettiness definition

becomes

τ1 =
2

sll

(
1 +

2k · pa
z′ sll

)
q · k , (2.24)

Deviations from this result due to pre-clustering the partons with different infra-red safe

jet algorithms will not contribute to the LLP . We can parameterize

2pa · q = z sll (1 + τ1) ,

2k · q = z sll τ1 , 2k · pa = z sll (1 + τ1)
1− z
z

, (2.25)

where as required by the jettiness measurement, k · q ∼ Q2τ1 while k · pa can either be of

order Q2 or Q2τ1, which defines the collinear scaling and soft scaling, respectively. In the

following, we will focus on the collinear sector in which k · pa ∼ Q2. This also implies that

1− z ∼ O(1). Here we have rescaled z′ using

z′ = z(1 + τ1) , (2.26)

to avoid power divergence from expanding the matrix element in τ1.

Similar to the beam contribution, the phase space is factorized into a Born part

dΦBorn = dxB
ddlδ(l2)

(2π)d−1

ddqBδ(q
2
B)

(2π)d−1
(2π)dδ(d)(xBPa + pb − l − qB), (2.27)

with

xB =
1

1 + τ1
x , qµB =

1

z
qµ , (2.28)

and a radiation piece

dΦR = (1 + τ1)zd−3 ddkδ(k2)

(2π)d−1
sll(1 + τ1)

×dz δ
(
sll(1− z)(1 + τ1)− 2pa · k

)
δ

(
τ1 −

2k · q
zsll

)
. (2.29)

The first factor is again the Jacobian J = (1 + τ1)zd−3 from the variable change {x, q} →
{xB, qB} needed to reach the Born phase space. Assuming that kµ follows the collinear

scaling pa · k ∼ Q2, q · k ∼ Q2τ1 and z ∼ 1, we find the phase space for the collinear sector

in the method of regions:

dΦR = J sll Ω

4(2π)3−2ε
dz
(
sll(1− z) τ1

)−ε
. (2.30)
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Deriving the phase space for the soft and the zero-bin subtraction follows similar steps but

with the additional assumptions that pa ·k ∼ Q2τ1. The power correction due to expanding

the PDFs around xB is given by

fi(x) = fi(xB) + τ1

[
x ∂x fi(x)

]
|x=xB , (2.31)

while the flux contributes as

1

2xPa · pb
=

1

2xBPa · pb
1

1 + τ1
. (2.32)

Having derived the power correction coming from the phase space, we move onto the

matrix elements. Noting the simplification

(2pa · pb)2 ∼ (1 + 2τ1) (2pa,B · pb)2 ,

(2pa · l)2 ∼ (1 + 2τ1) (2pa,B · l)2 , (2.33)

in which all terms linear in k⊥ or proportional to τ1(1−z) have been dropped, we find that

the matrix element for the ql channel with an unresolved gluon reduces to

|M(1)
ql |

2 → 1

sll
|M0|2 (8παsCF )

1

z

2

τ1(1− z)
, (2.34)

and the matrix element for the gl channel with an unresolved quark simplifies to

|M(1)
gl |

2 → 1

sll
|M0|2 (8παsCF )

1

1− z
, (2.35)

This second matrix element comes from a soft quark emitted from the initial state pa but

grouped with q to contribute to τ1. AgainM0 is the LO matrix element for ql→ q′l′ with

leading-power kinematics.

The contribution from soft sector can be obtained in a similar manner with the as-

sumption that pa ·k ∼ Q2τ1. Putting together all components, we find the power correction

from jet contribution is

dσ̂
(1)
jet = dσ̂0

αs
π

CF [x∂xfq]+
TR
2

NF∑
i=−NF

Q2
i fg

L . (2.36)

Again, the ε-poles are absent in the final result, since the jet contribution is itself a physical

observable. Here the PDFs are evaluated at x = xB. In the gl channel, we have normalized

the result to the ql channel color and spin average by multiplying by a factor of NC

N2
C−1

. dσ̂0

is the Born-level matrix element and phase space with the PDF removed.

2.3 Summary of NLO results

2.3.1 NLO power correction for DIS

Combining the contributions from the beam and jet contributions found in the previous

sections, we obtain the full power correction the DIS τ1 distribution as

dσ̂
(1)
DIS = dσ̂0

αs
2π

CF (−1 + 2x ∂x) fq + TR

NF∑
i=−NF

Q2
i fg

L , (2.37)
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where Qi is the electric charge of the ith quark, L = − log(τ1) and the PDFs are evaluated

at x = xB. We note that the power correction for DIS comes from the Jacobian J in

eq. (2.14), from expanding PDFs in eq. (2.31), and from the soft quark configuration.

2.3.2 NLO power correction for hadronic production in e+e− collisions

The power correction for N -jettiness (or equivalently thrust) for hadronic production in

e+e− collisions is found to be

dσ̂
(1)
e+e−→hadrons

= dσ̂0
αs
2π
CF (−2) L , (2.38)

where L = − log(τ). The derivation follows closely the one presented for the DIS beam con-

tribution. The result reproduces the known logarithmic power correction found from both

fixed-order calculations [41] and within the framework of SCET [42], which demonstrates

the validity of the method of regions approach in studying the power corrections. Here the

power correction comes from Jacobians due to rescaling the Born momentum q1 or q2 to

q1,B or q2,B in the process l+l− → q(q1)q̄(q2)g(k), and from the soft-quark matrix element.

2.3.3 NLO power correction for ggH and Drell-Yan

Following a similar procedure as in the previous sections, we can evaluate the power cor-

rections for ggH. We define τ0 using the hardness measures Qa = Qb = 1 in eq. (2.1),

implying that τ0 has units of energy. For the gg channel, we find

dσ̂
(1)
gg→H =

αsCA
2π

dσ̂0

(
L [2x1 ∂x1 ]Lgg + {x1 ↔ x2, Y ↔ −Y }

)
, (2.39)

where L = eY

mH
log
(
τ0mHe

Y

τ20

)
and Lgg = Lgg(x1, x2) is the gluon-gluon luminosity. We note

that dσ̂0 is the Born-level differential cross section for gg → H with the PDFs removed,

and Y is the rapidity of the Higgs. For the qg + gq channel, we have

dσ̂
(1)
gq+qg→H =

αsCF
2π

dσ̂0

(
LLg1q2 + {x1 ↔ x2, Y ↔ −Y }

)
. (2.40)

Here, L follows the definition above and Lg1q2 is the gluon-quark luminosity.

For Drell-Yan production of lepton pairs through a vector boson V , the qiq̄j channel

power correction gives

dσ̂
(1)
qq̄→V =

αsCF
2π

dσ̂0

(
L [2x1 ∂x1 ]Lqiq̄j + {x1 ↔ x2, Y ↔ −Y }

)
, (2.41)

while the qg + gq channels contribute

dσ̂
(1)
gq+qg→V = dσ̂0

( NF∑
j=−NF

Q2
j Vji

αsTR
2π

LLqi1g2 + {x1 ↔ x2, Y ↔ −Y }
)
, (2.42)

where Qj is the change carried by the final-state soft quark j. Vji = δji for Z production

and is the CKM matrix for W production. Since we are not measuring the final state

flavors a sum over j arises. dσ̂0 is again the Born-level cross section for qq̄ → V with the

PDFs removed. One should also replace mH → mV in the definition of the logarithm L

for the Drell-Yan case. In both ggH and Drell-Yan cases, the net NLO power correction

comes from expanding the PDFs and from the soft quark matrix element.
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3 Derivation of the NNLO power correction

We next present the derivation of the power corrections at NNLO. At O(α2
s), we have to deal

with both real-virtual (RV) and real-real (RR) contributions. The double-virtual correction

has been entirely included in the leading power factorization theorem in eq. (2.2). For RV,

the phase space integration is identical to the NLO phase space, For RR, the calculation

is more involved. We begin by stating some of the features of the LLP that we observe at

the NNLO level.

• All ε-poles cancel between RV and RR in the LLP .

• Soft limits lead to LLP at NNLO just like at NLO. The LLP soft currents for the

qg channels for both Higgs and Drell-Yan production are deducible from the leading-

power splitting kernels.

• Explicit calculations show that the LLP comes from the strongly-ordered limit of

the matrix elements at NNLO. For instance, in the case of a qg final state, Eg �
Eq. We also notice from our explicit calculations that within the strongly-ordered

limit, the final results for the LLP can be obtained using an independent-emission

approximation in the phase space integrals.

• Configurations (the Abelian piece) which contribute to the leading logarithms in the

leading-power result also contribute to the LLP . Their contribution to the LLP at

NNLO can be written as a convolution in τN between an NLO leading-power leading

logarithmic contribution and an NLO LLP .

Although we can not prove or disprove on general grounds these observations seen in our

explicit calculations, we conjecture that all of the above features observed for zero-jettiness

in color-singlet production generalize to a generic N -jet case.

At NNLO, the full calculation is more lengthy than at NLO. Here we sketch the proce-

dure of obtaining the final result, making sure to discuss all relevant features. We consider

the following examples from the Drell-Yan process to illustrate our method: the RV correc-

tions coming from the qg → V q channel, and the RR corrections to the qg → V qg channel.

3.1 Sketch of the RV calculation

We start with RV. The construction of the phase space follows identically the procedure at

NLO. The only complication is that the matrix elements no longer have a Taylor series in

τ0. They possess fractional powers coming from the loop integrations that must be isolated

in order to obtain the correct logarithms, since the logarithms come from the expansion of

τ−nε0 factors hitting 1/ε poles, where n is an integer. This can be done because the soft-

quark limit contributing to the LLP comes completely from the “anti-collinear” grouping

of the quark, just as at NLO and as discussed below eq. (2.19). The factorization of the

RV matrix elements in this collinear limit are well known [43], and contain the necessary

decomposition into fractional powers. We then use the factorization of the matrix element
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in the collinear limit to write the matrix element as a sum of

M∗0M
(2)
RV,H−loop + c.c. = −

α2
s C

2
F

2π ε2
16πµ2εeY

k−m

( µ
m

)2ε
|M0|2 , (3.1)

and

M∗0M
(2)
RV,C−loop + c.c. = 4α2

s µ
2εCF

eY

m

[
−NC

ε2
+

1

NC ε2

([
τ0e

Y

m

]−ε
− 1

)]

×
(
me−Y

µ

)−ε(
k−

µ

)−1−ε
1

µ
|M0|2 . (3.2)

In both M(2)
RV,H−loop and M(2)

RV,C−loop, we have kept only terms that will contribute to the

LLP . We have assumed that the quark is emitted from leg Pb for PaPb → V + X and is

grouped with Pa in order to contribute to the LLP . Here m is the virtuality of the vector

boson V and we use the notation that k− = nb · k and τ = na · k = k+. We note that the

collinear factorization of the one-loop RV amplitude schematically contains two pieces: a

tree-level splitting amplitude times a one-loop amplitude for the process qq̄ → V , and a one-

loop splitting amplitude times a tree amplitude for qq̄ → V . The M(2)
RV,H−loop amplitude

comes from this first structure, while M(2)
RV,C−loop comes from the second structure. Now

following the same procedure for the NLO calculations, we can get the RV contribution to

the LLP straightforwardly. The RV contributions are given by the sum of

I
(2)
H−loop =

(αs
2π

)2
CFTR

2

ε3
eY

m

[(
meY τ0

µ2

)−ε
−
(
τ2

0

µ2

)−ε](
µ2

m2

)ε
, (3.3)

and

I
(2)
C−loop =

(αs
2π

)2
TR

eY

m

(
me−Y τ0

µ2

)−ε
× 1

2ε3

[
NC +

(
1−

[
τ0e

Y

m

]−ε)
1

NC

] [(
meY

µ

)−2ε

−
(
τ0

µ

)−2ε
]
. (3.4)

Here we have normalized the result to the qq̄ channel color and spin average by multiplying

with a factor NC

N2
C−1

, which turns an overall factor CF to TR. We have suppressed the de-

pendence on the luminosity and Born cross section for simplicity. The full RV contribution

to the LLP cross section for final state qg is thus given by

dσ
(2)
RV,qg+gq→V = dσ̂0

(
I

(2)
H−loop + I

(2)
C−loop

)
Lqg + {Y ↔ −Y, x1 ↔ x2} . (3.5)

3.2 Sketch of the RR calculation

For the RR contribution we find that the matrix elements leading to the LLP can be

written as a sum of eq. (A.1) to eqs. (A.5), which can be derived using the soft limit of the

s−2
qggPqgg splitting kernel [44]. To evaluate the cross sections, both a rigorous QCD phase

space integration and the method of regions are used to derive the final results. For RR
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we need to consider collinear-collinear, soft-soft and collinear-soft scalings in the method

of regions, together with suitable subtraction of zero-bins. We find that the final results

can be obtained using an independent emission approximation in the phase space integrals

following a strongly ordered limit in which Eg � Eq. The relevant strongly-ordered soft

current can be found in eq. (A.6). We organize our calculation by partitions in which both

qg are grouped with na,b to contribute to τ , and qg grouped separately with na or nb to

contribute. We sum all the partitions to find the full contribution. Following these steps

leads us to the final results. As an example of the integration of one of the contributions

in the appendix over the relevant phase space Φ[k1, k2] of k1 and k2, we find for eq. (A.2)

for q(xaPa)g(xbPb)→ V + q(k1)g(k2):

∫
dΦ[k1, k2]S

(2)
2 =−

(αs
2π

)2
CFTR

eY

m

1

2ε3

[(
meY τ0

µ2

)−2ε

−
(
meY τ0

µ2

)−ε(
τ0

µ

)−2ε
]

+ . . . ,

(3.6)

where the ellipsis denotes omitted terms which will not contribute to the LLP . We have

normalized the result to the qq̄ channel color and spin average which turns a factor of CF
to TR, and have suppressed the dependence on the Born cross section and the luminosity.

Other contributions from eq. (A.1), eq. (A.3), eq. (A.4) and eq. (A.5) are obtained similarly,

to find at the LLP accuracy:

dσ
(2)
RR,qg+gq→V = dσ̂0

(
I

(2)
a1 + I

(2)
b1 + I

(2)
ab

)
Lqg + {Y ↔ −Y, x1 ↔ x2} . (3.7)

Here, the I
(2)
ij are presented for completeness in eq. (A.10).

3.3 NNLO power corrections for ggH and Drell-Yan

We now summarize our final expressions for the LLP power corrections at NNLO. For the

qq̄ channel in Drell-Yan we have the power correction

dσ̂
(2)
qq̄→V =

1

2
dσ̂0

(
αsCF

2π

)2 [
8 log2

(
τ0

µ

)
− 2 log2

(
τ0me

Y

µ2

)
− 2 log2

(
τ0me

−Y

µ2

)]
×
[
eY

m
log
( τ0

meY

)
[2x1 ∂x1 ]Lqq̄ + {x1 ↔ x2, Y ↔ −Y }

]
, (3.8)

which is accurate to the LLP . We note that the results can be obtained by a convolution

in τ0 between an NLO leading-logarithmic leading-power term (given in eq. (B.1) for com-

pleteness) with an NLO leading-logarithmic term at subleading power, given in eq. (2.41).

We note that these expressions contain sub-leading logarithms associated with the scale

dependence that come “for free” as a result of our derivation. We keep these in our final

results, although a strict expansion keeping only log3(τ0) structures is possible.

For the qg+ gq channel, the RR contribution to the LLP can be derived using the soft

currents in eq. (A.1) to (A.5). Though each term gives a somewhat lengthy expression,

when summed up the final results for the power correction are simple and compact. We
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have for the full result, after combining RV and RR:

dσ̂
(2)
gq+qg→V = dσ̂0

(αs
2π

)2 (
CF + CA

)
TR (3.9)

×
(
eY

m

∑
j

Q2
j Vji Lqig log2

(
meY

τ0

)
log

(
τ0e

Y

m

)
+ {Y ↔ −Y , x1 ↔ x2}

)
.

Here we have again showed the explicit dependence on the quark charge Qj , and the CKM

matrix Vji in the case of W -boson production (this can be set to a Kronecker delta in the

case of Z-boson or γ∗ production). We note that the results for the RR contribution can be

obtained using eq. (A.6), which is the strongly ordered limit of eq. (A.1) to (A.5) in which

Eg � Eq. In the strongly-ordered limit, the matrix element factorizes into a product of

a sub-leading soft quark current and a known leading-power soft-gluon current involving

three eikonal directions. We note that dσ̂0 is the Born-level differential cross section for

the qq̄ → V process with the PDFs extracted.

For gluon-fusion Higgs production, the LLP contributions can be obtained in the same

way as for Drell-Yan. For the Abelian case, it is found that the contributions can again be

obtained by convoluting the NLO leading-logarithmic terms at leading power with the NLO

LLP . For the qg final state, the RV can be extracted from, for instance, the 1-loop correction

to s−1
qq̄ Pg→qq̄ [43] with the proper crossings. The RR can be derived by suitably changing

the color factors in RR for Drell-Yan. After performing the phase space integrations, we

find that all the ε-poles cancel as required, and the LLP for the ggH are given by:

dσ̂
(2)
gg→H =

1

2
dσ̂0

(
αsCA

2π

)2 [
8 log2

(
τ0

µ

)
− 2 log2

(
τ0me

Y

µ2

)
− 2 log2

(
τ0me

−Y

µ2

)]
×
[
eY

m
log
( τ0

meY

)
[2x1 ∂x1 ]Lgg + {x1 ↔ x2, Y ↔ −Y }

]
, (3.10)

for the gg channel at the LLP accuracy and

dσ̂
(2)
gq+qg→H = dσ̂0

(αs
2π

)2 (
CF + CA

)
CF

(
eY

m
Lgq

× log2

(
meY

τ0

)
log

(
τ0e

Y

m

)
+ {Y ↔ −Y , x1 ↔ x2}

)
. (3.11)

for the gq+ qg channel. Here we have normalized to the gg channel color and spin average.

4 Numerical results

We now study the numerical consequences of the derived power corrections in the N -

jettiness subtraction formalism. We focus on the Drell-Yan and gluon-fusion Higgs pro-

duction channels at the LHC. The NNLO corrections to the Drell-Yan and ggH processes

have been implemented in MCFM v8.0 using N -jettiness subtraction [28] and a thorough

study of the impact due to the missing power corrections by comparing with the known

exact results [45, 46] has also been presented therein. In this section we follow exactly the

same settings as used in ref. [28] for H/Z/W production at a 13 TeV LHC with NNLO the
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Figure 1. A comparison of the fitted power corrections with the LLP calculated in this paper

for inclusive Z-boson production (upper panel) and W+-boson production with the indicated cuts

on the final-state leptons (lower panel). We have normalized the O(α2
s) power corrections to the

known O(α2
s) correction.

MSTW2008 PDF set [47]. To study the impact of the power corrections calculated in the

previous section, we generate the O(α2
s) NNLO coefficient using the N -jettiness subtraction

scheme with and without the power corrections.

We begin with a numerical validation of the calculated power corrections using W -

boson and Z-boson production at a 13 TeV LHC with scale choice µR = 2mV and µF =

mV /2. This scale choice is made to increase the size of the NNLO coefficient. Due to the

simple structure of the Drell-Yan cross section, the power corrections can be fitted to high

accuracy by generating NNLO results with different τ cut
N values, as has been first performed

in ref. [28]. In figure 1, we compare the calculated LLP (red solid line with dots) at O(α2
s)

with the fitted results (green dashed line) for both Z-boson and W+-boson production.

We consider inclusive Z-boson production, and impose the following final-state cuts in the

case of W+ production:

y(lep) < 2.5, 6ET > 30 GeV. (4.1)

From figure 1, we see that the calculated LLP and the fitted power corrections agree very

well, and converge to each other in the small-τ0 region. The discrepancy seen in the larger

τ0 region is due to the sub-leading logarithms which are included in the fit but not in the

LLP .
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Figure 2. The difference between the NNLO coefficients for inclusive Z-boson and W+-boson

production at the LHC using N -jettiness subtraction with and without power corrections, normal-

ized to the known NNLO coefficient. We have plotted the difference between the N -jettiness result

for the O(α2
s) correction and the known result, and have normalized this difference to the known

correction, for this and all other figures.

Now we turn to the predictions for the NNLO coefficients for inclusive Z/W production

in which the impact of the power corrections are found to be relatively large [28]. In figure 2,

we compare the N -jettiness subtraction scheme with and without the power corrections

for both Z-boson production in the upper panel and W+-boson production in the lower

panel. We have plotted the difference between the O(α2
s) coefficient computed using N -

jettiness and the exact O(α2
s) coefficient [45] and have normalized this to the known result.

The vertical axis in figure 2 characterizes the deviation from the exact NNLO correction.4

The blue solid line with squared dots represents the version without the power corrections

generated using the current MCFM v8.0 [28]. The red line with round dots shows the results

when adding on the analytically-calculated power corrections, while the green dashed line is

the result obtained using the exact O(α2
s) coefficient subtracting out the power corrections

fitted numerically. From figure 2, we can see dramatic improvements in the convergence

of N -jettiness subtraction when the LLP is added. Without the power corrections, τ cut
0

should be set to below 10−3 GeV to reproduce the exact NNLO coefficients. The cut can be

4We note that in Drell-Yan, a 15% deviation in the O(α2
s) coefficient translates into a less than 1%

deviation in the total cross section.
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Figure 3. The difference between the NNLO coefficients for Z-boson and W+-boson production

with lepton and missing energy cuts at the LHC obtained using N -jettiness subtraction with and

without power corrections, normalized to the exact NNLO coefficients.

relaxed by a factor of 10 when the power corrections are included. As a consequence of the

larger allowed τ0 cut, the computing time and the numerical efficiency are greatly improved.

In figure 3, we show the comparison between N -jettiness subtraction with and without

power corrections for Z-boson and W+-boson production with cuts on the lepton rapidity,

and on the missing energy in the case of the W -boson. With the presence of the cuts, the

convergence is already better than in the inclusive case. When the LLP power corrections

are included, we see again a substantial improvement in the convergence of the N -jettiness

subtraction scheme. At least a factor of 10 in increasing τ cut
0 is observed, which leads to

more efficient realization of the NNLO calculation.

Finally, in figure 4, we consider gluon-fusion Higgs production at the LHC with scale

choice µR = µF = mH . Again we show the O(α2
s) coefficients both with power corrections

included (blue solid line with squared dots) and without them(red solid line with round

dots). We have normalized the results to the known exact NNLO coefficient [46]. In the

ggH case, the coefficients predicted without the power corrections already converge faster

than the Drell-Yan case. Once the power corrections are included, similar improvement as

in the Drell-Yan case is also observed for gluon-fusion Higgs production.
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Figure 4. A comparison of the NNLO coefficients for inclusive ggH production at the LHC

using N -jettiness subtraction with and without power corrections, normalized to the exact NNLO

coefficient.

5 Summary

In this manuscript we have studied the leading-logarithmic power corrections in the N -

jettiness subtraction scheme. We have derived in detail the NLO power corrections for an

arbitrary N -jet process, and have presented the important features of the derivation of the

leading-logarithmic power corrections at NNLO for color-singlet production from both qq̄

and gg initiated processes. The final expressions for the NNLO power corrections can be

found in section 3. We have found that for color-singlet production in hadronic collisions,

the LLP at NNLO comes completely from the strongly-ordered soft limits. To get the LLP
at NNLO, we only need the information from the NLO LLP , the leading-power collinear

splitting kernels and the LO matrix elements. More interestingly the Abelian piece of the

NNLO LLP is given by the convolution of the NLO leading logarithms in the leading power

and the NLO LLP . We note that a similar convolution structure also exists in the threshold

case when the Drell-Yan threshold results are carefully studied [45]. We conjecture that

these features hold for the LLP for the production of an arbitrary number of jets.

The final results for the LLP , which are of the form αs log(τ) at NLO and α2
s log3(τ) at

NNLO, are compact and can be easily added to existing numerical implementations of the

N -jettiness subtraction scheme. Once the LLP are included, the resolution parameter τ cut
N

can be relaxed, substantially improving the numerical convergence of the approach. We

have demonstrated these improvements by studying both vector boson and Higgs produc-

tion at the LHC in a variety of settings. In all cases the incorporation of the LLP allows

the value of τ cut
N to be increased by nearly an order of magnitude while maintaining the

same level of agreement with known results for color-singlet production at NNLO.

In the future, it will be important to complete the derivation of the NNLO power

corrections for an arbitrary number of jets following the approach outlined here, as well as

obtain the power corrections beyond LLP to further improve the efficiency of the N -jettiness

subtraction scheme. Other interesting directions included predicting and resumming power

corrections within the framework of SCET [48, 49].
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Note added. While we were finalizing this manuscript, ref. [50] appeared, which calcu-

lates the NNLO leading-logarthmic power correction for color-singlet production through

the qq̄ partonic process. Although their approach is different from ours, their results for

Drell-Yan production fully agree with the LLP expressions presented here.

A The soft current for the qg channel

We list here the soft current for the qg final state in Drell-Yan used to derive the LLP at

NNLO. The q1(k1)g2(k2) soft current can be derived by studying the leading-power NNLO

splitting function [44] and is given by the sum of the following five terms:

S
(2)
1 =

[
(4παs)µ

2ε 2CF
ŝ

t̂2 û2

] [
(8παs)CF µ

2ε

(
−1

û1
− −1

û1 + û2

)]
, (A.1)

S
(2)
2 = 2(4παs)

2C2
F

(
1

−û1

t̂1

t̂2 2k1 · k2

)
, (A.2)

S
(2)
3 = 2(4παs)

2C2
Fµ

4ε (A.3)

×
[

3

−û1

t̂1

t̂22k1 · k2

+ 2
−u2

û1 + û2

1

−û1

t̂1

t̂22k1 · k2

− 2
−û2

(û1 + û2)2

û1

û2 2k1 · k2

]
,

S
(2)
4 =

[
2(4παs)µ

2εCA
ŝ

t̂2 û2

] [
(8παs)µ

2εCF

(
−1

û1
+
−1

2

−1

û1
− −1

2

−1

û1 + û2

)]
, (A.4)

S
(2)
5 = 2(4παs)

2µ4εCF CA (A.5)

×
[

û1

û2 2k1 · k2

(
− 1

û1
− 1

û1 + û2

)
−
(

1

−û1
+

1

−û1 − û2

)
t̂1

t̂2 2k1 · k2

]
.

Here ŝ = m2, t̂i = pa · ki and ûi = pb · ki.
The leading singular contribution in the strongly-ordered limit Eg � Eq is given by

S(2)
s.o. = S

(2)
a1 + S

(2)
qb + S

(2)
b1 (A.6)

= (4παs)µ
2ε 2

[
(2CF − CA)

t̂1

t̂2 2k1 · k2

+ CA
ŝ

t̂2 û2

+ CA
û1

û2 2k1 · k2

]
×
[
(8παs)µ

2εCF
1

−û1

]
,
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with

S
(2)
a1 = (4παs)µ

2ε 2

[
(2CF − CA)

t̂1

t̂2 2k1 · k2

] [
(8παs)µ

2εCF
1

−û1

]
,

S
(2)
ab = (4παs)µ

2ε 2

[
CA

ŝ

t̂2 û2

] [
(8παs)µ

2εCF
1

−û1

]
,

S
(2)
b1 = (4παs)µ

2ε 2

[
CA

û1

û2 2k1 · k2

] [
(8παs)µ

2εCF
1

−û1

]
. (A.7)

We note that S
(2)
s.o. factorizes into the product of a leading-power soft gluon current that

knows about three eikonal directions, and a sub-leading soft quark current.

The final results obtained after integrating eq. (A.1) through eq. (A.5) over k1 and k2

can be identified with the terms in eq. (A.6) in a one-to-one manner. Performing the phase

space integration over S
(2)
1 , S

(2)
2 to S

(2)
5 , gathering all the pieces and splitting into different

color factors according to eq. (A.6), we find in the qg final state for Drell-Yan, the LLP
receives contributions from a 2CF − CA term:

I
(2)
a1 = − 1

ε3

(αs
2π

)2 eY

m
(2CF − CA)TR

[(
mτ0e

Y

µ2

)−ε
−
(
τ0

µ

)−2ε
] (

mτ0e
Y

µ2

)−ε
+ . . . ,

(A.8)

Contributions from CA-correlated terms (from matrix element contributions proportional

to (k1 · k2)−1) are given by

I
(2)
b1 = − 1

2ε3

(αs
2π

)2 eY

m
CATR

[(
mτ0e

Y

µ2

)−ε
−
(
τ0

µ

)−2ε
](

mτ0e
Y

µ2

)−ε
+

1

ε3

(αs
2π

)2 eY

m
CATR

[(
τ0

µ

)−2ε(mτ0e
−Y

µ2

)−ε
+

1

2

(
τ0

µ

)−2ε(mτ0e
Y

µ2

)−ε
−
(
mτ0

µ2

)−2ε

− 1

2

(
τ0

µ

)−4ε
]

+ . . . , (A.9)

while the contributions from CA non-correlated terms is

I
(2)
ab = − 1

2ε3

(αs
2π

)2 eY

m
CATR

[
2

(
mτ0e

Y

µ2

)−ε
−
(
τ0

µ

)−2ε
][(

mτ0e
Y

µ2

)−ε
−
(
τ0

µ

)−2ε
]

+
1

2ε3

(αs
2π

)2 eY

m
CATR

[
2

(
τ0

µ

)−2ε(mτ0e
−Y

µ2

)−ε
+

(
τ0

µ

)−2ε(mτ0e
Y

µ2

)−ε
−2

(
mτ0

µ2

)−2ε

−
(
τ0

µ

)−4ε
]

+ . . . . (A.10)

The ellipsis in these equations denote terms that do not contribute to the final LLP and

that have therefore been omitted. We have normalized the results to the qq̄ → V color and

spin average by multiplying with NC

N2
C−1

, which turns an overall factor of CF to TR. We

have obtained I
(2)
a1 , I

(2)
b1 and I

(2)
ab using eq. (A.1) to eq. (A.5). These calculations show that

the net results of I
(2)
a1 , I

(2)
b1 and I

(2)
ab can be derived instead using the strongly-ordered limit

in eq. (A.6) with S
(2)
a1 , S

(2)
b1 and S

(2)
ab , respectively.
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B Leading-logarithmic terms at leading power

The leading-logarithmic coefficients at leading power for the Drell-Yan process at the NLO

are given by

I
(1)
LL =

αsCF
2π

(B.1)

×

(
− 8

µ

[
log (τ0/µ)

τ0/µ

]
+

+
2meY

µ2

[
log
(
τ0me

Y /µ2
)

τ0meY /µ2

]
+

+
2me−Y

µ2

[
log
(
τ0me

−Y /µ2
)

τ0me−Y /µ2

]
+

)
,

where the dependence on the Born cross section has been suppressed. We note that the

convolution gives

A

[
log(Ax)

Ax

]
+

⊗ log(B x) =
1

2
log2(Ax) log(B x) + . . . , (B.2)

where we have only kept the leading-logarithmic contribution, as denoted by the ellipsis.
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