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Abstract

The present work is devoted to study the high-energy QCD events, such as the di-jet productions from 
proton–proton inelastic collisions at the LHC in the forward-center and the forward-forward configurations. 
This provides us with much valuable case study, since such phenomena can provide a direct glimpse into 
the partonic behavior of a hadron in a dominant gluonic region. We use the unintegrated parton distribution 
functions (UPDF) in the kt -factorization framework. The UPDF of Kimber et al. (KMR) and Martin et al.
(MRW) are generated in the leading order (LO) and next-to-leading order (NLO), using the Harland-Lang
et al. (MMHT2014) PDF libraries. While working in the forward-center and the forward-forward rapidity 
sectors, one can probe the parton densities at very low longitudinal momentum fractions (x). Such a model 
computation can provide simpler analytic description of data with respect to existing formalisms such as 
perturbative QCD. The differential cross-section calculations are performed at the center of mass energy of 
7 TeV corresponding to CMS collaboration measurement. It is shown that the gluonic jet productions are 
dominant and a good description of data as well as other theoretical attempts (i.e. KS-linear, KS-nonlinear 
and rcBK) is obtained. The uncertainty of the calculations is derived by manipulating the hard scale of the 
processes by a factor of two. This conclusion is achieved, due to the particular visualization of the angular 
ordering constraint (AOC), that is incorporated in the definition of these UPDF.
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1. Introduction

Analyzing the raw data, which comes pouring out of the LHC, presents a challenge of consid-
erable proportions, given that the dynamics of the true players in the hadronic inelastic collisions, 
i.e. partons, are shadowed by the laws of strong interactions. However, to understand the nature 
of our universe, it is paramount to enlighten the behavior of these fundamental substances. Glu-
onic saturation in hadron evolution is the subject of on-going investigations in the study of the 
QCD. This phenomenon which is a consequence of perturbative unitarity of the hadronic evolu-
tion equations, is related to the rate of growth of the cross section with respect to the energy of 
the collision.

Amazingly, an answer came a few decades ago, in the form of the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations, [1–4],
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g(x, μ2) and q(x, μ2) as the solutions of the DGLAP evolution equations, are single-scale parton 
density functions (PDF), corresponding to gluons and quarks, respectively (they are presented by 
a(x, μ2) in this work). These solutions depend on the fraction of the longitudinal momentum of 
parent hadron (x) and an ultra-violet cutoff (μ2), which denotes the virtuality of the particle that 
is being exchanged throughout the inelastic scattering (IS). P (LO)

ab are the LO splitting functions 
(see the Appendix A). αS represents the LO running coupling constant of the strong interaction 
which depends on, μ2, the number of involving flavors, nf , and the QCD fundamental low energy 
scale, �QCD [5]. The value of the �QCD , usually around 300 MeV, can be effectively extracted 
from experiment. The terms on the right-hand side of the equation (1), correspond to the real 
emission and the virtual contributions, respectively.

The main postulation in the DGLAP evolution equation, i.e. the strong ordering hypoth-
esis, is to neglect the transverse momenta of the partons along the evolution ladder, and to 
sum over the αSln(μ2) contributions. One finds out that neglecting the contributions that come 
from this transverse dependency may harm the precision of the calculations, particularly in the 
high-energy processes and in the small-x region [6–16]. Hence, the need for introducing some 
transverse momentum dependent (TMD) evolution equation becomes apparent. This gave rise 
to the Ciafaloni–Catani–Fiorani–Marchesini (CCFM) and the Balitski–Fadin–Kuraev–Lipatov
(BFKL) evolution equations [17–26].

One of the main features of the CCFM evolution equation is that it employs a physical con-
straint, to ensure that the gluons emissions are accompanied by a constant increase in the angle 
of the emission. This feature which is known as the angular ordering constraint (AOC), is related 
to the color coherent radiations of the gluons. The solutions of the CCFM equation, f (x, k2

t , μ
2)
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is a double-scaled TMD PDF, which in addition to the x and Q, depends on the transverse mo-
mentum of the incoming partons, kt . The idea behind the CCFM evolution equation (to make the 
use of the AOC in the evolution ladder) is valid only in the case of gluon-dominant processes, 
i.e. in the small-x sector. If the proper physical boundaries are inserted, the CCFM equation will 
reduce to the conventional DGLAP and BFKL evolutions [27].

Mathematically speaking, solving the CCFM equation is rather difficult, usually possible with 
the help of Monte Carlo event generators [28,29]. On the other hand, the main feature of the 
CCFM equation, i.e. the AOC, can be used only for the gluon evolution and therefore, producing 
convincing quark contributions in this framework is only a recent development, see the references 
[30–32]. Given these complexities, Martin et al., employed the idea of last-step evolution along 
the kt -factorization framework, [6–11], and developed the Kimber–Martin–Ryskin (KMR) and 
the Martin–Ryskin–Watt (MRW) approaches [12,13]. Both of these formalisms are constructed 
around the solutions of the LO DGLAP evolution equations and modified with different visu-
alizations of the angular ordering constraint. These UPDF have been widely used to describe 
different QCD related high-energy events, e.g. [33–41]. On the other hand, such a model com-
putation can provide a simpler analytic description of data with respect to other complicated 
existing formalisms such as perturbative QCD etc.

One extraordinary test-ground for the UPDF of the kt -factorization is the probe of the 
forward-center and forward-forward rapidity sectors in the hadronic collisions, given that it 
involves the dynamics of the small-x region, e.g. x ∼ 10−4–10−5, where the gluon density dom-
inates. Since the decisive difference between the UPDF of KMR and MRW is in the different 
manifestations of the AOC, one could argue that working in such phenomenological setups could 
potentially exploit this diversity and unveil the true capacities of the presumed frameworks. For 
this propose, we have calculated the process of production of di-jets in the inelastic proton–
proton collisions from the forward-center and the forward-forward rapidity regions, utilizing the 
UPDF of KMR and MRW in the LO and the NLO. Comparing these results with each other, and 
the results of the similar calculations in other frameworks, namely the linear and non-linear KS
formalisms, [42–47], and with the experimental data from the CMS collaboration [48,49], would 
provide an excellent opportunity to study the strength and the weaknesses of the UPDF in the 
kt -factorization framework.

The outlook of this paper is as follows: In the Appendix A, we present a brief introduction 
to the framework of kt -factorization and develop the required prescriptions for the KMR and 
the MRW UPDF, stressing their key differences regarding the involvement of the AOC in their 
definitions. The UPDF will be prepared in their proper kt -factorization schemes using the PDF
of Harland-Lang et al. (MMHT2014) in the LO and the NLO, [50]. The section 2 contains a 
comprehensive description over the utilities and the means for the calculation of the kt-dependent 
cross-section of the di-jets production in the p–p IS processes. The necessary numerical analysis 
will be presented in the section 3, after which a thorough conclusion will follow in the section 4.

2. The di-jet production in the p–p collisions at the LHC

Generally speaking, the main contributions into the hadronic cross-section of the di-jet pro-
ductions at the LHC, i.e.,

P1 + P2 → J1 + J2 + X,

are the LO partonic sub-processes:
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g(k1) + g∗(k2) → g(p1) + g(p2),

g(k1) + g∗(k2) → q(p1) + q̄(p2),

q(k1) + g∗(k2) → q(p1) + g(p2). (2)

Since we are considering the forward sector for the partons that are produced in the kt -factoriza-
tion, the stared partons in the equation (2), one can safely neglect the qq and qq̄ sub-processes.

To derive the master equation for the total cross-section of the production of di-jets in the 
framework of kt -factorization, we can write,
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in which pi,t and yi are the transverse momenta and the rapidities of the product particles and xi

are given as follows:
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Additionally, the transverse momentum of the hybrid framework, kt , is,

kt =
[
p2

1,t + p2
2,t + 2p1,tp2,t cos(�ϕ)

]1/2
, (5)

where �ϕ = ϕ1 −ϕ2. Ma+g→c+d are the matrix elements of the partonic sub-processes (see the 
references [44,46,47] to find analytic definitions of these quantities).

The term 1/(1 + δcd) restrains the over-counting indices. Note that, the existence of the term 
k−2
t in the equation (3) is the remnant of the re-summation factor, dk2

t /k2
t and since we are 

interested to look for the transverse momentum dependent jets with pi,t > 20 GeV, the presence 
of such denominator would not cause any complication in the master equation. Additionally, we 
have to decide how to validate our UPDF in the non-perturbative region, i.e. where kt < μ0 with 
μ0 = 1 GeV. A natural option would be to fulfill the requirement that:
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and therefore, one can safely choose the following approximation for the non-perturbative re-
gion:
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In the next section, we will introduce some of the numerical methods that have been used for 
the calculation of the cross-section of the production of di-jets, using the UPDF of KMR and 
MRW.
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3. The numerical analysis

We perform the 5-fold integration of the master equation (3), using the VEGAS algorithm in 
Monte-Carlo integration. To do this, we have selected the hard-scale of the UPDF as the share 
of each of the parent hadrons from the total energy of the center-of-mass frame:

μ = 1

2
ECM. (7)

Variating this normalization value around a factor of 2, will provide each framework with a 
decent uncertainty bound. One would also set the upper boundaries on the transverse momentum 
integrations to pi,max = 4μ, noting that increasing this upper value does not have any effect on 
the outcome.

The forward rapidity sectors is conventionally defined as,

3.2 < |ηf | < 4.8, (8)

where η denotes the pseudorapidity of a produced particle. Alternatively, to work in the central 
rapidity sector, one have to choose,

|ηc| < 2.8. (9)

Moreover, as a consequence of employing the inclusive scenario (i.e. pi,t > 35 GeV and limit-
ing the rapidity integrations to the forward or central regions), one must assure that the produced 
jets must lie within this specific region. Thus, in order to cut-off the collinear and the soft singu-
larities, it is conventional to use the anti-kt algorithm [51], with radius R = 1/2, bounding the 
jets to this particular initial setup, through inserting a constraint on the y–ϕ plane:

R >
[
(�ϕ)2 + (y2 − y1)

2
]1/2

. (10)

Introducing the anti-kt jet constraint ensures the production of 2 separated jets and rejects any 
single-jet scenarios.

4. Results, discussions and conclusions

Having in mind the theory and the notions of the previous sections and appendices A and B, 
we are able to calculate the production rates belonging to the di-jets in the forward-center and 
the forward-forward rapidity sectors, from the perspective of the kt -factorization framework, 
utilizing the UPDF of KMR and MRW. The PDF of Harland-Lang et al. [50], MMHT2014, in 
the LO and NLO levels, are used as the input functions for the unintegrated gluon densities, i.e., 
the equations (A.2), (A.4) and (A.9). Additionally, they are fit to be used as the solutions of the 
DGLAP, the PDF of the collinear factorization, directly in the master equation (3). We tend to 
perform the above calculations in any of our presumed frameworks, the KMR, the LO MRW and 
the NLO MRW (see the Fig. 1 for their gluonic UPDF and Appendix A for their definitions), 
then compare the results to each other, to the similar calculations in other frameworks and to the 
existing experimental data, in the case of the forward-center. See also Fig. 2.

So, the Figs. 3, 4 and 5 present the reader with the differential cross-section for the production 
of well-separated forward-central di-jets (d2σ/dptdη), plotted against the transverse momentum 
of the corresponding jets (pt ) in the KMR, the LO MRW and the NLO MRW schemes respec-
tively. The uncertainty bounds are calculated, variating the hard scale of the UPDF with a factor 
of 2, since this is the only arbitrary physical parameter in the framework of kt -factorization. The 
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Fig. 1. The gluonic UPDF of the kt -factorization versus the fractional longitudinal momentum of the parent hadron 
(x) and the transverse momentum of the parton, appearing on the top of the evolution ladder (kt ) at μ = 100 GeV. 
The difference in the behavior of the UPDF in different frameworks is a direct consequence of employing different 
manifestations of the AOC in their respective definitions. To plot these diagrams we have used the PDF libraries of 
MMHT2014 in the LO and the NLO as the input for the equations (A.2), (A.4) and (A.9).

Fig. 2. The deep inelastic scattering of two protons in the forward-center configuration. The diagram shows the g∗ +g →
q + q̄ sub-process, assuming that one of the quarks is being produced in the forward sector (bounded by 3.2 < |ηf | < 4.7) 
and the other in the center sector (bounded by |ηc | < 2.8). The parton density related to the first proton is being described 
with the integrated PDF while the second parton is prepared using the UPDF in one of our presumed frameworks.

blue-hatched pattern, the green-checkered and the red-vertically stripped patterns illustrate the 
individual contributions of the partonic sub-processes from the equation (2), corresponding to 
the g∗ + g → g + g, g∗ + g → q + q̄ and g∗ + q → g + q processes respectively. The black-
horizontally stripped pattern represents the sum of the sub-contributions. The calculations have 
been compared against the experimental data of the CMS collaboration, the reference [48]. One 



100 M. Modarres et al. / Nuclear Physics B 922 (2017) 94–112
Fig. 3. The differential cross-section for the production of di-jets in the forward-center rapidity sector, calculated in the 
KMR framework for ECM = 7 TeV. The contributions from each of the involving sub-processes form the equation (2)
have been plotted separately. The black-oblique patterned histograms illustrate the sum of the partonic contributions. To 
determine the uncertainty of the calculations, we have manipulated the hard scale of the UPDF, μ = ECM/2, by a factor 
of 2. The data point are from the measurements of the CMS collaboration, the reference [48]. (For interpretation of the 
colors in this figure, the reader is referred to the web version of this article.)

Fig. 4. The differential cross-section for the production of di-jets in the forward-center rapidity sector, calculated in the 
LO MRW framework. The notion of the diagrams are as in the Fig. 3. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)
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Fig. 5. The differential cross-section for the production of di-jets in the forward-center rapidity sector, calculated in the 
NLO MRW framework. The notion of the diagrams are as in the Fig. 3. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

immediately notices that the share of the g∗ + g → g + g sub-process dominates, relative to 
the negligible shares of the remaining two sub-processes. Although all of these frameworks are 
relatively successful in describing the experimental data, see the Fig. 6, it is interesting to find 
that the UPDF of KMR do as well as (if not better than) the UPDF of MRW in predicting the 
experimental results. The closeness of the behavior of different frameworks is a consequence of 
our choice for the hard scale of the UPDF, the equation (7). In order to enlighten this point, the 
Fig. 7 illustrates the result of making different choices in such calculations, using the UPDF of 
the KMR. To demonstrate the effect of changing the hard scale of the UPDF in the outcome, the 
histograms are calculated utilizing the following hard scale prescriptions

a) μ = 1

2

(
p1,t + p2,t

)
,

b) μ = 1

2

(
p2

1,t + p2
2,t

)1/2
,

c) μ = Max(p1,t , p2,t ),

d) μ = 1

4
ECM,

e) μ = 1

2
ECM,

f ) μ = ECM, (11)

where Max(p1,t , p2,t ) returns the higher value between the transverse momenta of the produced 
jets. To save computation time, we only considered the contributions coming form the dominant 
g∗ + g → g + g sub-processes. The choice a, which have been used in the similar calculations 
(e.g., the references [42–46] in the high energy factorization, from the point of view of the UPDF
of the color gloss condensation, (CGC)) proves to be in contrast with the particular manifestation 
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Fig. 6. The comparison between the differential cross-sections of the production of di-jets from the forward-center rapid-
ity sector, in the different frameworks of the kt -factorization. The results have been prepared as the numerical solutions 
the equation (3), using the UPDF of KMR and MRW in the LO and NLO with ECM = 7 TeV. The data points are from 
the CMS report [48]. The yellow-checkered and the purple-vertically stripped patters represent the calculations in the 
linear and non-linear KS frameworks, respectively, see the reference [42]. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

Fig. 7. The differential cross-section for the production of di-jets in the forward-center rapidity sector, for different 
choices of the hard scale and from the dominant g∗ + g → g + g sub-process. The calculations have been carried on 
in the KMR framework for ECM = 7 TeV. The histograms a through f have been calculated using the conditions from 
the equation (11). We have chosen the condition e (the black-continues histograms), i.e. the equation (7), as the primary 
prescription throughout this work.

of the AOC, specially in the case of NLO MRW UPDF. This is in addition to the considerable 
off-shoot of the results in the smaller values of the transverse momenta belonging to the produced 
jets. In the Fig. 6, the yellow-checkered and the purple-vertically stripped patters represent the 
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calculations in the linear and the non-linear KS frameworks, respectively. The above separation 
between the predictions of the KS framework and the experimental data is apparent. To avoid such 
complications, we have chosen the condition e, in the equation (11), as the primary prescription 
for the hard scale of our UPDF throughout this work, see the section 3.

Having a closer look into the Fig. 6, one notices that such off-shooting results also appear 
in our settings for the production of di-jets. This is perhaps because of the over-simplified dy-
namics that have been used to derive these measurements. An increase in the precision may be 
realized via including higher order diagrams and introducing the final state parton showers in 
this frameworks [52]. Beside this point, note that our results show an acceptable agreement with 
the experimental data of the CMS collaboration, reference [48]. Another interesting observation 
is that in the large kt , where the higher order corrections become important, the calculations in 
the KMR approach start to separate from the LO MRW and behave similar to the NLO MRW. The 
reason is that the inclusion of the non-diagonal splitting functions into the domain of the AOC
introduces some corrections from the NLO region (in the form of ln(1/x) re-summations) into 
the KMR formalism.

A recent report from the CMS collaboration, the reference [49], concerns the angular distribu-
tion of the produced jets in the forward-center rapidity sector from a deep inelastic event at the 
LHC. Making use of this new information, we have calculated the differential cross-section of the 
forward-central di-jet production (dσ/d�ϕ), plotted in the Fig. 8 against the angular difference 
of the produced partons (or equivalently the angular difference of the produced jets, �ϕ). The 
panels (a), (b) and (c) in this figure illustrate the details of the calculations in each framework, 
consisting of the individual contributions of the sub-processes and the corresponding uncertainty 
bounds. The panel (d) presents the reader with the comparison of the total amounts in the pre-
sumed formalisms to each other and to the data from the reference [49]. Again, the results in the 
KMR approach seems to be equally good (or better than) those from the MRW in the LO or the 
NLO.

After proving the success of our formalism in describing the experimental data for the pro-
duction of di-jets in the forward-center rapidity region, we can move forward with the prediction 
of a similar event, in the forward-forward sector, i.e. by choosing the rapidity of the produced 
jets (y1 and y2) to be both in the boundaries that where specified within the equation (8). There-
fore, in the Fig. 9 the reader is presented with our predictions regarding the dependency of the 
differential cross-section of the forward-forward di-jet production (dσf /dp

f
t ) to the transverse 

momenta of the produced jets (pt ), in the framework of kt -factorization. The panels (a), (b) and 
(c) of the figure illustrate these predictions in the KMR, the LO MRW and the NLO MRW for-
malisms, respectively. The contributions of the individual partonic sub-processes are included. 
These contributions have the same general behavior as in the forward-central case, in spite of the 
fact that the measured contribution for the g∗ +g → g+g and the g∗ +q → g+q sub-processes 
are closer, compared to their counterparts from the forward-center region,

σ̂F−C(g∗ + g → g + g) � σ̂F−C(g∗ + q → g + q) � σ̂F−C(g∗ + g → q + q̄),

σ̂F−F (g∗ + g → g + g) � σ̂F−F (g∗ + q → g + q) � σ̂F−F (g∗ + g → q + q̄). (12)

In addition, one can clearly perceive the effect of the 
(1 − z − (k2
t /μ

2)) constraint in the NLO 
MRW results, causing a steep descend in the corresponding histograms, in contrast with the 
behaviors of the results of the KMR and the LO MRW formalisms. Again, the similarity of the 
predictions of the KMR and the LO MRW schemes are a consequence of our choice of the hard 
scale, μ. Such similarity was also observed else where, e.g. the references [39–41], specially in 
the smaller x domains.
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Fig. 8. The differential cross-section for the production of di-jets versus the angle of the out-coming jets, �ϕ. The calcu-
lations are in the forward-center rapidity sector for ECM = 7 TeV. The panels (a), (b) and (c) illustrate the calculations, 
utilizing the UPDF of KMR, LO MRW and NLO MRW, respectively. The contributions from each of the involving sub-
processes are shown separately. The panel (d) presents the comparison of these measurements against each other as well 
as the experimental data of the CMS collaboration, the reference [49]. The uncertainty of the calculations are provided 
through manipulating the hard scale of the UPDF by a factor of 2.
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Fig. 9. The calculated predictions for the production of forward-forward di-jets in the framework of kt -factorization 
with the central-mass energy of 7 TeV. The differential cross-section for the production of di-jets are plotted against the 
transverse momenta of the produced jets, in the KMR, LO MRW and NLO MRW schemes (i.e. the panels (a), (b) and 
(c), respectively), demonstrating the contributions of the individual sub-processes. The uncertainty bound is determined 
by manipulating the hard scale of the UPDF, μ = ECM/2, by a factor of 2. The panel (d) represents a comparison 
between the results of the kt -factorization with the results from other frameworks, namely the Balitsky–Kovchegov TMD 
PDF convoluted with running coupling corrections (rcBK, see the references [53,54]) and the Kutak–Sapeta TMD PDF
(KS-nonlinear), reference [46].
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Fig. 10. The calculated predictions regarding the dependency of the differential cross-section for the production of 
forward-forward di-jets to �ϕ using the UPDF of kt -factorization for ECM = 7 TeV. The notion on the diagrams are as 
in the Fig. 9. In the panel (d), we have compared our results with the predictions made using the nonlinear KS TMD PDF
from the reference [46].

The panel (d) of the Fig. 9 represents a comparison between the results of the kt -factorization 
with the results from other frameworks, namely the Balitsky–Kovchegov TMD PDF convoluted 
with the running coupling corrections (rcBK, see the references [53,54]) and the Kutak–Sapeta 
TMD PDF (KS), the reference [44]. Both of these frameworks are specially designed to describe 
the behavior of the small-x region, incorporating the non-linear evolution of the unintegrated
parton densities with the KS framework and the high energy factorization (HEF) formalism, in 
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Fig. 11. The calculated predictions regarding the dependency of the differential cross-section for the production of 
forward-forward di-jets to rapidity of the produced jets, using the UPDF of kt -factorization for ECM = 7 TeV. The 
notion on the diagrams are as in the Fig. 9. In the panel (d), we have compared our results with the predictions made 
using the rcBK and non linear KS TMD PDF from the reference [46].

accordance with the BFKL iterative evolution equation. In the absence of any experimental data, 
we refrain ourselves from any assessments regarding these results. Nevertheless, the predictions 
of the KMR scheme (because of its previous success) may provide a base line for a sound com-
parison. Also, the singular behavior of the NLO MRW results may appear undesirable.

Similar predictions are presented in the Figs. 10 and 11, describing the dependency of the 
differential cross-section of the forward-forward di-jet production, to the angle of the produced 
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jets (dσf /d�ϕ to �ϕ in the Fig. 10) and to their rapidity (dσf /dηf to ηf in the Fig. 11). The 
notions of these diagrams are as in the Fig. 9. The panel (d) of each figure includes the compari-
son of the kt -factorization results to the existing results in the rcBK and the KS frameworks. The 
irregular behavior of the NLO MRW scheme in both cases, manifests itself in the form of lower 
values of the predicted differential cross-section. Again, the reliability of these predictions lies 
within the excellent credit of the KMR UPDF in describing the high energy QCD events.

We should make this note that the use of the hybrid framework, as it was done in present 
calculation, for the forward-central calculation is safe since the central region x-sector is large 
enough and the results are compatible with data. However, some recent developments (see the 
reference [55,56]) have taken into account the quadrupole contribution to the double inclusive jet 
production. These frameworks have been developed for p+A (proton–heavy ion) scatterings but 
the saturation scale introduces universality so that at some values of x, the nucleus and nucleon 
behave similarly. Note that since in the KS-nonlinear equations [44] (the case of dilute projectiles 
scattering on a dense target), is an effective TMD factorization which utilizes the nonlinear gluon 
densities to calculate high energy p + p and p + A collisions, the contributions of the final 
state soft gluon exchanges from both the projectile and the target have been neglected. To find 
discussions regarding above topic, see [55,56].

In summary, throughout this work, we have tested the UPDF of the kt -factorization, namely 
the KMR and MRW formalisms in the LO and the NLO, calculating the production rate of the 
di-jet pairs at the deep inelastic QCD collisions in the forward-center rapidity sector, compared 
the results to the existing experimental data of the CMS collaborations and to the results of other 
frameworks. Through our analysis we have suggested that despite the theoretical advantages of 
the MRW formalism, the KMR approach performs as good as (if not better) behavior toward 
describing the experimental data. This is in general agreement with our previous findings, the 
references [33–41]. Additionally, one can clearly see that the KMR or MRW prescription work 
better than the KS in describing the experiment. Based on these observations one concludes that 
the hard-scale dependence should be necessarily included in TMD analysis. Similar observa-
tion also have been made previously in the reference [46], showing that introducing Sudakov 
form factor improves the description of the forward-central jets data. Our results are consistent 
with this observation. The importance of introducing Sudakov form factor in the production of 
forward-forward jets have been also discussed in [61]. Furthermore, we have predicted the results 
of the similar events in the forward-forward rapidity region, relying on the previous success of 
the UPDF of the kt -factorization.
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Appendix A. The UPDF calculations in the kt -factorization framework

During a high energy hadronic collision, the involving partons, i.e. the partons that appear 
at the top of their respective evolution ladders, carry some inherently induced transverse mo-
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mentum, as the remnant of the successive (an potentially infinite) number of evolution steps. 
When working within the framework of collinear factorization, such transverse momentum de-
pendency, due to the assumption of the strong ordering that is embedded in the LO DGLAP
evolution equation, is conventionally neglected, i.e.,

k2
t,i−2 � k2

t,i−1 � k2
t,i � · · · � k2

t,n � μ2.

Avoiding such assumption, one can include the contributions coming from the transverse mo-
mentum distributions of the partons, using either the solutions of the CCFM evolution equation 
or unify the BFKL and the DGLAP single-scaled evolution equations to form a properly tuned 
kt -dependent framework, [57,58]. Utilizing these methods does not always come easy, since 
these frameworks are mathematically complex and in the case of CCFM it is not enough to in-
clude all of the contributing sub-processes. Alternatively, the single-scaled PDF of the DGLAP
evolution equation can be convoluted with the required kt -dependency during the last step of the 
evolution [15], postulating that:

k2
t,i−2 � k2

t,i−1 � k2
t,i � · · · � k2

t,n ∼ μ2.

Defining a set of reliable and easy to calculate UPDF in the kt factorization framework, the 
first choice is the so called the KMR prescription. Introducing the virtual (loop) contributions via 
the Sudakov form factor,

Ta(k
2
t ,μ

2) = exp

⎛
⎜⎝−

μ2∫
k2
t

αS(k2)

2π

dk2

k2

∑
b=q,g

1−�∫
0

dz′P (LO)
ab (z′)

⎞
⎟⎠ , (A.1)

Kimber et al. [15] have defined the UPDF of KMR as follows:

fa(x, k2
t ,μ

2) = Ta(k
2
t ,μ

2)
∑

b=q,g

⎡
⎣αS(k2

t )

2π

1−�∫
x

dzP
(LO)
ab (z)b

(
x

z
, k2

t

)⎤
⎦ . (A.2)

P
(LO)
ab (z = x/x′), the LO splitting functions [5,12,13], parameterize the probability of evolving 

from a scale kt to a higher scale μ without any parton emissions. Naturally, the NLO extensions of 
these functions would take more complicated forms, see the following equation (A.7) in relation 
to the MRW prescriptions. The infra-red cut-off � = kt/(μ + kt ) represents a visualization of the 
AOC, which automatically excludes the x = x ′ point from the range of z-integration blocking the 
soft gluon singularities that arise form the 1/(1 − z) terms in the splitting functions.

One immediately notes that throughout the above definition, the kt -dependency gets intro-
duced into the UPDF, only at the last step of the evolution. In order to produce these UPDF, 
the single scaled b(x, k2

t ) functions can be obtained from the MMHT2014 library [50], where 
the calculation of the single-scaled functions have been carried out using the IS data on the F2
structure function of the proton. Additionally, using the constraint,

Ta(k
2
t ≥ μ2,μ2) = 1,

provides the KMR formalism with a smooth behavior over the small-x region, where the 
αSln(1/x) effects dominate and the BFKL evolution equation becomes important. The reader 
should notice that in the kt > μ domain, the unintegrated quark densities of the KMR approach 
are non-vanishing, these parton density functions are considered to be in the LO level.
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The second option is the MRW procedure. The UPDF of KMR, despite being proven to have 
physical value, suffers a miss-alignment with the theory of the color coherent radiations, since 
the AOC is a by-product of the successive gluonic emissions, therefore, its manifestation (the 
infra-red cut-off �), should only act on Pqq(z) and Pgg(z) splitting functions, i.e. the terms 
including the on-shell gluon emissions. Correcting this problem, Martin et al. defined the MRW
unintegrated densities in the LO through the following definitions [13]

f LO
q (x, k2

t ,μ
2) = Tq(k2

t ,μ
2)

αS(k2
t )

2π

1∫
x

dz

[
P (LO)

qq (z)
x

z
q

(
x

z
, k2

t

)



(
μ

μ + kt

− z

)

+ P (LO)
qg (z)

x

z
g

(
x

z
, k2

t

)]
, (A.3)

and

f LO
g (x, k2

t ,μ
2) = Tg(k

2
t ,μ

2)
αS(k2

t )

2π

1∫
x

dz

[
P (LO)

gq (z)
∑
q

x

z
q

(
x

z
, k2

t

)

+ P (LO)
gg (z)

x

z
g

(
x

z
, k2

t

)



(
μ

μ + kt

− z

)]
, (A.4)

with the modified loop contributions

Tq(k2
t ,μ

2) = exp

⎛
⎜⎝−

μ2∫
k2
t

αS(k2)

2π

dk2

k2

zmax∫
0

dz′P (LO)
qq (z′)

⎞
⎟⎠ , (A.5)

and

Tg(k
2
t ,μ

2) = exp

⎛
⎜⎝−

μ2∫
k2
t

αS(k2)

2π

dk2

k2

⎡
⎣ zmax∫

zmin

dz′z′P (LO)
gg (z′) + nf

1∫
0

dz′P (LO)
qg (z′)

⎤
⎦

⎞
⎟⎠ ,

(A.6)

where zmax = 1 −zmin = μ/(μ +kt ) [59]. To a good approximation, include the main kinematics 
of partonic evolution are included in both of the UPDF of KMR and MRW. Interestingly, the 
particular choice of the AOC in the KMR formalism, despite being of the LO, includes some 
higher order contributions, i.e. from the ln(1/x)-dominant sector. On the other hand, in the MRW
case, the extension to the higher order levels must be inserted by the means of extra constraints.

To include the NLO corrections into the LO MRW framework, one needs to define the NLO
splitting functions as,

P̃
(LO+NLO)
ab (z) = P̃

(LO)
ab (z) + αS

2π
P̃

(NLO)
ab (z), (A.7)

with

P̃
(i)
ab (z) = P i

ab(z) − 
(z − (1 − �′))δabF
i
abPab(z), (A.8)

where i = 0 and 1 correspond to the LO and the NLO levels, respectively. It has been argued that, 
applying the approximation P (LO+NLO)(z) ∼ P (LO)(z) will simplify the NLO prescription and 
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have a negligible effect on the outcome [13], therefore we do not need to express the exact forms 
of the NLO splitting functions. Consequently, the introduction of the AOC into the NLO MRW
formalism is through the extended splitting functions and the 
(z − (1 − �′)) constraint, with 
�′ being defined as:

�′ = k
√

1 − z

k
√

1 − z + μ
.

Additionally, one have to cut off the tail of the probability into the kt > μ region by inserting a 
secondary AOC related term into the body of the real emission sector,

f NLO
a (x, k2

t ,μ
2) =

1∫
x

dzTa

(
k2 = k2

t

(1 − z)
,μ2

)
αS(k2)

2π

∑
b=q,g

P̃
(LO+NLO)
ab (z)

× bNLO

(
x

z
, k2

)



(
1 − z − k2

t

μ2

)
. (A.9)

The Sudakov form factors in this framework are formulated as:

Tq(k2,μ2) = exp

⎛
⎜⎝−

μ2∫
k2

αS(q2)

2π

dq2

q2

1∫
0

dz′z′ [P̃ (0+1)
qq (z′) + P̃ (0+1)

gq (z′)
]⎞⎟⎠ , (A.10)

Tg(k
2,μ2) = exp

⎛
⎜⎝−

μ2∫
k2

αS(q2)

2π

dq2

q2

1∫
0

dz′z′ [P̃ (0+1)
gg (z′) + 2nf P̃ (0+1)

qg (z′)
]⎞⎟⎠ . (A.11)

The reader can find a comprehensive description of the NLO splitting functions in the references 
[13,60].

In the Fig. 1, the gluonic UPDF of the kt -factorization are plotted against the fractional 
longitudinal momentum of the parent hadron (x) and the transverse momentum of the parton, 
appearing on the top of the evolution ladder (kt ). The obvious differences in the behavior of the 
UPDF in different frameworks are a direct consequence of employing different manifestations 
of the AOC in their respective definitions.
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