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Abstract f (R, T ) gravity is an extended theory of grav-
ity in which the gravitational action contains general terms
of both the Ricci scalar R and the trace of the energy-
momentum tensor T . In this way, f (R, T ) models are capa-
ble of describing a non-minimal coupling between geome-
try (through terms in R) and matter (through terms in T ).
In this article we construct a cosmological model from the
simplest non-minimal matter–geometry coupling within the
f (R, T ) gravity formalism, by means of an effective energy-
momentum tensor, given by the sum of the usual matter
energy-momentum tensor with a dark energy contribution,
with the latter coming from the matter–geometry coupling
terms. We apply the energy conditions to our solutions in
order to obtain a range of values for the free parameters of
the model which yield a healthy and well-behaved scenario.
For some values of the free parameters which are submissive
to the energy conditions application, it is possible to predict
a transition from a decelerated period of the expansion of
the universe to a period of acceleration (dark energy era). We
also propose further applications of this particular case of the
f (R, T ) formalism in order to check its reliability in other
fields, rather than cosmology.

1 Introduction

Einstein’s general theory of relativity (GR) has connected the
matter content of the universe with the geometry of the fab-
ric of the space-time, through the well-known field equations
Gμν = 8πTμν (in natural units, which shall be adopted in this
article). The lhs of the above equation is the Einstein’s ten-
sor, which satisfies the Bianchi identities ∇νGν

μ ≡ 0, while
the rhs is the energy-momentum tensor, which for a perfect
fluid, which is going to be assumed here, is characterized by
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three quantities: 4-velocity uμ, proper density ρ and pressure
p. From the Bianchi identities, the covariance derivative ∇μ

of the energy-momentum tensor is null (∇μT ν
μ = 0), which

implies the conservation of matter throughout the universe
evolution. The Einstein field equations can be seen as con-
straints on the simultaneous choice of the metric gμν (which
is contained in Gμν) and Tμν .

Even though geometry and matter are on the same footing,
GR does not consider any possible effects of a non-minimal
coupling between them.

That is not the case, e.g., for the recently elaborated
f (R, Lm) [1] and f (R, T ) theories [2], for which R is
the curvature scalar, f (R, Lm) is a function of R and mat-
ter lagrangian density Lm , and f (R, T ) is a function of R
and trace of the energy-momentum tensor T . These theories
predict a non-conservation of the energy-momentum tensor
(∇νT ν

μ �= 0). If one drops the conservation of Tμν , the con-
tinuity equation does not hold any longer and the models
predict the creation of matter as shown in [3,4].

In fact, in f (R, T ) gravity theory, the T –dependence is
motivated by the consideration of quantum effects and it is
well known that quantum field theory in curved space-time
yields the possibility of particle production [5,6]. Such a
possibility in both quantum theory of gravity and extended
gravity theories with matter–geometry coupling may be a
clue that there is a connection between these two [7].

The non-conservative cosmological evolution has been
considerably investigated nowadays. For instance, Josset et
al. have considered dark energy effects as a consequence
of energy conservation violation [8]. In this way, the cosmic
acceleration [9,10] itself could be an observable consequence
of energy conservation violation. Such an approach was made
later within the f (R, T ) gravity context [11].

Despite its recent elaboration, f (R, T ) gravity already
presents a large number of applications [12–23].

Particularly, some other relevant results obtained from
f (R, T ) applications can be seen in the following references.
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In [24], the hydrostatic equilibrium equation (also referred to
as Tolman–Oppenheimer–Volkoff equation) was constructed
and numerically solved for neutron and quark stars. It has
been shown that the term proportional to T in the formalism
yields an increment on the mass of these objects, making
possible to predict the existence of massive pulsars recently
detected [25,26].

A set of solutions describing the interior of compact stars
under f (R, T ) gravity was generated in [27]. The accept-
ability of the model within observational constraints has been
checked. Gravastars have been recently described in f (R, T )

theory in Ref. [28].
Zaregonbadi et al. [29] showed that the term in the field

equations coming from f (R, T ) gravity leads to a flat rota-
tion curve in the halo of galaxies, putting the dark matter
paradigm in check. Moreover, solar system consequences of
the f (R, T ) gravity models were investigated in [30].

The above f (R, T ) gravity bibliography did not explore
the consequences of a non-minimal matter–geometry cou-
pling. In other words, there was no product between R and
T , or functions of them, in any of the functional forms
worked in those references. It is the purpose of the present
article to explore the cosmological consequences of a non-
minimal matter–geometry coupling in f (R, T ) gravity. In
order to do so, we will take the simplest coupling, such that
f (R, T ) = f1(R)+ f2(R) f3(T ), with f1(R) = f2(R) = R
and f3(T ) = αT , with α a constant.

Matter–geometry coupling subject has been deeply inves-
tigated. For instance, Connes showed that the foundation
of non-commutative geometry could be related to a cou-
pling between matter and geometry [31]. New insights on
matter–geometry coupling paradigm were presented in [32].
Modified gravity with arbitrary matter–geometry coupling
was formulated within metric and Palatini formalism respec-
tively in [33,34]. Furthermore, a thermodynamic interpreta-
tion of gravitational models with matter–geometry coupling
was given in [4].

The present article is organized as follows: in Sect. 2 we
present the basic mathematical formalism of the f (R, T ) =
f1(R) + f2(R) f3(T ) and derive the field equations of the
case f1(R) = f2(R) = R and f3(T ) = αT , which will be
assumed here. We write our equations in terms of an effective
energy-momentum tensor T eff

μν , which is given by the sum of
the usual matter energy-momentum tensor Tμν and the dark
energy term T DE

μν , coming from the matter–geometry cou-
pling predicted in the Theory. In Sect. 3, the Friedmann-like
equations for such a model are constructed and the solu-
tions for cosmological parameters such as scale factor, Hub-
ble parameter and deceleration parameter are presented. We
also plot the solution for the deceleration parameter in both
time t and redshift z. In Sect. 4 we apply the energy con-
ditions in our solutions. The energy conditions tell us the
range of values of the free parameters of the model which

generate well-behaved cosmological scenarios. We then con-
struct graphics of the quantities ρeff , peff , ωeff = peff/ρeff

and ωDE in time in accordance with the energy conditions
outcomes. In Sect. 5 we further discuss our results and the
matter–geometry coupling issue. We also propose other areas
in which the f (R, T ) matter–geometry coupling considera-
tion may generate interesting and testable outcomes.

2 f (R, T ) = f1(R) + f2(R) f3(T ) gravity

The total action in the f (R, T ) theory of gravity reads [2]

S = 1

16π

∫
d4x

√−g f (R, T ) +
∫

d4x
√−gLm, (1)

with g being the metric determinant.
By varying this action with respect to the metric yields

[ f ′
1(R) + f ′

2(R) f3(T )]Rμν − 1

2
f1(R)gμν

+ (gμν� − ∇μ∇ν)[ f ′
1(R) + f ′

2(R) f3(T )] = [8π

+ f2(R) f ′
3(T )]Tμν + f2(R)

[
f ′
3(T )p + 1

2
f3(T )

]
gμν,

(2)

for which it was assumed f (R, T ) = f1(R) + f2(R) f3(T )

and primes denote derivatives with respect to the argument.
Now, we will take f1(R) = f2(R) = R and f3(T ) = αT ,

with α a constant. This is the simplest non-trivial functional
form of the function f (R, T ) which involves non-minimal
matter–geometry coupling within the f (R, T ) formalism.
Moreover, it benefits from the fact that GR is retrieved when
α = 0.

The considerations above yield, for Eq. (2), the following:

Gμν = 8πT eff
μν = 8π(Tμν + T DE

μν ), (3)

with T eff
μν being the effective energy-momentum tensor, Tμν

the usual matter energy-momentum tensor and the dark
energy term T DE

μν , coming from the matter–geometry cou-
pling predicted in the present theory, is written as

T DE
μν = αR

8π

(
Tμν + 3ρ − 7p

2
gμν

)
, (4)

in which the coupling terms can be straightforwardly noticed.
By applying the Bianchi identities in Eq. (3) yields

∇μTμν = −αR

8π

[
∇μ(Tμν + pgμν) + 1

2
gμν∇μ(ρ − 3p)

]
.

(5)
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As required, note that by taking α = 0 in Eqs. (3)–(5)
retrieves GR formalism.

3 f (R, T ) = R + αRT cosmology

For a flat Friedmann–Robertson–Walker universe with scale
factor a(t) and Hubble parameter H = ȧ/a, the non-null
components of (3), for ρeff = ρ+ρDE and peff = p+ pDE ,
are

3H2 = 8πρeff , (6)

2Ḣ + 3H2 = −8πpeff , (7)

with dots being time derivatives and

ρeff = ρ − 3α

8π

(
Ḣ + 2H2

)
(3ρ − 7p), (8)

peff = p + 9α

8π

(
Ḣ + 2H2

)
(ρ − 3p). (9)

Moreover, Eq. (5) reads

ρ̇ + 3H(ρ + p) =
[

1 − 4π
3
α

(
Ḣ + 2H2

)
]−1

( ṗ − ρ̇). (10)

From Eqs. (6) and (7), we have

ρ = H2
[
8π − 27α

(
Ḣ + 2H2

)] + 7α(2Ḣ + 3H2)
(
Ḣ + 2H2

)
64π2

3 − 96πα
(
Ḣ + 2H2

) + 18α2
(
Ḣ + 2H2

)2 ,

(11)

p = −9αH2
(
Ḣ + 2H2

) + (
2Ḣ + 3H2

) [ 8π
3 − 3α

(
Ḣ + 2H2

)]
64π2

3 − 96πα
(
Ḣ + 2H2

) + 18α2
(
Ḣ + 2H2

)2 .

(12)

In order to find the solutions for ρ(t) and p(t) we need
to know H(t). A great number of parametrization schemes
have been investigated in the literature with the requirement
of their theoretical consistency and observational viability. In
particular, we can quote the power-law expansion (a ∝ tn)
and exponential law (a ∝ emt ), with n and m being non-
negative constants.

Here we consider a simple ansatz which is obtained by
multiplying the power and exponential laws, called hybrid
expansion law (HEL). Such an ansatz mimics the power-law
and de Sitter cosmologies as special cases, but, as will be
shown below, it also provides an elegant description of the
transition from decelerated to accelerated cosmic expansion.

It has been tested from observational data referred to Big
Bang nucleosynthesis, baryon acoustic oscillations and cos-
mic microwave background [35]. The authors in [35] have

shown that all the cosmological parameters related with the
present day universe as well as with the onset of the cos-
mic acceleration for HEL and �CDM models are consistent
within the 1σ confidence level. They also gave the values of
some important cosmological parameters with 1σ errors for
both models at early and future epochs, showing that they
exhibit similar behaviors at future epochs.

We consider then as a solution for the scale factor, the
HEL in the form

a(t) = emt tn, (13)

so that the Hubble and deceleration parameters are

H = m + n

t
, (14)

q = − ä

aH2 = −1 + n

(mt + n)2 . (15)

Here, one can choose the constants in such a way that the
power-law dominates over exponential law in the early uni-
verse and the exponential law dominates over power-law at
late times, in order to account for the present acceleration of
the universe expansion [9,10].

From Eq. (15) it is clear that there is a transition phase

from deceleration to acceleration at t = − n
m ±

√
n

m with
0 < n < 1. Since the negativity of the second term leads to a
negative time, which indicates an unphysical context of the
Big Bang cosmology, we conclude that the cosmic transition

may have occurred at t =
√
n−n
m .

Figure 1 below presents the deceleration parameter evo-
lution in time, obtained above for the hybrid scale factor.

From a(t) = 1
1+z , with z being the redshift and the present

scale factor a0 = 1, we obtain the following time–redshift
relation:

Deceleration zone

Acceleration zone

m= 0.5, n = 0.6

m= 0.55, n = 0.6

0 1 2 3 4
-1.0

-0.5

0.0

0.5

t

q

Fig. 1 Deceleration parameter evolution in time
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m= 0.5, n = 0.6

m= 0.55 , n = 0.6

m= 0, n = 0.6

Power law

de Sitter (m=0.5, n=0)

-1 0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

z

q

Fig. 2 Deceleration parameter evolution in redshift

t =
nW

[
m

(
1

z+1

)1/n

n

]

m
, (16)

whereW denotes the Lambert function (also known as “prod-
uct logarithm”).

By using Eq. (16), we can plot the deceleration parame-
ter with respect to the redshift, which can be appreciated in
Fig. 2.

The transition from the decelerated to the accelerated
phase of the universe expansion occurs at some redshift,
which we will call ztr and in our model it depends directly
on the parameter m. From Fig. 2, such a transition occurs at
ztr = 0.578825, 0.671744, corresponding to m = 0.5, 0.55,
respectively. These values are in accordance with recent
observational data [36–38].

4 Energy conditions application and its consequences
on cosmological quantities

The energy conditions are based on the Raychaudhuri equa-
tion, which describes the behavior of the compatibility of
timelike, lightlike or spacelike curves. It is commonly used
in GR to establish and study the singularities of space-time
[39]. In particular, in [40], Alvarenga et al. have tested the
energy conditions in f (R, T ) theory of gravity.

In this section we will apply the energy conditions to our
solutions for the effective energy density and effective pres-
sure.

The well-known point-wise energy conditions are the fol-
lowing:

– Strong energy condition (SEC): gravity should be always
attractive, and in cosmology the relation ρeff +3peff � 0
must be obeyed;

– Weak energy condition (WEC): the effective energy den-
sity should always be non-negative when measured by
any observer, i.e., ρeff > 0, ρeff + peff � 0;

– Null energy condition (NEC): it is the minimum require-
ment which is obtained from SEC and WEC, i.e., ρeff +
peff � 0;

– Dominant energy condition (DEC): the effective energy
density must always be positive when measured by any
observer, i.e., the relation ρeff � |peff | must be obeyed.

In order to obtain the equations for ρeff and peff as func-
tions of t , we firstly substitute the solution (14) for H in Eqs.
(11) and (12), which makes us able to write the ordinary
matter energy density ρ and pressure p as Eqs. (17) and (18)
below:

ρ = 12π t2(mt + n)2 − 3α
[
2m2t2 + 4mnt + n(2n − 1)

] [
3m2t2 + 6mnt + n(3n + 7)

]
27α2

[
2m2t2 + 4mnt + n(2n − 1)

]2 − 144παt2
[
2m2t2 + 4mnt + n(2n − 1)

] + 32π2t4
, (17)

p = − 2nt2
[
9αm2 + 4π(3mt − 1)

] + 12πm2t4 + 3n2
[
3α(4mt − 1) + 4π t2

] + 18αn3

27α2
[
2m2t2 + n(4mt − 1) + 2n2

]2 − 144παt2
[
2m2t2 + n(4mt − 1) + 2n2

] + 32π2t4
. (18)

Now, by putting Eqs. (17) and (18) in (8), (9), we obtain
the following expressions for ρeff and peff :

ρeff = 3(mt + n)2

8π t2 , (19)

peff = −3m2t2 − 6mnt − 3n2 + 2n

8π t2 . (20)

We can understand the energy conditions as able to provide
us the validity regions of our solutions, since they evade, for
instance, the presence of space-time singularities.

From (19), (20), we become able to plot the energy condi-
tions as Figs. 3, 4 and 5 for a fixed (observationally validated)
value of n.

The evolution of effective energy density, pressure and
EoS in time are given in Figs. 6, 7 and 8.

Now we can also write the asymptotic behavior of the cos-
mological parameters a, q, ρeff and peff , which is presented
in Table 1.
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Fig. 3 ρeff + 3peff vs. t , with n = 0.6

Fig. 4 ρeff + peff vs. t , with n = 0.6

Fig. 5 ρeff − peff vs. t , with n = 0.6

m= 0.5, n = 0.6

m= 0.55 , n = 0.6

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

t

ρ
ef
f

Fig. 6 Evolution of ρeff in time

m= 0.5, n = 0.6

m= 0.55 , n = 0.6

0.0 0.5 1.0 1.5 2.0

-0.3
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0.0
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t

Fig. 7 Evolution of peff in time

m= 0.5, n = 0.6

m= 0.55, n = 0.6

0 1 2 3 4
-1.0

-0.8
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-0.2

0.0

t
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ef
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Fig. 8 Evolution of ωeff in time
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Table 1 Asymptotic behavior of the cosmological parameters

Parameters t → 0(z → ∞) t → ∞(z → −1)

a 0 ∞
q 1

n − 1 −1

ρeff ∞ 0

peff ∞ 0

α = - 500 , m= 0.5, n = 0.6

α = - 500 , m= 0.55 , n = 0.6

0 1 2 3 4 5
-1.0

-0.8

-0.6

-0.4

ω
D

E

t

Fig. 9 Evolution of ωDE in time

In this way, the dark energy contribution for energy density
and pressure, according to the model, read

ρDE = 3(mt + n)2

8π t2 − 12π t2(mt + n)2 − 3α
[
2m2t2 + 4mnt + n(2n − 1)

] [
3m2t2 + 6mnt + n(3n + 7)

]
27α2

[
2m2t2 + 4mnt + n(2n − 1)

]2 − 144παt2
[
2m2t2 + 4mnt + n(2n − 1)

] + 32π2t4
, (21)

pDE = − 27α
[
2m2t2 + 4mnt + n(2n − 1)

]2 {t[3αm(mt + 2n) − 8π t] + αn(3n − 2)}
8π t2

{
27α2

[
2m2t2 + 4mnt + n(2n − 1)

]2 − 144παt2
[
2m2t2 + 4mnt + n(2n − 1)

] + 32π2t4
} . (22)

The dark energy EoS parameter has the analytical form
presented in Eq. (23):

ωDE = − 9
[
(2m2t2 + 4mnt + n(2n − 1)

] {t[3αm(mt + 2n) − 8π t] + αn(3n − 2)}
27α(mt + n)2

[
2m2t2 + 4mnt + n(2n − 1)

] − 8π t2
[
15m2t2 + 30mnt + n(15n − 7)

] (23)

When plotting such a parameter, it is vital to respect the
range of acceptable values for α, according to the energy con-
ditions presented above. Note that such a consideration was
not applied to the deceleration parameter since this quantity
does not depend on the value of α. ωDE is plotted against
time in Fig. 9 below.

Some interesting and relevant cosmological features are
present in Figs. 7, 8 and 9, as will be discussed in the next
section.

5 Discussion

In this article, we have constructed, as a pioneer proposal,
a cosmological scenario from the simplest non-minimal
matter–geometry coupling in the f (R, T ) gravitational the-
ory. In the present section, we will discuss the energy con-
ditions applications and the cosmological viability of the
model. Moreover, we argue about the matter–geometry cou-
pling issue, which is a model premise.

In what concerns the results obtained from the energy con-
ditions application in Sect. 4, it is worth stressing that due
to the current accelerated expansion of the universe [9,10],
SEC must be abandoned [41,42]. This is a consequence of
the fact that from standard Friedmann equations, an acceler-
ated expansion universe should be driven by an exotic fluid
of EoS parameter < −1/3. From Fig. 3, we see that the SEC
is indeed violated in our model. One can observe that min-
imally coupled and curvature coupled scalar field theories
also violate SEC [42].

On the other hand, the WEC, NEC and DEC are satisfied
in our model as it can be checked in Figs. 4 and 5.

Let us now check the cosmological viability of our model.
In Sect. 3 we showed that the deceleration parameter respects
the observational constraints and predicts a transition from a
phase of deceleration to a phase of acceleration of the uni-
verse expansion. Such a transition occurs in a redshift ztr
which agrees with recent observational data.

We shall highlight that the transition phenomenon can also
be noticed in the evolution of the effective pressure in time,

as Fig. 7. In such a figure, both curves predict the pressure
of the universe to eventually assume negative values. It is
well known that a negative pressure fluid is the exact mech-
anism able to explain a cosmic acceleration within standard
cosmology, although in the latter it is necessary to invoke
the cosmological constant in order to obtain such an exotic
feature.

The effective EoS parameter in Fig. 8 also presents some
properties for which a more profound discussion is worthy.
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Firstly, one should note that, once again, the decelerated–
accelerated expansion of the universe transition is being pre-
dicted. As time passes by, ωeff decreases its value and the
region in which ωeff < −1/3 represents an epoch of cosmic
acceleration, according to Friedmann equations.

For high values of t , ωeff → −1, which is the current value
of the EoS parameter of the universe according to observa-
tions of fluctuations on the cosmic microwave background
temperature [43].

If we analyse only the coupled f (R, T ) contribution to
the EoS parameter in Fig. 9, we see that ωDE values are
restricted to the range ωDE < −1/3. As mentioned above,
this range for the values of an EoS is capable of inducing the
effects of a cosmic acceleration.

The cosmic acceleration has already been considered
within matter–geometry coupling models predicted from an
extension of the f (R) formalism which presents a term like
f (R)Lm in the action [44–46]. Departing from the usual
f (R) formalism, these models do not have a divergence
free energy-momentum tensor and this is a consequence of
the transferring energy and momentum between matter and
geometry.

In the present model, we can interpret the prediction of
cosmic acceleration as a consequence of energy transference
between geometry and matter. In other words, such a transfer-
ring process is able to provide an effective fluid of sufficient
negative pressure, responsible for driving the cosmic speed
up.

The second term on the rhs of Eq. (3), which is the
responsible for the non-conservation of the matter energy-
momentum tensor, induces the movement of test particles in
the presence of a gravitational field to be non-geodesic [2].
Bertolami and Páramos showed that the discrepancy between
classical theoretical prediction of galactic rotation curves and
flatness observations may be due to deviation from geodesic
motion [47]. In this way, the implications of ∇μTμν �= 0
might be observed in galactic rotation curves.

The consequences of matter–geometry coupling can also
appear in other applications of f (R, T ) = R + αRT grav-
ity. For instance, the analysis of gravitational waves in such
a model may yield the propagation velocity of gravitational
waves to be �= c [22]. The dark matter should also be investi-
gated within this formalism, as the non-minimal coupling has
already been used to mimic its effects in other gravitational
models [48].
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