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Abstract

We construct a series of new hyperbolic black hole solutions in Einstein–Scalar system and we apply 
holographic approach to investigate the spherical Rényi entropy in various deformations of dual conformal 
field theories (CFTs). Especially, we introduce various powers of scalars in the scalar potentials for mas-
sive and massless scalar. These scalar potentials correspond to deformation of dual CFTs. Then we solve 
asymptotically hyperbolic AdS black hole solutions numerically. We map the instabilities of these black 
hole solutions to phase transitions of field theory in terms of CHM mapping between hyperbolic hairy 
AdS black hole and spherical Rényi entropy in dual field theories. Based on these solutions, we study the 
temperature dependent condensation of dual operator of massive and massless scalar respectively. These 
condensations show that there might exist phase transitions in dual deformed CFTs. We also compare free 
energy between asymptotically hyperbolic AdS black hole solutions and hyperbolic AdS Schwarz (AdS-
SW) black hole to test phase transitions. In order to confirm the existence of phase transitions, we turn on 
linear in-homogeneous perturbation to test stability of these hyperbolic hairy AdS black holes. In this paper, 
we show how potential parameters affect the stability of hyperbolic black holes in several specific examples. 
For general values of potential parameters, it needs further study to see how the transition happens. Finally, 
we comment on these instabilities associated with spherical Rényi entropy in dual deformed CFTs.
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1. Introduction

The stability of black holes in anti-de Sitter space has been widely studied in the context of 
the AdS/CFT correspondence [1–4]. The investigation of thermodynamical stability of black hole 
provides a novel window on the phase structure of the dual CFTs. In holographic approaches to 
condensed matter physics the instability of a black hole due to the condensation of scalar hair is 
dual to a superconducting phase transition [5,6]. The physical relevance is also related to studying 
phase transitions in AdS/QCD literature [7–11]. These phase transitions correspond to freezing 
or releasing the degree of freedom in such systems. Entanglement entropy (EE) can measure 
the effective degree of freedom in quantum system. In gravity side, entanglement entropy can 
be calculated by RT formula [12,13]. In holographic condensed matter literature, those phase 
transitions can also be confirmed by entanglement entropy or Rényi entropy by AdS/CFT, for 
various examples, [14–19]. Therefore, one can calculate entanglement entropy or entanglement 
Rényi entropy (ERE) in gravity side to test phase transition in field theory.

The standard approach to calculate entanglement entropy in field theory is called replica trick 
[20–22]. Recently, the replica trick has been also applied in gravity side [23,24] to confirm holo-
graphic dictionary of EE [12,13]. The ERE for vacuum states in various situations [25–27,29,28]
has been studied. More recently, the ERE for local excited states in CFTs have been extensively 
investigated in [30–39]. In string theory, [40] tried to use replica trick to calculate entanglement 
entropy associated with black hole entropy. From holography, [41] proposed a general frame-
work to study ERE. The related shape deformations of ERE have also been intensively studied 
in [42–44] recently.

We will firstly focus on the instability of hyperbolic AdS black holes and finally comment on 
holographic spherical Rényi entropy. For spherical Rényi entropy of the ground state in CFTs, 
[45,46] proposed that it is equal to thermal entropy of higher dimensional hyperbolic AdS black 
hole by so called CHM mapping method [45–48]. The main goal of the present paper is to 
study how to make use of this dictionary to test the phase structures in deformed field theory 
side. The relevant deformations in field theory correspond to adding massive scalar or massless 
scalar in the dual hyperbolic black hole. We review how hyperbolic AdS black holes relate to 
holographic Rényi entropy. A holographic calculation of Rényi entropy for a spherical entangling 
surface is derived in [45–48]. Applying this approach, there are many extended studies [19,49,
50]. Following CHM mapping, the density matrix is thermal and we can write the n’th power of 
ρ as following

ρn = U−1 exp
[−nH/T0

]
Z(T0)n

U with Z(T0) ≡ tr
[
e−H/T0

]
, (1.1)

where n is an integer number. The unitary transformation U and its inverse will be canceled by 
taking the trace of this expression. Hence the trace of the n’th power of density matrix is

tr
[
ρ n

] = Z(T0/n)

Z(T0)n
. (1.2)

Using the definition of the free energy of dual black hole, i.e. F(T ) = −T logZ(T ), the corre-
sponding Rényi entropy becomes

http://creativecommons.org/licenses/by/4.0/
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Sn = n

(1 − n)T0
(F (T0) − F(T0/n)) , (1.3)

in terms of the derivation in [45,47,48]. Further using S = −∂F/∂T , this expression can be 
rewritten as

Sn = n

n − 1

1

T0

T0∫
T0/n

Stherm(T ) dT , (1.4)

where Sn is the Rényi entropy while Sthermal(T ) denotes the thermal entropy of the CFT on 
R × Hd−1. The entanglement entropy can be

SEE = lim
n→1

Sn = Sthermal(T0) , (1.5)

with T0 given by 1
2πR

. Here, R is the curvature scale on the hyperbolic spatial slices Hd−1

matching the radius of the original spherical entangle surface, R. This proposal gives us a way 
to connect the hyperbolic AdS black holes with ERE.

There are several hyperbolic AdS black holes, which have been constructed in [51–56]. In 
[57], it was shown that static black holes with hyperbolic horizons can become unstable to the 
formation of uncharged scalar hair on the horizon of the black hole due to the presence of an 
extremal limit with near-horizon geometry AdS2 ×H 3 [58–61]. Furthermore, authors of [62] in-
troduced a topological black hole with a minimal coupled scalar field with negative mass-square 
and showed this new instability appeared. In [18], the authors mapped the instability of this 
gravity solution to the phase transition happened in dual CFTs by CHM mapping. In [19], they 
investigated charged hyperbolic black holes, which became unstable to presence of scalar hair at 
sufficiently low temperature. Such kind of instability is the same as the holographic supercon-
ducting instability in boundary hyperbolic space. In summary, scalar fields with masses below 
the effective Breitenlohner–Freedman bound for the near-horizon AdS2 will induce instability at 
sufficient low temperatures. This happens for both charged and uncharged black holes.

In this paper, we will construct a series of general hyperbolic AdS black holes with neutral
scalar. More precisely, in this system, we introduce series of specific powers of scalar in scalar 
potential. In [18], the authors showed that there was an instability in massive scalar hairy hyper-
bolic AdS black hole. The instability might induce a phase transition and study on entanglement 
Rényi entropy also confirmed the phase transition. In our setup, we extend the studies in [18]
by introducing higher powers of scalar self-interactions to deform dual CFTs. We start with a 
general gravity setup and see what will happen. Firstly, we work out these gravity solutions in 
UV region. Secondly, we can find hyperbolic AdS black hole solution numerically in various 
scalar potentials. In terms of CHM mapping, basing on these hyperbolic AdS hairy black holes, 
we obtain the spherical ERE in dual deformed CFTs. ERE obtained in our setup shows that there 
exist phase transitions in dual CFTs. We can extract the condensation of dual operator with re-
spect to temperature in each solution. The condensation of dual operator indicates that the phase 
transition might happen. To confirm the phase transitions, we compare the free energy between 
the hyperbolic scalar hairy AdS black hole solutions (HSHAdS) and hyperbolic AdS-SW black 
hole to reveal the transition. Furthermore, we turn on the in-homogeneous linear perturbation to 
test the stability of HSHAdS and the stability condition highly constrains the potential parame-
ters presented in the massive and massless scalar potential. We will give some explicit examples 
to show what kinds of scalar potential will give stable HSHAdS. Finally, one can make use of 
the stability to obtain the phase structure of the dual theories.
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An overview of the remainder of the paper is as follows: in section 2, we firstly set up the 
gravity which is our starting point. In section 3, we study the boundary energy momentum ten-
sor of hyperbolic hairy black hole solutions with introducing various of boundary counter terms 
in massless and massive scalars respectively. Furthermore, we evaluate the free energy of these 
solutions. In section 4, through the above numerical analysis, we found that there are interesting 
phase transitions in deformed CFTs. We make use of condensation of dual operators and free 
energy of each solution to check whether phase transition will really happen in deformed CFTs 
or not. In section 5, we will demonstrate that the hyperbolic black holes are unstable and entan-
glement Rényi entropies show a phase transition. Therefore, in section 6, we turn to the physical 
case of these models which are normalizable on hyperboloid. We will devote section 7 to con-
clusions and discussions. In Appendix A, we will list the asymptotic AdS boundary behavior 
which is controlled by Einstein equations for massless and massive scalar respectively. These 
UV behaviors are useful to obtain the numerical solutions and we also list how to obtain the vac-
uum expectation value of dual operators. In Appendix B, we show various new hyperbolic scalar 
hairy AdS black hole solutions numerically as examples to check the validity of our numerical 
procedure.

2. Gravity setup

The action of Einstein–Dilaton system in 5D spacetime in Einstein frame is

S5D = 1

16πG5

∫
d5x

√−g

(
R − 4

3
∂μφ∂μφ − V (φ)

)
. (2.1)

Here G5 is the 5D Newton constant, g is the 5D metric determinant and φ, V are the scalar 
field and the corresponding potential. In this paper, we study the potential of the form V =
1
L2

(
−12 + v2φ

2 + v3φ
3 + v4φ

4 + v6φ
6
)

for simplification. From these cases, one can learn 
how the self interaction in the bulk involve in boundary phase structure. In general scalar poten-
tial, our calculations involve in examining the Einstein and scalar field equations together and 
finding solutions where the scalar has a nontrivial profile reflecting the presence of the relevant 
deformations in the boundary theory.

The equations of motion are

Eμν + 1

2
gμν

(
4

3
∂μφ∂μφ + V (φ)

)
− 4

3
∂μφ∂νφ = 0, (2.2)

where Eμν = Rμν − 1
2Rgμν is Einstein tensor.

We would like to choose the following ansatz to solve the Einstein equations of motion,

ds2 = −L2e2Ae(z)

z2

(
−f (z)dt2 + 1

f (z)
dz2

+
(
dψ2 + sinh2(ψ)dθ2 + sin2(θ) sinh2(ψ)dϕ2

))

= −L2e2Ae(z)

z2

(
−f (z)dt2 + 1

f (z)
dz2 + dH 3

)
, (2.3)

where H 3 is 3 dimensional hyperbolic space and L is AdS radius. In terms of the above ansatz, 
one can obtain equations,
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A′′
e (z) − A′

e(z)
2 + 2A′

e(z)

z
+ 4

9
φ′(z)2 = 0,

f ′′(z) + f ′(z)
(

3A′
e(z) − 3

z

)
− 4

L2
= 0,

φ′′(z) +
(

3A′
e(z) + f ′(z)

f (z)
− 3

z

)
φ′(z) − 3L2e2Ae(z)V ′(φ(z))

8z2f (z)
= 0. (2.4)

One more constrain equation is

6A′
e(z)

2 +
(

3f ′(z)
2f (z)

− 12

z

)
A′

e(z) + L2e2Ae(z)V (φ(z))

2z2f (z)

− 3f ′(z)
2zf (z)

+ 3

L2f (z)
+ 6

z2
− 2

3
φ′(z)2 = 0 (2.5)

(2.5) is not independent on the other three equations in (2.4). Once the gravity solution is obtained 
from (2.4), one could use (2.5) to check the solution.

Here, we note that (2.4) would impose a natural boundary condition near horizon. If one 
collects all the terms with a denominator f (z), the results are as following

Q(z)

8z2f (z)
(2.6)

with Q(z) ≡ 8z2f ′φ′ − 3L2e2AeV ′(φ). Since the horizon is not a real singularity, the apparent 
singularity f (zh) = 0 in Eq. (2.4) should be canceled by requiring Q(zh) = 0. Later, we will 
try to solve this boundary value problem using numerical method described in appendix A and 
developed in Ref. [63]. In this paper, we show some details in Appendix A and Appendix B. In 
numerical procedure, we set G = L = 1 to simplify our numerical calculation.

3. Energy momentum tensor and free energy

In this section, we turn to study the stability of hyperbolic AdS black hole solutions. We only 
focus on two cases. The one is massless scalar case and the other is massive case. The massive 
and massless neutral scalar correspond to specific QCD operator, e.g. dimension 4 glueball oper-
ator 〈O1〉 and dimension 2 glueball operator 〈O2〉1 respectively in this paper. Our studies will be 
helpful to understand how deconfinement transition from holographic point of view. The Rényi 
entropy is very good quantity to mimic these phase transitions in QCD literature. Furthermore, 
we extend CHM transformation to calculate Rényi entropy in sub classes of non-conformal theo-
ries. These non-conformal theories are obtained by adding simple deformations operators2 which 
correspond to neutral scalar with self interaction potential.

To obtain well defined energy momentum tensor on the boundary, one should introduce the 
suitable counter terms. For later use, we will work out a well defined counter term for these 
gravity solutions and these terms will be also used in studying free energy and spherical Rényi 
entropy of dual CFTs.

1 We have shown how to read out the 〈O1〉 and 〈O2〉 in series expansion of scalar near the UV region in Appendix A.2
and A.1 respectively.

2 These deformations only depend on holographic direction, namely z in our paper.



6 D. Li et al. / Nuclear Physics B 923 (2017) 1–31
3.1. Energy momentum tensor

In this subsection, we would like to introduce the counter terms to cancel the UV divergences 
of the on-shell action and make the energy momentum tensor of dual field theory well defined. 
Firstly, we introduce general gauge invariant counter terms with undetermined coefficients in our 
system. Finally, we can solve these coefficients to cancel the divergences in massless and massive 
cases respectively in this paper.

3.1.1. Massless scalar cases
For massless scalar case, the total action now becomes

Iren = S5D + SGH + Scount

= 1

16πG5

∫
M

d5x
√−g

(
R − 4

3
∂μφ∂μφ − V (φ)

)

− 1

16πG5

∫
∂M

d4x
√−γ

[
2K − 6

L
+ λ1R+ λ2RabRab + λ3R2 + ...

]
, (3.1)

with λ1, λ2, λ3 undermined coefficients of counter terms [64–69] R, RabRab, R2 to be worked 
out later. Here we choose massless scalar potential as V = 1

L2

(
− 12 + v3φ

3 + v4φ
4 + v6φ

6
)

and v3, v4, v6 are free parameters. The first term of the last line in (3.1) is Gibbons–Hawking 
term SGH and the remain terms are Scount related to cosmological constant and scalar field. These 
coefficients can be fixed by canceling the divergences of boundary momentum tensor. Here Kij

3

and K are respectively the extrinsic curvature and its trace of the boundary ∂M , γij is the induced 
metric on the boundary ∂M . These quantities are defined as follows

γμν = gμν + nμnν, (3.2)

Kμν = hλ
νDλnμ, (3.3)

γ = det(γμν), (3.4)

K = gμνKμν, (3.5)

where γμν denotes the induced metric, nμ stands for the normal direction to the boundary surface 
∂M as well as Dλ stands for covariant derivative. Finally, R and Rab are the Ricci scalar and 
Ricci tensor for the boundary metric respectively. In general cases, one should introduce higher 
powers of R and various combination of Rab to cancel the total UV divergence. For massive and 
massless cases in this paper, we just introduce R to cancel all the UV divergence. That means 
we can set λ2, λ3 to be vanishing.

In the asymptotical AdS hyperbolic black hole, the boundary surface locates at z = 0 surface, 
and usually one has to regularized it to a finite z = ε surface. So we have the normalized normal 

vector nμ = δ
μ
z√
gzz

.
To regulate the theory, we restrict to the region z ≥ ε and the surface term is evaluated at 

z = ε. The induced metric is γij = L̃2

ε2 gij (x, ε), where the leading term of expansion of gij (x, ε)

3 We use index μ, ν and i, j to denote bulk coordinates and the boundary coordinates respectively.
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with respect to ε is the flat metric gij

(0). Then the one point function of stress-energy tensor of the 
dual CFT is given by [70–73]

Tij = 2√−detg(0)

δIren

δg
ij

(0)

= lim
ε→0

(L2

ε2

2√−γ

δIren

δγ ij

)
. (3.6)

The finite part of boundary energy-stress tensor is from the O(ε2) terms of the Brown–York 
tensor Tij on the boundary z = ε, with

Tij = − 1

16πG5

[
Kij −

(
(K + d − 2

L
)gij − λ1Rij − 2λ2RikRjk + λ1

2
gijR− 2λ3RijR

+ 1

2
λ3gijR2 − 2λ2RklRikj l + λ2Rk

jRkl
il + λ2Rk

i Rkl
j l + λ2

2
gijRkm

kl Rmn
ln

+ (2λ3 + λ2)∇j∇iR− λ2R;k
ij ;k − (2λ3 + 1

2
λ2)gijRkl;m

kl;m
)]

. (3.7)

In the massless scalar hair hyperbolic AdS black hole, the coefficients of counter terms can 
be following

λ1 = 1

2
,

λ2 = 0,

λ3 = 0, (3.8)

where we have fixed these coefficients by removing the UV divergence z → 0 appeared in on-
shell action of massless scalar. Directly evaluate (3.7) using (3.6), we get t t component of energy 
momentum tensor

Ttt = 1

16πG

(3L

8
− 3f4L

2

)
. (3.9)

3.1.2. Massive scalar cases
For massive scalar, the total action will be different from massless cases. The main reason is 

that the UV behavior of massive scalar is different from the massless cases. In massive case, we 
will introduce following counter term to cook up well defined on-shell action.

Iren = S5D + SGH + Scount

= 1

16πG5

∫
M

d5x
√−g

(
R − 4

3
∂μφ∂μφ − V (φ)

)

− 1

16πG5

∫
∂M

d4x
√−γ

[
2K − 6

L
+ λm1R+ λm2φ

2 + λm3φR+ ...
]
. (3.10)

Here massive scalar potential are chosen to be V = 1
L2

(
−12 − 16φ2

3 + v3φ
3 + v4φ

4 + v6φ
6
)

and 
v3, v4, v6 are free parameters. In terms of (3.6), the boundary energy momentum tensor would 
be

Tij = 1 [
Kij − (K + d − 2 − λm2φ

2)gij + (λm3φ + λm1)(Rij − 1
gijR)

]
(3.11)
16πG 2 2
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In the massive scalar hairy hyperbolic AdS black hole, the coefficients of count terms can be 
following

λm1 = 1

2
,

λm2 = 8

3
,

λm3 = 2〈O2〉
9

, (3.12)

where 〈O2〉 corresponds to expectation value of dual operator O2 of massive scalar φ. We have 
fixed these coefficients by removing the UV divergence z → 0 appearing in on-shell action of 
massive scalar.

Directly evaluate (3.7) using (3.6), we get

Ttt = 1

16πG

(
−3f4L

2L2
− 〈O2〉2L

6
+ 3L

8

)
. (3.13)

We have introduced counter terms to make well defined boundary stress tensor. With these 
counter terms, we can obtain on-shell action which will play an important role in judging the 
phases of theories in the coming section.

3.2. The difference of free energy

After introducing the counter term to remove the divergence of the action, we can work out 
the on-shell action which will be helpful to test the holographic phase structures. Later, we will 
also make use of condensation of dual operator to get the flavor of phase transitions.

For massless scalar case, the on-shell action can be

S5D-BH = 1

16πG

(3

4
− f4

)
(3.14)

For massive scalar case, the on-shell action can be

S5D-BH = 1

16πG

(3

4
− f4 − 1

45
8p2

2 − 28p22p2

75
− 416p2

22

1125

)∣∣∣
p22=0

(3.15)

where we have to turn off the source p22 to obtain the expectation value of dual operator in 
vacuum for later use.

To summarize this section, we have introduced a self-consistent counter term to obtain the 
well defined free energy by requiring boundary energy momentum to be finite. Once we obtain 
the free energy of these black hole solutions, we can study phase structures by comparing free 
energy in the coming section.

4. Phase transitions

In this section, by calculating condensation of dual operator and free energy, we will study the 
stability of the hyperbolic AdS black hole solutions obtained from Appendix A and Appendix B. 
We will show temperature dependence behaviors of condensation of operators O1 and O2, which 
are dual to massless and massive scalar respectively. Firstly, we will make use of free energy to 
study the stability of these new hyperbolic black hole solutions. In this section, we mainly focus 
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on the constant modes in which we do not turn on the in-homogeneous perturbation of these 
solutions. The constant mode means that the field configurations only depend on holographic 
direction z. We would emphasize that this analysis is preliminary and later we will turn to go 
further to check the stability of these solutions in section 5. In section 5, we will go back to the 
phase structures in these theories studied in this section in terms of linear perturbation.

4.1. Condensation

In this subsection, we will figure out all field configurations and extract the condensation of 
dual operator O1, O2 of massless or massive scalar field to see what will happen with changing 
related parameters, for example, temperature and coupling constant of scalar self-interaction. 
Basically, one can extract the condensation of dual operator by UV expansion of massless and 
massive scalar shown in Eq. (A.2) Eq. (A.6) in terms of AdS/CFT dictionary. The condensation 
will imply whether there is phase transition or not. Later, we will use free energy to confirm these 
phase transitions and determine the transition temperature.

4.1.1. Massless cases
We would like to introduce several deformations in massless scalar potential, for example, 

adding φ3, φ4, φ6 terms to the potential. We mainly focus on obtaining condensation of the dual 
� = 4 glueball operator O1 with respect to temperature.

Firstly, we would like to calculate the condensation in massless scalar with potential like 

V (φ) = − 12
L2 + ν4φ

4

L2 . In Fig. 1(a), we have shown the condensation as a function of temperature. 
The different colored curves correspond to choosing different model parameter ν4. With increas-
ing ν4, the condensation at the same temperature will increase gradually. There is a transition 
temperature defined where the condensation goes to zero. For each colored curve, the conden-
sation is double valued function with respect to temperature from zero temperature to maximal 
temperature Tmax . In Fig. 1(b), we calculate free energy with respect to temperature and it shows 
that the dashed line part is unstable comparing with solid curve. That means the Tmax is phase 
transition temperature Tc in terms of free energy. Below the transition temperature Tc = Tmax , 
the condensation is a monodrome function of temperature. At the transition temperature, the con-
densation will jump from finite positive value to zero and the massless hairy black hole solution 
is unstable comparing with hyperbolic AdS-SW black hole. That is to say hyperbolic AdS-SW 
black hole is favored when T ≥ Tc. Up to this stage, we find the instability exists in this case.

Secondly, we would like to calculate the condensation O1 in massless scalar with potential 

like V (φ) = − 12
L2 + ν4φ

4

L2 + ν6φ
6

L2 . In Fig. 2(a), we have shown the condensation as a function of 
temperature. The different colored curves correspond to choosing different model parameter ν6
with fixing ν4. With increasing ν6, the condensation at same temperature will decrease gradually. 
There is also a transition temperature defined where the condensation goes to zero. For each 
colored curve, the condensation is double valued function with respect to temperature from zero 
temperature to maximal temperature Tmax . In Fig. 2(b), we calculate free energy with respect to 
temperature and it shows that the dashed line part is unstable comparing with solid curve in T <

Tmax . That means the Tmax is phase transition temperature Tc. Below the transition temperature 
Tc, the condensation is a monodrome function of temperature. At the transition temperature, 
the condensation will jump from finite positive value to zero and the massless hairy black hole 
solution is unstable comparing with hyperbolic AdS-SW black hole in T > Tmax . That is also to 
say hyperbolic AdS-SW black hole is favored when T ≥ Tc. Below the transition temperature, 
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Fig. 1. The condensation is as a function of temperature in massless scalar case with potential V (φ) = − 12
L2 + ν4φ4

L2 .

Fig. 2. The condensation is as a function of temperature in massless scalar case with potential V (φ) = − 12
L2 + ν6φ6

L2 .

the condensation is a monodrome function of temperature. At the transition temperature, the 

condensation will jump from finite positive value to zero. We can see that ν6φ
6

L2 does not change 

the type of phase transition induced by ν4φ
4

L2 .
Finally, we would like to calculate the condensation in massless scalar with potential like 

V (φ) = − 12
L2 + ν3φ

3

L2 + ν4φ
4

L2 . In Fig. 3(a), the condensation as a function of temperature has been 
presented. The different colored curves correspond to choosing different model parameter ν3
with fixing ν4. With increasing ν3, the condensation at same temperature will decrease gradually. 
For each colored curve, the condensation is double valued function with respect to temperature 
from zero temperature to maximal temperature Tmax . In Fig. 3(b), we also calculate free energy 
with respect to temperature and it shows that the dashed line part is unstable comparing with 
solid curve. That means the Tmax is still phase transition temperature Tc in this case. Below 
the transition temperature Tc, the condensation is a monodrome function of temperature. At the 
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Fig. 3. The condensation is as a function of temperature in massless scalar case with potential V (φ) = − 12
L2 + ν3φ3

L2 +
ν4φ4

L2 .

transition temperature, the condensation will jump from finite positive value to zero and the 
massless AdS hairy black hole solution is unstable comparing with hyperbolic AdS-SW black 
hole. That is to say hyperbolic AdS-SW black hole is favored when T ≥ Tc. Below the transition 
temperature T ≤ Tc, the condensation is a monodrome function of temperature. At the transition 
temperature, the condensation will jump from finite positive value to zero. The deformation from 
ν3φ

3

L2 does not change the type of phase transition induced by ν4φ
4

L2 qualitatively.

In summary, we introduce three types of special deformations like φ3, φ4, φ6 separately in 
massless neutral scalar potential in the bulk. We calculate the condensation of dual operator of 
the scalar with respect to temperature. From the numerical behaviors of condensations, there 
exist transition temperatures Tc = Tmax in three deformations. Furthermore, we calculate the 
free energy of each deformation to confirm the phase transitions. Finally, these phase transitions 
induced by three kinds of deformations are the same type qualitatively. Therefore, one can nat-
urally expect that there are still same types of phase transitions in those cases with deformation 
like superposition of these three kinds of deformations. We will turn to be rigid in section 5 to 
check the stability of these solutions in the low temperature region T ≤ Tc. In section 5, one 
can find that all these massless hyperbolic hairy AdS black hole are not stable. There exist more 
stabler solutions, which are in-homogeneous solutions. Therefore, from high temperature to low 
temperature, the AdS hyperbolic black hole will transit to in-homogeneous AdS hairy black hole.

4.1.2. Massive cases
In this subsection, we would like to deform massive scalar potential by adding φ3, φ4, φ6

terms. We mainly focus on obtaining condensation of the dual � = 2 operator O2 with respect 
to temperature. We will see there exist phase transitions in various deformations and how these 
deformations affect the phase transitions order in details.

Firstly, we will turn to study the condensation in massive scalar with potential like V (φ) =
− 12

L2 − 16φ2

3L2 + ν4φ
4

L2 . In Fig. 4(a), we have shown the condensation of dual operator as a function of 
temperature in several cases. Each case corresponds to setting a certain value of self-interaction 
coupling constants ν4. In each case, there is a transition point when the condensation goes to 
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Fig. 4. The condensation is as a function of temperature in massive scalar case with potential V (φ) = − 12
L2 − 16φ2

3L2 +
ν4φ4

L2 .

zero. That means the mass hair AdS hyperbolic black hole is more stabler than vanishing con-
densation solution which is hyperbolic AdS-SW black hole in low temperature region. It implies 
that there should be a phase transition with increasing temperature in this system. Furthermore, 

the types of phase transition will be changed with increasing ν4, which shows that the ν4φ
4

L2 de-
formation will play an important role to determine the transition types. In Fig. 4, we increase 
ν4 = −0.2, 0.0, 1.0 gradually and find that transition temperature is independent on ν4. Further-
more, there exists a critical value for ν4c between ν4 = −1 and ν4 = −0.2. Crossing this critical 
point, the phase transition order will be changed in ν4 < ν4c . As shown in Fig. 4, the transition4

will be first and second order phase transition in ν4 < ν4c and ν4 ≥ ν4c respectively. In Fig. 4(b), 
the free energy will increase with temperature. All colored curves will converge to one point 
which corresponds to transition temperature in ν4 > ν4c . The transition temperature is the same 
as transition temperature given by Fig. 4(a). The black dashed line in Fig. 4(b) corresponds to free 
energy in hyperbolic AdS-SW black hole. In Fig. 4(b), the dominate phase should be hyperbolic 
AdS-SW black hole above the transition temperature. The free energy can continuously con-
verge to the transition point in Fig. 4(b) with ν4 > ν4c . But free energy will jump to the transition 
point with ν4 < ν4c . That is also means the order of phase transition should change suddenly and 
the transition temperature will be Tmax , for example, curves shown in ν4 = −1.4, −1.2, −1.0. 
This phenomenon is also consistent with a condensation jump from finite value to vanishing in 
Fig. 4(a).

Now we will turn to study the condensation in massive scalar with potential like V (φ) =
− 12

L2 − 16φ2

3L2 + ν6φ
6

L2 . We introduce ν6φ
6

L2 deformation and to see what will happen for phase tran-
sition. In Fig. 5(a), one can see the condensation with respect to temperature with choosing 
different values of coupling constant ν6. With increasing ν6 = 0.0, 2.0, the condensation will 
monotonically decrease from positive finite value to vanishing. In ν6 < 0.0 region, the condensa-
tion is multiple valued function of temperature as shown in Fig. 5(a) and there is a local maximal 

4 Such phase transitions are similar to holographic P-wave Superconductor Phase Transition shown in [17].
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Fig. 5. The condensation O is as a function of temperature T in massive scalar case with potential V (φ) = − 12
L2 −

16φ2

3L2 + ν6φ6

L2 .

temperature Tmax and minimal temperature Tmin in each curve. For ν6 = −0.1, the condensa-
tion will decrease from T = 0 to T = Tmin and it will jump to less finite positive value at Tmin. 
From Tmin < T < Tmax , the condensation will become multivalued function of temperature. For 
T ≥ Tmax , the condensation will decrease to zero continuously in Fig. 5(a). In Fig. 5(b), we have 
shown various free energy with respect to temperature with gradually changing the ν6. We also 
find that free energy with ν6 = 0, 2 is monotonically increasing with temperature. They always 
continuously converge to the transition point Tc. The transition point is defined by vanishing of 
condensation. But in cases with ν6 = −0.1, the free energy is multiple valued function of temper-
ature. For these cases, there are minimal temperatures Tmin and local maximal temperature Tmax . 
For T > Tc, hyperbolic AdS-SW black hole should be stable and there is no massive scalar hair 
black hole solution. In Tmax < T < Tc and 0 < T < Tmin, massive scalar hair black hole is more 
stabler than hyperbolic AdS-SW black hole. In Tmin < T < Tmax , the condensation of dual oper-
ator is a multiple valued function and the stable solution is marked by solid curve in Fig. 5(a), (b) 
in terms of comparing free energy. There is critical value ν6c such that Tmin = Tmax . Therefore, 
there are two types of phase transitions for ν6 = −0.5. The first one happens at Tmax and the 
condensation is not continuous function of temperature at Tmax with ν6 < ν6c . The other one 
happens at Tc and condensation goes to zero with ν6 > ν6c .

In the third case, we will focus on the condensation with potential V (φ) = − 12
L2 − 16φ2

3L2 + ν3φ
3

L2 . 
In Fig. 6(a), we can find that the condensation will decrease from positive finite value to vanishing 
in ν3 > ν3c region. In our setup, ν3c = 0. In ν3 < 0 region, the condensation will be multiple 
valued function of temperature. This case is the similar as first massive case. In this region, 
the transition order will be change. As shown in Fig. 6, the transition5 will be first and second 
order phase transition in ν3 < ν3c and ν3 ≥ ν3c respectively. Because the condensation can not 
continuously decrease to zero at transition temperature and it will suddenly jump from positive 
finite value to zero. In 6(b), we have shown the free energy as function of temperature. In ν3 > 0
region, free energy is monotonically increasing with temperature, while free energy is multiple 

5 Such phase transitions have also been observed in holographic P-wave Superconductor Phase Transition [17].
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Fig. 6. The condensation O is as a function of temperature T in massive scalar case with potential V (φ) = − 12
L2 −

16φ2

3L2 + ν3φ3

L2 .

valued function of temperature in ν3 < 0. That means the free energy can not converge to the 
transition temperature continuously, while massive AdS hairy black hole will jump to hyperbolic 
AdS-SW black hole at transition temperature. Roughly speaking, the phase transitions induced 

by ν3φ
3

L2 is the similar as ones induced by ν4φ
4

L2 .
Finally, we would like to focus on the condensation in massive scalar with potential V (φ) =

− 12
L2 − 16φ2

3L2 + ν4φ
4

L2 + ν6φ
6

L2 . The main motivation to study this case is that we expect to find 

competitive mechanism between ν4φ
4

L2 deformation and ν6φ
6

L2 deformation. In Fig. 7(a), one can 
vary ν6 with fixing ν4 = 1.0 to see that the condensation will monotonically decrease to zero 
from low temperature to high temperature for ν6 > ν6c . In ν4 = 1.0 case, ν6c = −0.1 such that 
Tmin = Tmax . For fixing ν4, one can tune ν6 = ν6c to be a solution in which Tmax will coincide 
with Tmin. One can vary ν4 to find corresponding ν6c. While in Fig. 7(b), we confirm that the 
hyperbolic AdS hairy black hole solution is much stable than hyperbolic AdS-SW in Tmax <

T < Tc and 0 < T < Tmin with ν6 < ν6c, ν4 = 1. Where Tc is defined by the point where the 
condensation is vanishing in Fig. 7(a) and Tmin, Tmax are marked in Fig. 7(a). In T > Tc, there is 
no stable hairy black hole solution for ν6 > ν6c and hyperbolic AdS-SW solution is stable one. 
In ν6 < ν6c , the condensation will become multivalued function of temperature from Tmin <

T < Tmax . For ν6 = −0.5 example, the stable configuration in 0 < T < Tmin is the hyperbolic 
AdS hairy black hole solution, while in T > Tc > Tmin is hyperbolic AdS-SW black solution. 
When Tmin < T < Tc < Tmax as shown in Fig. 7, there is a phase transition between two hairy 
AdS black holes and the condensation will jump from positive finite value to less positive finite 
value. Especially at Tc, there is phase transition between hyperbolic AdS hairy black hole and 
hyperbolic AdS-SW black hole due to condensation goes to vanishing. These numerical studies 

show that there is competitive mechanism between ν4φ
4

L2 deformation and ν6φ
6

L2 deformation. One 
can tune ν4, ν6 to see which phase is stable and what type of phase transition happens. One can 
set ν4 = 0 and this numerical result will reproduce one in second massive case.

Here we have introduced 4 kinds of deformations in massive scalar potential and study these 
deformations effects on stability of hyperbolic AdS hairy black holes case by case. In each case, 
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Fig. 7. The condensation O is as a function of temperature T in massive scalar case with potential V (φ) = − 12
L2 −

16φ2

3L2 + ν4φ4

L2 + ν6φ6

L2 .

Fig. 8. ω2(λ = 0) as a function of temperature in massless scalar case with potential V (φ) = − 12
L2 + ν4φ4

L2 at the same 
parameter values as in Fig. 1. Where we have scanned all relevant region of ν4 in our setup and we just show most 
important characteristic qualitative behavior by choosing specific value of ν4 as examples.

the condensation as a function of temperature implies that there exist phase transitions in de-
formed theories. The behavior of condensation and free energy with respect to temperature in φ3

and φ4 deformed theories will be the same as ones in the massless cases with φ3, φ4, φ6 defor-
mations in section 4.1.1. Comparing with Fig. 8, Fig. 9, Fig. 10, it has different behaviors with 
respect to temperature in φ6 deformed theories shown in Fig. 5, Fig. 7. Such exotic behavior 
is induced by φ6 deformation essentially. In massive cases, they imply that the types of phase 
transitions induced by φ6 are different from that caused by φ3, φ4. Essentially, all these phase 
transitions mainly originate from the effective mass of scalar below the effective BF bound for the 
near horizon AdS2. However, it is not enough to confirm the phase transitions by analyzing the 
condensation of dual operator and free energy. In section 5, we will see the hyperbolic AdS hairy 
black hole solutions will be stable in low temperature region T < Tc when coupling constants 
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Fig. 9. ω2(λ = 0) as a function of temperature in massless scalar case with potential V (φ) = − 12
L2 + ν4φ4

L2 + ν6φ6

L2 at the 
same parameter values as in Fig. 2. Where we have scanned all relevant region of ν4, ν6 in our setup and we just show 
most important characteristic qualitative behavior by choosing specific value of ν4, ν6 as examples.

Fig. 10. ω2(λ = 0) as a function of temperature in massless scalar case with potential V (φ) = − 12
L2 + ν3φ3

L2 + ν4φ4

L2 at 
the same parameter values as in Fig. 3. Where we have scanned all relevant region of ν3, ν4 in our setup and we just 
show most important characteristic qualitative behavior by choosing specific value of ν3, ν4 as examples.

v3, v4, v6 live in specific regions. We will see details in section 5. Otherwise, when the coupling 
constants v3, v4, v6 go beyond these specific region, these hyperbolic AdS hairy black hole so-
lutions will not be stable anymore and there exist much more stabler in-homogeneous solutions. 
Further numerical studies are needed to check these stability of in-homogeneous solutions.

5. Instability for the normalizable mode

Previous discussions on the stability of different phases are mainly based on thermodynamical 
analysis with comparing free energy. Comparing free energy between constant solution6 and 
hyperbolic AdS-SW is not enough to make sure these new hyperbolic AdS hairy black hole 

6 We also call hyperbolic AdS hairy black hole solutions.
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solutions are stable or not. To be rigorous, in this section we will investigate the instability of 
these solutions under scalar perturbation δ�(t, z, ψ, θ, ϕ). The wave function of δ�(t, z, ψ, θ, ϕ)

could be decomposed as

δ�(t, z,ψ, θ,ϕ) = eωt δφ(z)Y (ψ, θ,ϕ),∇2
H3

Y(ψ, θ,ϕ) = −λY (ψ, θ,ϕ), (5.1)

with Y the eigenfunction of Laplacian in certain manifold � and λ the corresponding eigenval-

ues. When � is just the hyperboloid Hd−2, λ has the lower bound λ > (d−3)2

4 . Here, we will 
consider the 5D case, so d = 5 and λ > 1. More generally, when � is a non-trivial quotient 
of hyperboloid, then the lower bound of λ would be extended to 0. Thus, below we will only 
consider λ > 0 and ω2(λ = 0) for simplicity [62,18].

Under the ansatz Eq. (5.1), the equation of motion for δφ could be derived as follows

δφ′′ + (−3

z
+ 3A′

e + f ′

f
)δφ′ + (

3e2Ae

8z2f
V ′′(φ) − ω2

f 2
+ λ

f
)δφ = 0, (5.2)

where Ae, f, φ are associated with background solutions. In our ansatz Eq. (5.1), the time related 
part behaves as eωt . The black hole will be unstable if (5.2) has a solution with real and positive 
ω2 with the field satisfying specific boundary conditions at infinity and the horizon. Therefore, 
if there exist solutions with positive ω2 in certain background solutions, then the background 
constant solutions are unstable. This instability is induced by inhomogeneous perturbation in 
boundary special direction. If one can not find such perturbative modes with positive ω2, then 
the background solutions are stable at the level of linear perturbation. This is the key criterion to 
test the stability of these solutions. In principle, one should construct AdS hairy black holes at the 
non-linear level which is considerably more difficult. In this paper, it is sufficient to demonstrate 
that an instability exists by linear perturbation.

The leading expansion of δφ near the horizon z = zh could be derived from Eq. (5.2) as 
following

δφ(z) = δph1(zh − z)
ω

4πT (1 + ...) + δph2(zh − z)−
ω

4πT (1 + ...), (5.3)

with δp1, δp2 the two integral constants of the second order derivative equation Eq. (5.2). Without 
loss of generality, we assume ω = √

ω2 > 0, then the δph1 mode tends to 0 when z approaches 
zh, while the δph2 mode is divergent near horizon. Thus, the near horizon boundary condition is 
easy to be set as δφ(zh) = 0.

For the UV boundary condition, again, we could calculate the near boundary expansion of δφ
from Eq. (5.2). It depends on the dimension of φ. For � = 2 as example, the leading expansion 
is of the form

δφ(z) = δp2
01z

2 log(z) + ... + δp
(2)
02 z2 + .... (5.4)

As in the background solutions, we will require the coefficient of z2 log(z) to be 0. For � = 4, 
one can obtain the UV boundary condition as

δφ(z) = δp
(0)
0 + δp

(4)
0 z4 + .... (5.5)

In general, only for certain groups of (λ, ω2) the solutions of δφ could satisfy both the UV 
and IR boundary conditions simultaneously. We will try to find such kind of solutions under the 
background constant solutions solved in previous sections, and to see whether it is stable or not 
under the linear perturbation.
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Fig. 11. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2 at 
the same parameter values as in Fig. 4. When v4 = 0, 1, we did not find positive ω2 at λ = 0. Where we have scanned 
all relevant region of ν4 in our setup and we just show most important characteristic qualitative behavior by choosing 
specific value of ν4 as examples.

5.1. Massless scalar cases

Firstly, we focus on the stability in the massless cases. In terms of previous arguments in last 
section, we only study the sign of ω2(λ = 0) and we can test stability of these solutions solved 
in previous several sections.

In Fig. 8, Fig. 9, Fig. 10, we show the ω2(λ = 0) as a function of temperature numerically with 

turning on the linear perturbation of hyperbolic black hole solution with V (φ) = − 12
L2 + ν4φ

4

L2 , 

V (φ) = − 12
L2 + ν4φ

4

L2 + ν6φ
6

L2 and V (φ) = − 12
L2 + ν3φ

3

L2 + ν4φ
4

L2 respectively. In all these cases, one 
can see that ω2(λ = 0) always positive from low to high temperature region. These solutions 
shown in Fig. 1, Fig. 2, Fig. 3 should be unstable configurations, although these configurations 
are much more stable than hyperbolic AdS-SW black hole with comparing free energy. One 
can see that there should exist in-homogeneous black hole solutions which break the hyperbolic 
symmetry. That is also means that hyperbolic AdS-SW black hole will transit to in-homogeneous
black hole solutions. In-homogeneous black hole solutions are hard to be constructed which will 
be interesting to be studied in the near future.

5.2. Massive scalar cases

In this subsection, we turn to focus on the stability of new hyperbolic black hole solutions with 
massive scalar potentials. Here we have studied four cases which are shown in Fig. 11, Fig. 12, 
Fig. 13, Fig. 14. Here we summarize final results in the following.

In Fig. 11, Fig. 12, Fig. 13, Fig. 14, we show the ω2(λ = 0) as a function of tempera-
ture numerically with turning on the linear perturbation of hyperbolic black hole solution with 

V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ
4

L2 ,V (φ) = − 12
L2 − 16φ2

3L2 + ν6φ
6

L2 , V (φ) = − 12
L2 − 16φ2

3L2 + ν3φ
3

L2 and 

V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ
4

L2 + ν6φ
6

L2 respectively. For massive scalar cases, there are something 
new presented. Up to linear perturbative analysis, some homogeneous solutions are still stable.

For example, as shown in Fig. 11, we can tune v4 gradually and then we can find a critical 
value of v4c = 0. Once v4 > 0, ω2(λ = 0) are always negative definite function of temperature 
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Fig. 12. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) = − 12
L2 − 16φ2

3L2 + ν6φ6

L2 at 
the same parameter values as in Fig. 5. When v6 = 0, 2, we did not find positive ω2 at λ = 0. Where we have scanned 
all relevant region of ν6 in our setup and we just show most important characteristic qualitative behavior by choosing 
specific value of ν6 as examples.

Fig. 13. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) = − 12
L2 − 16φ2

3L2 + ν3φ3

L2 at 
the same parameter values as in Fig. 6. When v3 = 0, 1, we did not find positive ω2 at λ = 0. Where we have scanned 
all relevant region of ν3 in our setup and we just show most important characteristic qualitative behavior by choosing 
specific value of ν3 as examples.

and which also means v4 > 0 these solutions found in Fig. 4 might be stable at level of linear 
perturbation analysis. That means hyperbolic AdS-SW black hole will transit to in-homogeneous
solution from high temperature to low temperature when v3 = 0, v6 = 0, v4 > 0. For v3 = 0, v6 =
0, v4 > 0, hyperbolic AdS-SW black hole will7 transit to homogeneous solution as shown Fig. 12.

One can also tune the v6 gradually to find the critical value of v6 = 0. When v6 becomes 
positive, one can not find positive definite ω2(λ = 0) which implies that solutions with positive v6
might be also stable and phase transition might happen in Fig. 5. That means hyperbolic AdS-SW 
black hole will transit to homogeneous solution from high temperature to low temperature when 

7 Here we confirm the transition in terms of linear perturbative analysis.
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Fig. 14. ω2(λ = 0) as a function of temperature in massive scalar case with potential V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2 + ν6φ6

L2

at the same parameter values as in Fig. 7. When v6 = −0.1, 0, 0.5, we did not find positive ω2 at λ = 0. Where we have 
scanned all relevant region of ν4, ν6 in our setup and we just show most important characteristic qualitative behavior by 
choosing specific value of ν4, ν6 as examples.

v3 = 0, v4 = 0, v6 ≥ 0. The high temperature solution will transit to in-homogeneous solutions 
for v3 = 0, v4 = 0, v6 < 0.

In Fig. 13, one can also tune the v3 gradually to find critical value v3 = 0. From high tem-
perature to low temperature, the hyperbolic AdS-SW black hole will transit to in-homogeneous
solution will transit to in-homogeneous solutions for v3 < 0, v4 = 0, v6 = 0. For v3 ≥ 0, v4 =
0, v6 = 0, it will transit to homogeneous solution constructed in section 4.1.2.

Finally, we consider more complicated situation with potential V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ
4

L2 +
ν6φ

6

L2 . For simplifying our study, we fix v3 = 0, v4 = 1 and gradually tune v6 to obtain the critical 
value v6 = −0.1 such that there is no positive ω2(λ = 0) existing in the black hole solution. 
We expect that the solutions found in Fig. 7 with positive v6 are stable. In terms of criterion 
mentioned above, hyperbolic AdS-SW black hole might transit to homogeneous solution from 
high temperature to low temperature when v3 = 0, v4 = 1, v6 ≥ 0. For v3 = 0, v4 = 1, v6 < 0, 
it will transit to in-homogeneous solution as confirmed in Fig. 14. Further, one can also see 
interesting phenomenon that change of v4 will affect the critical value of v6.

6. Comments on holographic spherical Rényi entropy

In this section, we would like to connect the instability of hyperbolic AdS black hole with 
holographic Rényi entropy, as we reviewed in the introduction.

6.1. Spherical Rényi entropy as thermal entropy

Following [18], we can compute the Rényi entropy from these thermal entropies, via (1.4)

Sn = n

n − 1

1

T0

⎛
⎜⎝

Tcri∫
SEh

thermal(T )dT +
T0∫

SE
thermal(T )dT

⎞
⎟⎠ , (6.1)
T0/n Tcri
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where SEh
thermal(T ) is the entropy of the hairy black hole and SE

thermal(T ) is the entropy of the 
Einstein black hole.

In terms of the above formulas, the Rényi entropy as a function of n. Because the derivative 
of the thermal entropy with respect to the temperature is discontinuous, the second derivative 
with respect to n of the Rényi entropy is discontinuous. Such kind of discontinuous is closely 
related to instability of hyperbolic AdS black hole. Such instability has been carefully studied 
in section 4 and section 5. Therefore, the discontinuous of Rényi entropy implies a phase tran-
sition in dual field theory by holography. In order to determine the precise value of nc at which 
this transition occurs, one should study numerically the scalar wave equation within the black 
hole background as shown in [49,19]. The critical temperature is defined by Tcri = 1

2ncπR
. As 

we shown in section 4 and section 5, the order of phase transition will be different from the 
second order phase transition8 presented by [18] due to the higher powers of neutral scalar with 
self-interactions.

The first term in left hand side of Eq. (6.1) can work which highly depends on the whether
the CHM mapping can work or not in our the hairy black holes. The CHM mapping is a kind of 
coordinate transformation which simplifies for a spherical or planar entangling surface in CFTs. 
It works even when conformal symmetry is partially broken as long as you take into account the 
conformal factor eq. (2.3) correctly. It is also clear in the holographic picture where the CHM 
mapping is a coordinate transformation from the Poincare to the AdS hyperbolic coordinates. 
It works not only for CFT, but also for any theories with UV fixed points. Indeed, due to the 
condensation of the scalar, the stable phase will be hyperbolic AdS hairy black hole. In our 
cases, the scalar depends only on the holographic direction z and it just modify the conformal 
factor eAe(z) in (2.3). The conformal factor only modify the unitary transformation in eq. (1.1). 
Therefore, CHM mapping is still meaningful in our cases.

However, if the scalar depends on the boundary coordinates called inhomogeneous cases in 
this paper, CHM mapping can not be applicable in condensation phase with large value of con-
densation. But in these cases, nearby the transition point T ∼ Tc

9 from hyperbolic AdS-SW to 
hyperbolic AdS hairy black hole, the hyperbolic AdS hairy black hole (condensation phase) can 
be regarded as hyperbolic AdS-SW with neutral scalar perturbatively. And then the condensation 
of scalar will gradually be turn on and condensation phase will be stable. Near the transition 
point, the CHM mapping can be still workable approximately due to the small value of con-
densation. In this sense, CHM mapping gives us an important insight of phase transition in the 
dual field theory. When hyperbolic AdS hairy black hole become dominant with decreasing tem-
perature, CHM mapping will break down due to large value of condensation and the spherical 
entanglement surface in dual field can not be identified with thermal entropy of hyperbolic AdS 
black hole directly.

To be more precisely, once we take n  nc, CHM mapping does not hold any more due to 
the presence of in-homogeneous operator condensation. When |n − nc| ∼ 0 or condensation is 
very small, as argued in last paragraph, CHM mapping can be still hold approximately. In this 
sense, CHM map spherical entanglement entropy to thermal entropy of hyperbolic AdS black 
hole perturbatively. When |n − nc| increases gradually, the CHM mapping will be deformed the 
mapping by two main aspects. The first is that the dual quantum states in field theory will be 
excited states because of introducing the operator dual to neutral scalar. That means we have to 

8 The same fist order phase transitions have been observed in P-wave Superconductor Phase Transition [17].
9 |n − nc| ∼ 0.
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study the Rényi entropy of low excited states by CHM mapping approximately. This is closely 
related to the first law of entanglement entropy10 once the subsystem is very small. The other 
one is the shape of entangle surface will be deformed11 from sphere to other general geometrical 
shape gradually with increasing condensation or n → ∞, due to dominant phase occupied by 
inhomogeneous scalar. In the future, quantitative studies of the two main aspects are needed to 
show whether and how CHM mapping works in excited states and in-homogeneous configura-
tions. However, in our cases, once we take |n − nc|  0 large enough, what we have calculated 
by (1.2) should correspond to spherical Rényi entropy of states excited by operators which dual 
to the various homogeneous scalars respectively.

To close this section, we offer a short summary to make our claim to be clear. For the cases 
of Einstein Dilaton system shown in eq. (2.1), eq. (2.3), if the scalars in hyperbolic AdS hairy 
black hole only depend on holographic coordinate z (called homogeneous solutions) and CHM 
transformation only change the scale transformation by global conformal factor eAs(z) in (2.3) 
which preserve the asymptotic AdS boundary conditions, we can make use of CHM mapping 
to compute Rényi entropies. Otherwise, for example, in-homogeneous scalar will break CHM 
transformation and one can not absorb conformal transformation for scalar into global conformal 
factor anymore. The valid of CHM transformation highly depends on whether we can find CHM 
transformation up to global conformal factor which correspond to U unitary transformation in 
eq. (8.1).

7. Conclusions and discussions

In this paper, we have constructed several new hyperbolic asymptotic AdS gravity solutions 
in Einstein Dilaton system numerically. Motivated by studying ERE with spherical entangling 
surface in deformed CFTs by CHM mapping, we work out the hyperbolic hairy AdS with se-
ries powers of neutral scalar in potential. In this paper, we focus on potential with φ3, φ4, φ6. 
Especially, we focus on two kinds of special scalar potentials. The one is massless scalar with 
higher powers of scalar self interaction and the other is that we choose square of the scalar mass 
to be −2. In terms of AdS/CFT, the first kind of scalar could correspond to dimension 4 gluon 
sector in gauge field theory side and the other scalar is dual to dimension 2 gluon operator in 
field theory side. In general, to calculate the ERE with complicated entanglement surface is very 
hard. For spherical entanglement surface, one can make use of proposals [45,47,48] to relate the 
ERE to the thermal entropy in hyperbolic AdS black hole. We have shown the configuration of 
these new hyperbolic AdS solutions and also extract the condensation of operators which are 
dual to massless and massive scalars respectively. Through studying condensation with respect 
to temperature, we find that there exist phase transitions. We list the well defined boundary en-
ergy momentum tensor by introducing proper boundary counter terms in each solution. With 
these counter terms, the finite free energy can be achieved. We compare free energy between the 
new hyperbolic AdS solutions and hyperbolic AdS-SW solution to check the stability of these 
solutions. To be more rigid, we turn on inhomogeneous perturbation on these new hyperbolic 
AdS black holes to check the stability. We tune the potential parameters to figure out the sta-
ble region of potential parameters for these solutions, for example, the coefficients of the cubic, 
quartic and sextic scalar interactions v3, v4, v6. For massless scalar cases, we can not find stable 

10 The first law of entanglement entropy has been well studied in the holographic literature, for example, [74–77].
11 The entanglement entropy with deformation of entangle surface has been also studied extensively by [78–81].
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homogeneous solutions with turning on φ3, φ4, φ6 in scalar potentials respectively. Therefore, 
we can not safely say phase transition shown in Fig. 1, Fig. 2, Fig. 3 really happens. There must 
exist stable inhomogeneous solutions. That means hyperbolic AdS-SW black hole will transit 
to inhomogeneous solutions in massless cases from high temperature to low temperature. For 
massive scalar cases with positive potential parameters v3, v4, v6 respectively, φ3, φ4 will induce 
similar phase transition qualitatively shown in Fig. 4, Fig. 6, while φ6 term in scalar potential 
will induce different kinds of phase transition in Fig. 5. If one turns on superposition of φ3, φ4

and φ6 in scalar potential, there exists competitive mechanism between phase transitions induced 
by φ3, φ4 and φ6 in Fig. 7. To be rigid, when we choose negative potential parameters v3, v4, v6

respectively, our studies show that all these hyperbolic hairy AdS black hole solutions are not sta-
ble ones anymore. With negative potential parameters v3, v4, v6 separately, there may exist stable 
inhomogeneous solutions which are much more stabler than hyperbolic AdS-SW black hole so-
lutions. In these cases, hyperbolic AdS-SW black hole solutions will transit to inhomogeneous
solutions from high temperature to low temperature. Once v4, v6 are turn on simultaneously, the 
critical values of v4, v6 will be changed accordingly respectively. From this phenomenon, one 
can expect that there exist competition mechanism to determine the critical value of potential pa-
rameters v3, v4, v6. Once we know the phase structures of various black hole solutions, we make 
use of [45,47,48] to comment on the phase structure in the dual field theory in terms of spherical 
entanglement entropy. In this sense, the stability of these black hole solutions is closely related 
to the spherical ERE in holographic dual CFTs and it gives some insight of phase transitions in 
dual field theory.

In this paper, we focus on massless and massive scalar cases with higher powers of self in-
teraction in potentials. In general, such kinds of deformations will lead to various types of phase 
transitions which are highly sensitive to the operators chosen and types of deformations. ERE 
can be also regarded as an order parameter to give some insight on phase transitions in dual field 
theories. Finally, we analysis how CHM can work in our cases. For our gravity setup, we offer a 
circumscribed criterion to judge whether CHM can work or not. For generic setup, we offer an 
idea to use CHM mapping to study Rényi entropy in perturbative sense in section 6.1 and it is 
still open question.
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Appendix A. Asymptotic AdS solutions

In this appendix, we would like to show some details how to obtain these numerical solution. 
Basing on the set up in section 2, we pay attention to how to solve the whole system in the 
UV region z ∼ 0 in this section. Near the UV region, we can use series expansion to find the 
solution of unknown functions in metric ansatz (2.3). These expansions will be helpful to the 
later numerically computation to show the full numerical solutions.
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A.1. Massless scalar cases

In this section, we will try to find the UV expansion of gravity solution with massless scalar 
with potential like

V = 1

L2

(
−12 + v3φ

3 + v4φ
4 + v6φ

6
)

(A.1)

In this potential, we set the mass of the scalar to be zero and call this case by massless scalar case 
for convenience in this paper.

Firstly, the UV behavior of the black hole should be asymptotical AdS and there is a horizon 
parameterized by zh in the IR region. We find an algorithm to get the numerical solution con-
sistently. Roughly speaking, we try to expand in power series all unknown functions as positive 
powers of z. The UV solution can be expressed by following form

φ(z) = p4z
4 + 2p4z

6

3L2
+ z8

(
p4 − f4L

4p4
)

2L4
− 2p4z

10
(
2f4L

4 − 1
)

5L6

+ z12
(
1728f 2
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+ O(z16) (A.2)

Ae(z) = 1
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f (z) = 1 − z2
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One can find the black hole solution in the UV region can be expressed in series of powers 
of z. In principle, one can obtain more higher powers of z to get the full expression of black hole 
background. Unfortunately, we can not obtain closed form of the black hole solution. The main 
reason is that we can not find simple recurrence relation among the coefficients of each power 
of z, as explained in [63]. In terms of AdS/CFT dictionary, the massless neutral scalar in the 
bulk will dual to � = 4 operator in field theory side. p4 is the expectation value of dual operator 
〈O2〉 with turning off source term in φ eq. (A.2). It is easy to see that the black hole solution 
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with asymptotical AdS can be controlled by integral constants p4, f4 in (A.2)(A.3)(A.4). p4, f4
are determined by boundary condition in IR region. Here we choose parameters p4, f4 to show 
one black hole solution numerically. Here p4, f4 are not independent and they are related to 
the horizon position zh such that Q(zh) = 0. We impose φ(zh) to be regular, which could be 
guaranteed by requiring Q(zh) = 0.

A.2. Massive scalar cases

Firstly, we try to figure out asymptotic AdS solution of our setup with potential like

V = 1

L2

(
−12 − 16φ2

3
+ v3φ

3 + v4φ
4 + v6φ

6
)

(A.5)

In this potential, we have introduced a mass term of scalar field and we will call this case by 
massive scalar case. With above potential, we can find the solution near the UV region analyti-
cally. As shown in massless case, the UV behavior of the black hole should be asymptotical AdS 
and there is a horizon in the IR region which is parameterized by zh. The asymptotic solution is 
following

φ(z) = p2z
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It is easy to see that the black hole solution with asymptotical AdS can be controlled by three 
integral constants p2, p22, f4. p2, p22, f4 are determined by boundary condition in IR region. 
In this case, p2, p22, f4 are not independent and they are determined by the black hole horizon 
zh. We still impose φ(zh) to be regular which is horizon boundary condition. The temperature is 
also defined by T = f ′(z)

4π
|z=zh

. In terms of AdS/CFT dictionary, p22 is source of the expectation 
value of dual operator 〈O2〉 = p2 with setting vanishing coefficient of z2 log(z) in φ eq. (A.6).

Appendix B. New hyperbolic black hole solutions

In this paper, we focus on the scalar potential with polynomial form of scalar with highest 
sextic self-interaction. We explore a systematic way to generate fully backreaction gravity solu-
tions and investigate corresponding phase structure. In the following subsections, we will show 
two examples to demonstrate these configurations of fields.

B.1. Massless scalar cases

In this subsection, we will show how to solve the gravity background with potential V (φ) =
1
L2

(−12 + v4φ
4
)
. Here we set the mass term of scalar to be vanishing. In this case, the dual 

operator O1 is relate to dimension 4 glueball operator. We will take v4 = 8 as an example to 
show the numerical process.

As was shown in Appendix A.1, the near boundary expansion of the equations of motion con-
tain only contains two integral constants p4, f4. At a first sight, p4 and f4 should be independent 
on each other, since both of them are integral constants of the non-linear ordinary derivative 
equations. However, as we mentioned in Sec. 2, the non-linear ordinary equations require a reg-
ular condition Q(zh) = 0 at horizon z = zh naturally. This additional IR boundary condition 
would require the two integral constants extracted in UV region to be dependent on each other. 
Thus only one integral constant is free, which is related closely to the only relevant physical 
quantity–temperature.

In the numerical method we used, we try to find the dependence of p4 on f4. As an example, 
we take f4 = 0.2445. Now we have the boundary value problem f4 = 0.2445 and Q(zh) = 0. To 
solve it, we take a test value p4 = 0.3 and integral the derivative equations from UV to IR with 
the UV expansion as the initial boundary condition. The results are shown in blue lines in Fig. 15. 
From Fig. 15(c) we could see that Q(z) blows up when f (z) approaching 0. This indicates that 
p4 = 0.3 is not a regular solution. Therefore, we increase p4 to p4 = 0.8, and again we see that 
Q(z) blows up near f (z) → 0. From Fig. 15(c), we could see that Q(z) → ±∞ for the two 
cases, so the proper value of p4 should located at 0.3 < p4 < 0.8. Then we take p4 = 0.3+0.8

2
and solve the solutions. Then if the behavior of Q(z) is like p4 = 0.3, we have to choose a new 
value of p4 in the range 0.55 < p4 < 0.8, while if it is like p4 = 0.8, we have to choose in the 
range 0.3 < p4 < 0.55. Repeating the process, finally, we find that when p4 = 0.36734..., all the 
quantities could go through the horizon regularly, as shown in Fig. 16. It is easy to understand 
that this process could have high accuracy in determine the exact value of p4, since f (zh) = 0 in 
the denominator requires an exact condition Q(zh) = 0 to cancel the singularity.

B.2. Massive scalar cases

In this subsection, we numerically solve the gravity setup with potential like V (φ) =
1
2

(
−12 − 16φ2 + v4φ

4
)

. Here we set the mass of scalar to be m2 = − 16
2 which corresponds 
L 3 3L
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Fig. 15. Solutions when V (φ) = − 12
L2 + ν4φ4

L2 with ν4 = −8, f4 = 0.2445. The blue lines give the results when p4 = 0.3
while the purple lines are for p4 = 0.8. In Panel (a) and Panel (b), the solutions of φ and Ae are given. In Panel (c), 
the solutions of f is shown in red solid line, while the corresponding Q(z) is shown in blue dashed line. (Here, in order 
to put the two in the same figures, we plot Q(z)/50, which is zero at the same z as Q(z).) (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Characteristic solutions when V (φ) = − 12
L2 + ν4φ4

L2 with ν4 = −8. To get these solutions, we have taken f4 =
0.2445, p2 = 0.36734.... In Panel (a) and Panel (b), the solutions of φ and Ae are given. In Panel (c), the solutions of f
is shown in red solid line, while the corresponding Q(z) is shown in blue dashed line. (Here, in order to put the two in 
the same figures, we plot Q(z)/50, which is zero at the same z as Q(z).) (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

to dimension-2 operators in 4D. In terms of AdS dictionary, the dual operator O2 is related to 
glueball operator. In this case, one have set p22 = 0 to find solution and the p22 corresponds to 
source of dual operator O2 in terms of AdS/CFT. Like in the massless case, the two UV inte-
gral constants left p2, f4 are dependent on each other due to the IR regular boundary condition 
Q(z) = 0. As an example, we take ν4 = −8 and f4 = −0.001 as an example to show the numeri-
cal process. Firstly, we take p2 = 0.015 and p2 = 0.03 as tests. The results are shown in Fig. 17. 
From Fig. 17(c), we see that the behavior of Q(z) near f = 0 region are contrary to each other. 
Thus, the accurate value of p2 should locate in between 0.015 and 0.03. Repeating the process, 
we can reduce the range of p2. Finally, we find that when p2 = 0.0203818... all the quantities 
can go through the horizon smoothly, as shown in Fig. 18.
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Fig. 17. Solutions when V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2 with ν4 = −8, f4 = −0.001. The blue lines give the results when 
p2 = 0.03 while the purple lines are for p2 = 0.015. In Panel (a) and Panel (b), the solutions of φ and Ae are given. In 
Panel (c), the solutions of f is shown in red solid line, while the corresponding Q(z) is shown in blue dashed line. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Characteristic solutions when V (φ) = − 12
L2 − 16φ2

3L2 + ν4φ4

L2 with ν4 = −8. To get these solutions, we have 
taken p22 = 0, f4 = −0.001, p2 = 0.0203818.... In Panel (a) and Panel (b), the solutions of φ and Ae are given. In 
Panel (c), the solutions of f is shown in red solid line, while the corresponding Q(z) is shown in blue dashed line. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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