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We employ the Langevin equation and Wigner function to describe the bottom quark dynamical 
evolutions and their formation into a bound state in the expanding Quark Gluon Plasma (QGP). 
The additional suppressions from parton inelastic scatterings are supplemented in the regenerated 
bottomonium. Hot medium modifications on ϒ(1S) properties are studied consistently by taking the 
bottomonium potential to be the color-screened potential from Lattice results, which affects both ϒ(1S)

regeneration and dissociation rates. Finally, we calculated the ϒ(1S) nuclear modification factor Rrege
A A

from bottom quark combination with different diffusion coefficients in Langevin equation, representing 
different thermalization of bottom quarks. In the central Pb–Pb collisions (b = 0) at √sN N = 5.02 TeV, we 
find a non-negligible ϒ(1S) regeneration, and it is small in the minimum bias centrality. The connections 
between bottomonium regeneration and bottom quark energy loss in the heavy ion collisions are also 
discussed.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Since charmonium was proposed as a probe for the existence of 
the deconfined matter called “Quark–Gluon Plasma” (QGP) [1], its 
production mechanisms has been widely studied based on coales-
cence model [2–4] and transport models [5–7] in nucleus–nucleus 
collisions. The nuclear modification factor R A A is a measurement 
of cold and hot medium suppressions on quarkonium yields. The 
cold nuclear matter effects include the nuclear absorption [8], 
Cronin and shadowing effects [9–11]. The first one is negligible 
at LHC colliding energies due to strong Lorentz dilation, where 
“spectator” nucleons already move out of the colliding region be-
fore the formation of a quarkonium eigenstate. Cronin effect will 
shift the momentum distribution of primordially produced hidden-
and open-charm (or bottom) states [12,13]. This can be included 
by a proper modification of their transverse momentum distribu-
tions in pp collisions [14,15]. Shadowing effect is weak at RHIC 
colliding energies, but important at the LHC colliding energies. All 
the cold nuclear matter effects can be included in the heavy flavor 
initial distributions prior to the hot medium effects. In nucleus–
nucleus collisions at 

√
sN N = 2.76 TeV and 5.02 TeV, regeneration 

from charm and anti-charm quarks is widely believed to domi-
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nate the prompt charmonium yields [16,17]. This is supported by 
the enhancement of J/ψ R A A and the suppression of J/ψ mean 
transverse momentum square 〈p2

T 〉 J/ψ observed at 2.76 TeV and 
5.02 TeV: the regenerated J/ψs from thermalized charm quarks 
carry small momentum compared with the primordially produced 
ones, this will pull down the 〈p2

T 〉 J/ψ of final prompt J/ψ in 
nucleus–nucleus collisions [18].

However for bottomonium, the situation seems not so clear. 
Transport model calculations suggest a non-negligible bottomo-
nium regeneration in 

√
sN N = 5.02 TeV Pb–Pb collisions [19]. Also, 

experimental data hinted a stronger bottomonium regeneration at 
5.02 TeV compared with 2.76 TeV, but within its large uncer-
tainty which prevents solid conclusions [20,21]. Considering that 
heavy quark mass is very large, it takes some time to reach ki-
netic thermalization [22,23] in the fast cooling QGP with an initial 
temperature ∼ 500 MeV in AA collisions. Non-thermalization of 
bottom quark momentum distribution will suppress the combi-
nation probability of b and b̄ quarks in QGP. However, the ratio 
of hidden- to open-bottom states is at the order of 0.1% which 
is smaller than the charm flavor. This may make the yield from 
(b + b̄ → ϒ(1S) + g , b + b̄ + ζ → ϒ(1S) + ζ with ζ = g, q, ̄q) 
not negligible compared with primordially produced ϒ(1S). Differ-
ent from Ref. [19] which simply introduces a factor (smaller than 
unit) to account for the non-thermalization effect of bottom quarks 
on ϒ regeneration, now we do the realistic evolutions of bottom 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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quarks with the Langevin equation. Its parameters are fixed by the 
observables of open heavy flavor mesons. In this work, we develop 
a more realistic model to consider the dynamical evolutions of bot-
tom quarks, bottomonium regeneration process and the following 
hot medium suppression after they are regenerated. We employ 
the “Langevin equation + Wigner function + (gluon, quasi-free) 
dissociations” for bottom quark and bottomonium evolutions in 
heavy ion collisions. Furthermore, we consider the hot medium 
modifications on bottomonium properties at finite temperature by 
taking the color-screened heavy quark potential (extracted from 
Lattice free energy F (r, T ) [24]). With color-screened heavy quark 
potential in time independent Schrödinger equation, we obtain the 
mean radius and binding energy of ϒ(1S) at different tempera-
tures. Each of them will be used in Wigner function (regeneration 
rate) and (gluon, quasi-free) dissociation rates.

Our paper is organized as follows. In Section 2, we introduce 
the Langevin equation and Wigner function for heavy quark dy-
namical evolutions and their combination. The hot medium modifi-
cations on ϒ(1S) properties (such as the mean radius and binding 
energy) are also studied based on potential model. In Section 3, 
we introduce the hydrodynamic equations for QGP expansion in 
nucleus–nucleus collisions. The relevant inputs of heavy quarks 
are presented in Section 4. In Section 5, we give the ϒ(1S) nu-
clear modification factor Rrege

A A from the combination of b and b̄
quarks in QGP. Different coupling strength between heavy quarks 
and QGP (controlling the heavy quark thermalization) are studied 
in the ϒ(1S) regeneration. We summarize the work in Section 6.

2. Dynamical evolutions of heavy quarks

2.1. Langevin equation for heavy quark diffusion

The heavy quark diffusion in Quark Gluon Plasma can be 
treated as a Brownian motion, which is widely studied with 
Langevin equation [25,26]. During the evolution of heavy quarks, 
they can combine into a quarkonium [2,3,27,28]. The probability 
of the combination of heavy quark Q and Q̄ depends on their 
distributions in phase space and also the properties of the pro-
duced quarkonium at finite temperature [29,30]. Instead of dealing 
with heavy quark distributions, we employ the Langevin equation 
to simulate Q and Q̄ evolutions in the hot medium. Combination 
process (Q + Q̄ → (Q Q̄ )bound + g , Q + Q̄ + ζ → (Q Q̄ )bound + ζ

with ζ = g, q, ̄q) can be included through the Wigner function 
W Q Q̄ →ϒ [3]. The Langevin equation is written as

d�p
dt

= −�ηD(p)�p + �ξ (1)

where �ηD(p) and �ξ are the drag force and the noise of the hot 
medium on heavy quarks. �ξ satisfies the correlation relation

〈ξ i(t)ξ j(t′)〉 = κδi jδ(t − t′) (2)

κ is the diffusion coefficient of heavy quarks in momentum space, 
which is connected with spatial diffusion coefficient D by κ =
2T 2/D . The drag force in Langevin equation can then be deter-
mined by the fluctuation–dissipation relation [31]

ηD(p) = κ

2T E
(3)

T is the temperature of the bulk medium and E =
√

m2
Q + |�p|2 is 

the heavy quark energy.
In order to numerically solve the Langevin equation for heavy 

quark diffusions in QGP, it is discretized as below
�p(t + 	t) = �p(t) − ηD(p)�p	t + �ξ	t (4)

�X Q (t + 	t) = �X Q (t) + �p
E

	t (5)

〈ξ i(t)ξ j(t − n	t)〉 = κ

	t
δi jδ0n (6)

where �X Q is the coordinate of a heavy quark in QGP. As long as 
the time step 	t for numerical evolutions is small enough, one 
can assume free motions for heavy quarks with a constant veloc-
ity �v Q = �p/E during this time step, and update the heavy quark 
momentum by Eq. (4) at the end of each 	t due to hot medium 
effects. The medium-induced radiative energy loss [32,33] and par-
ton elastic collisions [34] of heavy quarks can be included in the 
terms of the drag force �ηD(p) and the noise �ξ . ξ i(t)i=1,2,3 in 
Eq. (6) is sampled randomly based on a Gaussian function with 
the width 

√
κ/	t .

The initial transverse momentum distribution as an input of 
Eq. (4) is obtained from PYTHIA simulations. As the initial energy 
density of QGP changes with coordinates, the heavy quark initial 
distribution in QGP affects their evolutions, which will finally affect 
the heavy quark thermalization degree and quarkonioum regenera-
tion. Heavy quark pairs are produced from parton hard scatterings, 
their density (within rapidity region 	y) is proportional to the 
number of binary collisions,

dN Q Q̄
PbPb

d�xT
= σ Q Q̄

pp (	y) × TPb(�xT −
�b
2
)TPb(�xT +

�b
2
) (7)

where σ Q Q̄
pp (	y) is the heavy quark production cross section

in proton–proton collisions within rapidity 	y. TPb(�xT ) =∫
dzρPb(�xT , z) is the thickness function of lead. Nucleus density 

ρPb(�xT , z) is taken to be the Woods–Saxon distribution. When 
colliding energy is at the order of ∼TeV, theoretical and experi-
mental studies indicate a strong nucleus (anti-)shadowing effect 
on heavy quark (quarkonium) production [11]. Furthermore, this 
effect depends on the nucleon density, which gives different mod-
ification on heavy quark production at different positions of the 
nucleus. We employ a theoretical model (EPS09 NLO) to ob-
tain a shadowing factor rS(�xT , pT , y). The initial distribution of 
heavy quarks (quarkonium) in Pb–Pb collisions is then taken as 
dN Q Q̄

PbPb
d�xT

× rS (�xT , pT , y).

2.2. Heavy quark recombination process with Wigner function

In the nucleus collisions, heavy quark pairs are produced and 
evolve inside the QGP as a Brownian motion. During QGP evolu-
tions, Q and Q̄ can meet each other and combine into a bound 
state, which may survive from the hot medium due to its large 
binding energy. If Q and Q̄ can reach kinetic equilibrium, their rel-
ative momentum (�p Q − �p Q̄ ) and relative distance ( �X Q − �X Q̄ ) will 
be small, which enhances the combination probability of Q and Q̄
[35]. The discussion about connections between heavy quark ther-
malization and the quarkonium regeneration is left to the next 
section. Wigner function is widely used for hadron production in 
the coalescence model. It gives the probability of Q and Q̄ com-
bining into a bound state with relative distance �r = �X Q − �X Q̄ , and 
momentum �q = �p Q − �p Q̄ , see the function below [3]

f (r,q) = A0 exp(− r2

σ 2(T )
)exp(−q2σ 2(T )) (8)

A0 is the normalization factor. Here we neglect the contributions 
of momentum carried by light partons in the heavy quark forma-
tion process, and use the “bb̄ → ϒ” to represent both b + b̄ →
ϒ(1S) + g and b + b̄ + ζ → ϒ(1S) + ζ . In realistic simulations, 
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only 0.01% ∼ 0.1% of bottom quarks can form a bound state in the 
expanding QGP with a lifetime of ∼ 10 fm/c and an initial temper-
ature of ∼ 500 MeV [36]. Most of them become open heavy-flavor 
hadrons with a light (anti-)quark. Considering the large ratio of 
σ bb̄

pp /σ
ϒ(1S)
pp ∼ 1000 (much larger than the charm flavor ∼ 200), 

this combination process may be important for the bottomonium 
nuclear modification factor R A A . Bottomonium properties such as 
binding energy and shape of the wave function can be modi-
fied by the hot medium. This can affect the probability of heavy 
quark combination. We include hot medium effects on bottomo-
nium properties by introducing the temperature dependence of 
Gaussian width σ(T ). It is connected with the bottomonium mean 
radius square at finite temperature by σ(T ) = √

8〈r2〉ϒ(T )/3 [3].
In order to study the bottomonium regeneration in QGP, we 

put one b and b̄ in QGP and evolve each of them with Langevin 
equation to obtain the probability W bb̄→ϒ of their combination to 
regenerate a ϒ(1S). The total yield of regenerated bottomonium 
within rapidity 	y in nucleus–nucleus collisions is scaled by the 
number of bottom pairs as

Nbb̄→ϒ
PbPb |	y = σ bb̄

pp |	y Ncoll × Wbb̄→ϒ (9)

where Ncill is the number of binary collisions. The average num-
ber of bb̄ pairs produced in central rapidity region is only ∼ 1, 
the regenerated bottomonium yield is proportional to the num-
ber of bb̄ pairs. The initial momentum and position of heavy 
quarks are randomly generated based on the distributions from 
PYTHIA simulations and Eq. (7) (both with modifications of the 
shadowing effect). At each time step, one can obtain their rela-
tive distance r and relative momentum q, and their combination 
probability P (r, q) = r2q2 f (r, q). If the probability is larger than 
a random number between 0 and 1, then the formation process 
of bottomonium happens. Otherwise, they continue the evolutions 
with Langevin equation independently until moving out of QGP 
(hadronization as open bottom hadrons). After ϒ(1S) is regener-
ated inside QGP, it will decay due to parton inelastic scatterings 
and color screening from QGP. We supplement this part by the 
rate equation dNrege

ϒ /dt = −�diss
ϒ (T )Nϒ , where �diss

ϒ is the decay 
rate from gluon and quasi-free dissociations. It is connected with 
Wigner function (see Eq. (8)). Nrege

ϒ (t) is the number of regener-
ated ϒ at time t .

After one ϒ(1S) is regenerated at the time t0, the initial condi-
tion of Eq. (10) becomes Nrege

ϒ (t0) = 1, and Nrege
ϒ (t) decreases with 

time based on the rate equations,

Nrege
ϒ (t1 + 	t) = Nrege

ϒ (t1)e−�diss(T )	t (10)

�Rϒ(t1 + 	t) = �Rϒ(t1) + �Pϒ

Eϒ

	t (11)

Note that Nrege
ϒ (t ≥ t0) ≤ 1 where t0 is the time of ϒ(1S) regen-

eration. �Pϒ ≈ �pb + �pb̄ and �Rϒ are the momentum and coordi-
nate of the center of the regenerated ϒ(1S). From hydrodynamic 
equations, the local temperature of QGP is different at different 
coordinate �R and time. Therefore, we update ϒ(1S) position at 
each time step, and take a new local temperature T of QGP at 
�Rϒ(t1 + 	t) to recalculate the decay rate �diss for ϒ(1S) evolu-
tion at the next time step. We continue Eqs. (10)–(11) from the 
time t0 of ϒ(1S) regeneration until it moves out of QGP (where lo-
cal temperature is smaller than the critical temperature Tc ). Doing 
sufficient events, Nevents

bb̄
, of putting one b and b̄ in the expanding 

QGP, and sum ϒ(1S) final yields to be Nrege
ϒ (tot), one can ob-

tain the ϒ(1S) regeneration probability from b and b̄ evolutions 
in QGP, W ¯ = Nrege

(tot)/Nevents.
bb→ϒ ϒ bb̄
Fig. 1. Upper panel: mean radius of ϒ(1S) at finite temperature with the heavy 
quark potential to be two limits: free energy V = F (dashed line) and internal en-
ergy V = U (solid line). Lower panel: binding energy of ϒ(1S) with V = F and 
V = U respectively.

2.3. Bottomonium dissociation and regeneration rates at finite 
temperature

QGP color screening reduces the binding energy of bottomo-
nium, and increases its decay rate at finite temperature. With 
heavy quark potential to be Vbb̄ = F or Vbb̄ = U [37], one can 
obtain the ϒ(1S) binding energy from solving time-independent 
radial Schrödinger equation (with h̄ = c = 1)

[− 1

2mμ

∂2

∂r2
+ Vbb̄(r, T )]ψ(r) = Eϒ(T )ψ(r) (12)

Here mμ = mb/2 is the reduced mass in the center of ϒ mass 
frame. Eϒ(T ) and ψ(r) are the binding energy and radial wave 
function of a ϒ eigenstate. The mean radius and binding energy 
(see Fig. 1) obtained consistently from Eq. (12) will be used in 
the Wigner function for bottomonium regeneration and the parton 
dissociations, respectively.

The decay rates from gluon dissociation and quasi-free disso-
ciation [38,39] with temperature dependent binding energy are 
plotted in Fig. 2. When the ϒ(1S) is strongly bound, gluon dissoci-
ation dominates the ϒ(1S) decay rate, such as at the temperature 
region of T < 0.2 GeV with Vbb̄ = U (see red dashed and solid 
lines). However at a high temperature like T = 300 MeV, strong 
color screening effect reduces the ϒ(1S) binding energy to be 
around 0.25 GeV with V = U and 0.04 GeV with V = F , which are 
far below the vacuum value ∼ 1.1 GeV [40]. This makes quasi-free 
dissociation dominates the decay rate. We include both contribu-
tions on the hot medium suppression of regenerated ϒ(1S) at the 
entire temperature region T > Tc .

The realistic heavy quark potential is between V = F and V =
U . Strong binding limit (V = U ) corresponds to the fast dissoci-
ation of ϒ(1S) and assumes no energy exchange between ϒ(1S)



822 B. Chen, J. Zhao / Physics Letters B 772 (2017) 819–824
Fig. 2. (Color online.) Decay rates of ϒ(1S) as a function of temperature. Dashed and 
solid lines are the decay rates from gluon and quasi-free dissociations respectively. 
Thick black and thin red lines are with heavy quark potential to be the free energy 
F and internal energy U .

and the thermal bath during the dissociation process. Compared 
with the weak binding limit (V = F ) which assumes a very slow 
dissociation of ϒ(1S), the limit of V = U gives a larger binding en-
ergy of ϒ(1S). In that case, it takes more energy to break ϒ(1S)

after its regeneration. Therefore, more ϒ(1S) can be regenerated 
and survive from QGP with the heavy quark potential to be V = U , 
see Fig. 4.

3. Hydrodynamic model

We employ the (2 + 1) dimensional ideal hydrodynamics to 
simulate strong expansion of finite sized QGP produced in ultra-
relativistic heavy ion collisions,

∂μT μν = 0 (13)

Here T μν = (e + p)uμuν − gμν p is the energy–momentum tensor, 
and (e, p, uμ) are the energy density, pressure and four-velocity 
of fluid cells. The equation of state of the deconfined medium is 
taken as an ideal gas of massless (u, d) quarks, 150 MeV massed s
quarks and gluons [41]. Hadron phase is an ideal gas of all known 
hadrons and resonances with mass up to 2 GeV [42]. From the 
scaling of initial temperature at 

√
sN N = 2.76 TeV Pb–Pb collisions 

which is T0 = 485 MeV, we set the initial maximum temperature 
at 

√
sN N = 5.02 TeV to be T0 = 510 MeV [43]. Based on hydrody-

namic model studies, light hadron spectra at RHIC 200 GeV Au–Au 
and LHC 2.76 TeV Pb–Pb collisions indicate a same time scale of 
QGP reaching local equilibrium τ 200 GeV

0 ≈ τ 2.76 TeV
0 ≈ 0.6 fm/c [44,

45]. Therefore, we still take the same value of τ0 = 0.6 fm/c at 
5.02 TeV Pb–Pb collisions due to its weak dependence on collid-
ing energy. The transverse expansion of QGP controlled by Eq. (13)
starts from τ0.

4. Inputs of bottom flavor

The bottomonium regeneration requires the number of bottom 
quarks in nucleus–nucleus collisions. We determine this by using 
the production cross section in pp collisions and binary collision 
scaling in Pb–Pb collisions, Nbb̄

PbPb = σ bb̄
pp Ncoll(b). Lack of experimen-

tal data about σ bb̄
pp at 5.02 TeV pp collisions, we extract its value 

by the linear interpolation between the cross sections at central 
rapidity at 1.96 TeV and 2.76 TeV collisions. At 1.96 TeV pp colli-
sions, CDF collaboration published the cross section of b-hadrons 
integrated over all transverse momenta in the rapidity |y| < 0.6 to 
be 17.6 ±0.4(stat)+2.5
−2.3(syst) μb [46]. With this we extract the cen-

tral value of the differential cross section to be dσ bb̄
pp /dy = 14.7 μb. 

Combined with the dσ bb̄
pp /dy = 23.28 ± 2.70(stat)+8.92

−8.70(syst) μb in 
the central rapidity at 2.76 TeV [47], we obtain the differential 
cross section dσ bb̄

pp /dy = 47.5 μb in the central rapidity at 5.02 TeV 
pp collisions. Our purpose is to study the contribution of regener-
ation component in the experimentally measured inclusive ϒ(1S)

yields, presented as the nuclear modification factor [15],

R inclu
A A (ϒ(1S)) = Nprim

A A (ϒ(1S)) + Nbb̄→ϒ(1S)
A A

dσ
ϒ(1S)
pp
dy 	y · Ncoll(b)

= Rprim
A A + Rrege

A A (14)

Nbb̄→ϒ(1S)
A A = W Lan+Wigner

bb̄→ϒ(1S)
(

dσ bb̄
pp

dy
	y · Ncoll) (15)

where Nprim
A A in the numerator of Eq. (14) represents the ϒ(1S)

primordial production including direct production and decay con-
tributions from excited states (1P , 2P , 2S, 3S). The second term 
Nbb̄→ϒ(1S)

A A is for the new bottomonium from b and b̄ combina-
tion during QGP evolutions, which is closely connected with the 
bottom quark diffusions in the expanding QGP and so our main 
interest in this work. W Lan+Wigner

bb̄→ϒ(1S)
is the probability of one b and 

b̄ quark combine into a ϒ(1S). dσ
ϒ(1S)
pp /dy in the denominator of 

Eq. (14) is the ϒ(1S) inclusive cross section. With the differen-
tial cross sections dσ

ϒ(1S)
pp /dy = 27 ± 1.5 nb at 1.8 TeV [48] and 

dσ
ϒ(1S)
pp /dy = 80 ± 9 nb at 7 TeV from CMS Collaboration [49] in 

the central rapidity of pp collisions, we extract the central value 
of inclusive cross section to be dσ

ϒ(1S)
pp /dy = 59.8 nb at 5.02 TeV, 

which gives the ratio of Nϒ(1S)
pp /Nbb̄

pp in central rapidity to be 0.13%, 
close to the typical order 0.1% of hidden- to open-bottom state ra-
tio in elementary hadronic collisions [50].

The coupling strength between bottom quarks and QGP is in-
dicated by the drag coefficient in Langevin equation. The spatial 
diffusion coefficient is taken to be D(2π T ) = C [51]. Different val-
ues of C will be employed to study the effects of bottom quark 
thermalization on bottomonium regeneration.

5. Bottomonium continuous regeneration in Pb–Pb collisions

In the previous work [36], we employ the Langevin equation 
plus Wigner function to calculate J/ψ and ψ(2S) regeneration 
from dynamical evolutions of (anti-)charm quarks, with an as-
sumption that they are produced at each certain temperature, 
without the following suppression from hot medium after their 
regeneration. This can well describe the relationship between el-
liptic flows of regenerated charmonium eigenstates (1S, 2S), but 
can not give a good description of their yields, due to the lack 
of hot medium suppression effect. In this work, we improve our 
approach of “Langevin equation + Wigner function” by consider-
ing hot medium modifications on quarkonium properties, which 
change quarkonium regeneration and dissociation rates through 
the mean radius 〈r〉ϒ(T ) and binding energy Eϒ(T ) of quarkonium.

In the realistic simulations, we generate one b and b̄ randomly 
in the coordinate and momentum space based on the probability 
distributions given in previous sections. Then we evolve them sep-
arately with two individual Langevin equations, and check if they 
can form a ϒ(1S) at each time step. In central collisions, b and 
b̄ are easier to lose energy and meet each other to form a new 
ϒ(1S). Smaller value of the parameter C indicate a stronger cou-
pling strength between bottom quarks and QGP, which results in 
larger regeneration rate W Lan+Wigner.
bb̄→ϒ
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Fig. 3. (Color online.) Nuclear modification factor of regenerated ϒ(1S) from b and 
b̄ quark combination as a function of number of participants Np in central rapidity 
region |y| < 2.4 at 5.02 TeV Pb–Pb collisions. The heavy quark potential is taken as 
internal energy V = U (used to determine the mean radius and binding energy of 
ϒ(1S)). Lines with triangle, square and circle markers are for diffusion coefficient 
D(2π T ) = 2, 4, 7 respectively. Note that these D values satisfy the relation of 1 �
D(2π T ) � 7 from pQCD and Lattice calculations [52–54].

Now we do the full calculations of bottomonium regenera-
tion in heavy ion collisions, and give the regeneration part (see 
Eqs. (14)–(15)) of inclusive Rϒ(1S)

A A in Fig. 3. In central colli-
sions where QGP temperature is high, both number of bb̄ pairs 
and the combination probability of b and b̄ quarks become 
large in Pb–Pb collisions. This makes Rϒ(1S)

A A increase with Np . 
The slope of Rϒ(1S)

A A (Np) is larger than the slopes of Nbb̄
PbPb(Np)

and W Lan+Wigner
bb̄→ϒ

(Np). From the nuclear modification factor of B-
hadrons, the situation of D(2π T ) = 4 seems better to describe the 
heavy quark energy loss in 

√
sN N = 5.02 TeV Pb–Pb collisions [51]. 

In the most central collisions, the regeneration contributes to the 
inclusive Rϒ(1S)

A A with around (10 ∼ 20)% (V = U ) and (5 ∼ 10)%
(V = F ). But it is only ∼ 4% at minimum bias centrality (with 
Np ≈ 200). Note that transport model calculations gave the re-
generation R A A to be ∼ 8% in semi-central (Np ≈ 200) and most 
central Pb–Pb collisions in the rapidity |y| < 2.4 at 2.76 TeV [19,
50].

One way to testify the contribution of ϒ(1S) regeneration in 
heavy ion collisions is to study the rapidity dependence of the 
pT −integrated Rϒ(1S)

A A (y). The bottom quark differential cross sec-
tion decreases with rapidity, which will suppress the ϒ(1S) re-
generation at forward rapidity. For charmonium, the decreasing 
tendency of R J/ψ

A A (y) with rapidity is very strong and explained 
well by the regeneration mechanism [15]. As charmonium regen-
eration mainly dominates at the low pT bins and drops to zero at 
middle and high pT bins. Therefore, R J/ψ

A A shows strong decreasing 
tendency with rapidity at pT > 0 (where regeneration dominates) 
and almost no rapidity dependence at pT � 4 GeV/c. Considering 
the fraction of ϒ(1S) regeneration is only 10 ∼ 15% in its inclusive 
R A A at the impact parameter b = 0, we expect a weaker rapidity 
dependence of Rϒ(1S)

A A (y). In the minimum bias centrality, this ten-

dency should be much weaker and Rϒ(1S)
A A (y) almost shows a flat 

feature, just as experimental data shows [20,55].
We also did the calculations in ϒ(1S) weak binding scenario 

(V = F ), see Fig. 4. With weak binding (V = F ), ϒ(1S) can only 
be regenerated at T < 400 MeV where its binding energy is non-
zero. Also, the dissociation rate of regenerated ϒ(1S) is larger for 
V = F compared with V = U , which makes regenerated ϒ(1S)

easier to be dissociated. ϒ(1S) regeneration with V = F is smaller 
(see Fig. 4). This is also consistent with transport model calcula-
tions. The ϒ(1S) R A A from regeneration contribution is around 6%
Fig. 4. (Color online.) Nuclear modification factor of regenerated ϒ(1S) from b and 
b̄ quark combination as a function of number of participants Np in central rapidity 
region |y| < 2.4 at 5.02 TeV Pb–Pb collisions. The heavy quark potential is taken as 
V = U and V = F .

(with D(2π T ) = 4) and 3% (with D(2π T ) = 7) in the most cen-
tral collisions. In all centralities, its contribution is smaller than 
the value of V = U , see Fig. 4.

Considering that D(2π T ) = 4 ∼ 7 can well explain the nuclear 
modification factor of open heavy flavor meson, we expect that 
regeneration contribute ∼ 0.1 to the final inclusive Rϒ(1S)

A A . This is 
also consistent with the results in Ref. [56] where Rrege

A A is around 
0.1.

6. Summary

We employ the Langevin equation to describe the diffusion of 
bottom quarks, and Wigner function for the b and b̄ quarks to re-
generate ϒ(1S)s during the QGP evolutions. After the regeneration 
of a ϒ(1S), it also suffers the color screening and parton inelastic 
scatterings from QGP. The dissociation and regeneration rates of 
ϒ(1S) are connected with each other by the temperature depen-
dent binding energy Eϒ(T ) and mean radius 〈r〉ϒ(T ), which can be 
obtained simultaneously from Schrödinger equation with the color 
screened heavy quark potential extracted from Lattice calculations. 
Including cold nuclear matter effects, we give the full calculations 
of ϒ(1S) regeneration in Pb–Pb collisions at 

√
sN N = 5.02 TeV. 

With different drag coefficient in Langevin equation, the energy 
loss of b and b̄ quarks is different. Strong coupling between bot-
tom quarks and QGP can make b and b̄ lose more energy, and 
increases the probability of their formation into a bound state. In 
the scenario of V = U (V = F ), we obtain the ϒ(1S) regeneration 
Rrege

A A to be 0.1 ∼ 0.2 (0.06 ∼ 0.1) in the most central collisions, but 
negligible in minimum bias centrality. With realistic evolutions of 
bottom quarks and their hadronization process, we study the re-
generation contribution to the ϒ(1S) nuclear modification factor 
R A A measured in experiments, and also build the connection be-
tween bottom quark energy loss and bottomonium regeneration in 
this work.
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