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Abstract Recently holographic prescriptions were pro-
posed to compute the quantum complexity of a given state
in the boundary theory. A specific proposal known as ‘holo-
graphic subregion complexity’ is supposed to calculate the
complexity of a reduced density matrix corresponding to a
static subregion. We study different families of singular sub-
regions in the dual field theory and find the divergence struc-
ture and universal terms of holographic subregion complex-
ity for these singular surfaces. We find that there are new
universal terms, logarithmic in the UV cut-off, due to the
singularities of a family of surfaces including a kink in (2
+ 1) dimensions and cones in even dimensional field theo-
ries. We also find examples of new divergent terms such as
squared logarithm and negative powers times the logarithm
of the UV cut-off parameter.
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1 Introduction

Quantum entanglement has been widely studied in the con-
text of holographic field theories after the pioneering pro-
posal of Ryu–Takayanagi (RT) [1,2]. Quantum complexity
is another notion in quantum information theory which has
been recently included in the context of holographic field
theories. Roughly speaking, the quantum complexity of a
state is the minimum number of information gates needed
to prepare a state from a given reference state. There have
been made some efforts to develop a holographic dual for
quantities related to this notion in the context of AdS/CFT
correspondence [3–11].

From a more geometrical point of view, it is well estab-
lished that the von Neumann entropy of a subregion in a given
state corresponds to the area of a co-dimension two surface in
the gravity solution dual of the state. One has also tried to find
geometrical duals for other quantities in the context of infor-
mation theory; such as Renyi entropies [12,13], information
metric (fidelity susceptibility) [14,18,19],1 Fisher informa-
tion [20], etc. Some of these geometrical objects are still
co-dimension two objects in the dual theory but some are
not.

There are two distinct proposals to compute complexity of
a state in the dual gravity theory. The first one, which is some-
times called the ‘complexity = volume’ proposal, states that
the complexity of a given state at a given time in the boundary
theory is given by the volume of an extremal co-dimension
one surface in the bulk which meets the corresponding time
slice. To be more concrete, one can state this proposal as

CV = max

[
V

GN�

]
, (1.1)

where the maximum is chosen among those co-dimension
one surfaces which end on the corresponding time slice on the
conformal boundary. In this proposal � is some length scale

1 For related work also see [15–17].
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which should be identified case by case, e.g. the radius of the
asymptotically AdS solution or the radius of the horizon in
the case of AdS black-hole geometries. This non-recognized
length scale seems to be a disadvantage of this proposal.

The other proposal, which is sometimes called ‘complex-
ity = action’, states that the complexity of a given state at a
given time is equal to the on-shell action of the dual (Ein-
stein) gravity theory computed in the domain of dependence
of any Cauchy surface in the bulk which ends on the given
time slice at the conformal boundary.2 This region is known
as the Wheeler–DeWitt patch, corresponding to the given
boundary time slice. Although this proposal (in contrast with
the previous one) does not need any length scale by defini-
tion, it has its own challenges due to surface terms and corner
contributions of the Wheeler–DeWitt patch (see [11,22]). We
will come back to this point in the next section.

A natural generalization of the ‘complexity = volume’
proposal concerns with generic mixed states. A specific way
of constructing a mixed state out of the entire state of a system
is to trace out a part of the space-like manifold of the dual field
theory. The mixed state constructed in this way is described
by what is known as the reduced density matrix. Then the
complexity of such a (static) state is proposed to be given
by the volume enclosed by the Ryu–Takayanagi surface and
the corresponding subregion in the boundary theory.3 To be
more concrete the subregion complexity is defined as [18]

Csubregion =
V (γ )

8π�GN
, (1.2)

where γ is the RT surface of the corresponding subregion
and � is a length scale of the dual geometry. This proposal
(up to a numerical factor) reduces to ‘complexity = volume’
given in (1.1) if the subregion is chosen to be the whole time
slice of the dual theory.

Different proposals for complexity all lead to UV diver-
gent results since they all contain a volume of a surface which
reaches the conformal boundary of an asymptotically AdS
geometry. This is the same as what happened in the case
of holographic entanglement entropy.4 Natural questions as
regards such quantities are: What is the divergent structure
of this quantity? How it can be regularized? What kind of
universal information can be extracted from it? Is it possi-
ble to find any monotonic function out of this quantity under
the RG flow of the dual theory?5 Specifically for the case of
subregion complexity one may also question the (subregion)
shape dependence of the divergence structure.

2 Recently some progress has been made for complexity in higher
derivative theories in [21].
3 Recently a covariant generalization of this proposal is given in [11].
4 A concrete example of a dual CFT calculation for Fischer information
metric in the case of marginal deformations has been presented in [14].
5 See [23] for a related case study.

Some of the above questions have been recently addressed
for different proposals of complexity and even for the com-
plexity of reduced states due to smooth subregions [11]. The
goal of this paper is to investigate the divergence structure of
subregion complexity when the subregion is a singular sur-
face. Similar to the case of entanglement entropy we expect
new divergent (sometimes new universal) terms due to sin-
gularities in the subregion. There have been made a consider-
able amount of efforts investigating the role of singularities
of entangling regions in the context of (mostly holographic)
entanglement entropy [24–37]. In the case of entanglement
entropy it has been shown that in the smooth limit beyond
the leading order one can give some information as regards
the four point function of the stress tensor [38].

We will consider the simplest case of a singular surface
in a (2 + 1)-dimensional field theory and its generalizations
to sufficiently symmetric singular surfaces in higher dimen-
sions (see [27,28] for a similar analysis for entanglement
entropy) and we study the divergent structure due to subre-
gion complexity proposal [18].

The rest of this paper is organized as follows: in Sect. 2
we define different families of the singular surfaces which we
study. If the reader is just interested in the final results, we
have summarized our subsequent results in this section. In
the following sections we study complexity of different sub-
regions and we finally in the last section address interesting
directions for future studies.

2 Singular subregions and summary of results

We are interested in asymptotically AdS solutions of Ein-
stein gravity with a negative cosmological constant in d + 1
dimensions. The simplest case which we study in this section
is the pure AdSd+1 solution in the Poincaré patch with the
following coordinates:

ds2 =
L2

z2

[
− dt2 + dz2 + dρ2

+ρ2(dθ2 + sin2 θd�2
n) +

m∑
i=1

(dxi )2

]
, (2.1)

where z is the radial coordinate and L is the AdS radius. Here
dθ2 + sin2 θd�2

n is the metric on a unit sphere Sn+1 and the
term

∑m
i=1(dxi )2 indicates a flat Rm space in Cartesian coor-

dinates. The conformal boundary of this solution is achieved
in the z → 0 limit. Hence, the boundary metric reads

ds2 = −dt2 + dρ2 + ρ2(dθ2 + sin2 θd�2
n)

+
m∑
i=1

(dxi )2. (2.2)
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For the whole manifold of the bulk, as well as the bound-
ary, the range of the parameter θ is (−π, π ) for n = 0 and
(0, π ) for n > 0. However, throughout this paper we con-
sider different kinds of singular subregions, i.e. the conic
singular subregions, in which −� < θ < � for n = 0 and
0 < θ < � for n > 0. The simplest conical geometry is
a kink (k) in d = 3 where n = m = 0, as the following
subregion of the boundary:

k = {tE = 0, ρ = [0,∞),−� < θ < �}.

The cone family (cn) of singular surfaces in d = n + 3
dimensions consists of manifolds with m = 0 and n ≥ 1 in
Eq. (2.2) confined to the region

cn = {tE = 0, ρ = [0,∞), θ = �}.

The crease family in d = 3 + m dimensions is the manifold
(k × Rm) derived by considering n = 0 and m ≥ 1 in Eq.
(2.1). We also consider mixed cases where both integers n
and m are non-zero which we call them cone-crease.

We also study singular surfaces in asymptotically AdSd+1

geometries given by

ds2 =
L2

z2

[
dz2 + f1(z)

(
−dt2 + dρ2

+ρ2(dθ2 + sin2 θd�2
n)

)
+ f2(z)R2d�2

m

]
. (2.3)

In these cases f1 and f2 are functions which are determined
by the gravity equations of motion. We study different cones
and creases in these asymptotically AdS geometries.

In Ref. [27] the holographic entanglement entropy for the
above singular surfaces is calculated in Einstein gravity and

also some specific higher derivative gravity theories. In this
paper we calculate the holographic complexity in each case
by using the proposal of Ref. [18]. As we have mentioned in
the previous section, according to this proposal the volume
of a co-dimension one surface enclosed by the subregion in
the boundary theory and the RT co-dimension two surface in
the bulk is proportional to the complexity of the (mixed) state
corresponding to the subregion. To do so, one should find the
RT surface corresponding to subregion A, which we denote
by γA, and calculate the volume V (γA) enclosed by γA. The
holographic complexity given by Eq. (1.2) is proposed [18].
We choose � in the asymptotically AdS gravity solutions to
be identified with the AdS radius. In what follows we will
study this quantity in different singular subregions.

Summary of results

Since the detailed calculations presented in the following
sections may be involved, here we briefly summarize our
results. We study the divergent structure of holographic sub-
region complexity and find new divergences due to singular
subregions which in some cases lead to new universal terms.

In the case of a crease entangling region in a (2 + 1)-
dimensional boundary theory (see the left panel of Fig. 1)
we find that there is a new divergent term of the form log δ,
which is a universal term. The entanglement entropy for the
same subregion also leads to a logarithmic universal term.

d Background
space-time

Geometry of
entangling surface

Crease
dimension

Expected
divergences

New
divergences

3 R3 k 0 1/δ2 log δ

4 R4 c1 0 1/δ3, 1/δ log δ

5 R5 c2 0 1/δ4, 1/δ2, log δ log2 δ

6 R6 c3 0 1/δ5, 1/δ3, 1/δ log δ

7 R7 c4 0 1/δ6, 1/δ4, 1/δ2, log δ log2 δ

> 3 Rd k × Rd−3 d − 3 1/δd−1, 1/δd−3 –
4 R3 × S1 k × S1 1 1/δ3 –
5 R3 × S2 k × S2 2 1/δ4, 1/δ2, log δ –
6 R3 × S3 k × S3 3 1/δ5, 1/δ3 –
6 R4 × S2 k × (R1 × S2) 3 1/δ5, 1/δ3, 1/δ –
5 R5 c1 × R1 1 1/δ4, 1/δ2, log δ 1/δ

6 R6 c1 × R2 2 1/δ5, 1/δ3, 1/δ 1/δ2

5 R4 × S1 c1 × S1 1 1/δ4, 1/δ2, log δ 1/δ

6 R4 × S2 c1 × S2 2 1/δ5, 1/δ3, 1/δ 1/δ2, log δ

6 R6 c2 × R1 1 1/δ5, 1/δ3, 1/δ 1/δ log δ

7 R7 c2 × R2 2 1/δ6, 1/δ4, 1/δ2, log δ 1/δ2 log δ

6 R5 × S1 c2 × S1 1 1/δ5, 1/δ3, 1/δ 1/δ log δ

For the case of a crease entangling region with a flat locus,
which we denote by k × Rm (see the right panel of Fig. 1),
there is no universal term due to the singularity and even no
actual new divergent term, although the subleading divergent
term gets corrections from the singularity. This resembles
the entanglement entropy in having no new universal term.
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Fig. 1 Left: The blue plane represents a constant time slice of a d = 3 CFT with a kink (k) entangling region on it. Middle: Conical entangling
region in a d = 4 CFT. Right: A crease (k × Rm ) entangling region as a direct generalization of the kink in higher dimensions

Even for the case of k × S1, for which again the locus of the
singularity is flat, there is no new universal term and no new
divergent contribution from the singularity.

In the case of creases with a curved locus we again find
that there is no new divergent term. This is in contrast with
what happens for entanglement entropy of these surfaces. We
study the case of k × S2 and k × S3 and also k × R × S2 and
in all of them, although there is a log δ term, it is suppressed
with a positive power of δ, resulting in no new divergent term.

The most interesting behavior happens for conical subre-
gions which we show by cn (see the middle panel of Fig. 1).
For these subregions we find that there is a new universal
log δ term for odd n and log2 δ for even n. We have worked
out a few examples for n = 1, 2, 3, 4. In comparison with the
entanglement entropy of these surfaces we find a shift from
odd to even n where log2 δ and log δ appear, respectively.
It would be very interesting to see whether these universal
terms are related to some characteristic feature of the dual
field theory.

The other family of singular surfaces which we have stud-
ied are conical creases of the form cn × Rm and cn × Sm .
Among these surfaces the only case where we find that a
universal log δ term appears is c1 × S2. In other cases new
divergent terms appear due to the singularity which has the
form of 1/δ log δ or 1/δ2 log δ. These are very similar to what
has been recently found from the ‘complexity = action’ pro-
posal [11]. This similarity may be due to the singularities
within the Wheeler–DeWitt patch. We have summarized our
results in the table.

3 Flat locus singular surfaces

3.1 Kink k

The simplest case is a kink in a 2 + 1 dimensional boundary
theory. The bulk metric dual to the vacuum state is given by

ds2 =
L2

z2

(
−dt2 + dz2 + dρ2 + ρ2dθ2

)
, (3.1)

and the subregion in defined in constant time slice as ρ ∈
[0, H ] and θ ∈ [−�,�], where H is an IR cut-off. The
corresponding Ryu–Takayanagi surface can be described by
z = z(ρ, θ ); hence the entanglement entropy is given by

Skink
3 =

2πL2

l2p

∫
dρdθ

√
ρ2 + ρ2z′2 + ż2

z2 , (3.2)

where z′ = ∂ρz and ż = ∂θ z. Since there is no length scale
except ρ, the radial coordinate z depends on ρ linearly [26],
i.e.

z = ρ h(θ ), (3.3)

and h(θ ) should be found such that it minimizes the entropy
(area) functional and is anchored to the kink in the asymptotic
boundary. Applying this to Eq. (3.2) gives

S3,k =
4πL2

l2p

∫ H

δ/h0

dρ

ρ

∫ �−ε

0
dθ

√
1 + h2 + ḣ2

h2 , (3.4)

where ḣ = dh/dθ , h(0) = h0 and z = δ is UV cut-off.
However, since the integrand of Eq. (3.4) does not depend on
θ explicitly, we have the following conserved quantity along
the θ translation:

K =

(
1 + h2

)
h2

√
1 + h2 + ḣ2

=

√
1 + h2

0

h2
0

. (3.5)

To find the holographic subregion complexity we should
write the volume V (γ ) of the subregion of the bulk,

V (γ ) = L3
∫ H

δ/h0

dρρ

∫ �−ε

−�+ε

dθ

∫ z

δ

dz

z3

=
L3

2

∫ H

δ/h0

dρρ

∫ �−ε

−�+ε

dθ

(
1

δ2 − 1

z2

)

=
�L3

2δ2

(
H2 − δ2

h2
0

)
− L3

∫ H

δ/h0

dρ

ρ

∫ �−ε

0

dθ

h2 , (3.6)
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Fig. 2 Right panel: The opening angle � is plotted versus the turning point h0. Left panel: The coefficient of the universal (logarithmic) term of
complexity for a kink is plotted versus the boundary data �

where ε is a short distance cut-off in the boundary corre-
sponding to δ in the bulk. To clarify the singular terms of
Eq. (3.6) we convert θ integration to an integral over h as
follows:

∫ �−ε

0

dθ

h2 =
∫ δ/ρ

h0

dh

h2ḣ
. (3.7)

One can easily find the following expression from Eq. (3.5):

ḣ = −
√

(1 + h2)2h4
0 − h4(1 + h2

0)(1 + h2)

h4(1 + h2
0)

. (3.8)

Using the coordinate transformation y =

√
1

h2 − 1

h2
0

, where

y → ∞ as we approach the boundary via θ → �, we have

∫ δ/ρ

h0

dh

h2ḣ
=

∫ √
(ρ/δ)2−1/h2

0

0
dy

×
√ (

1 + h2
0

)
(
1 + h2

0 + y2h2
0

) (
2 + h2

0 + y2h2
0

) . (3.9)

In the limit δ → 0 and hence y → ∞ the integrand is finite.
So we can find it just for y → ∞. We have finally

V (γ ) = L3
[
�

2

H2

δ2 + α(h0) log

(
δ

H

)]
+ finite , (3.10)

where α(h0) is the cut-off independent term given by

α(h0) =
∫ ∞

0
dy

√ (
1 + h2

0

)
(
1 + h2

0 + y2h2
0

) (
2 + h2

0 + y2h2
0

) , (3.11)

which vanishes in the smooth region limit (i.e. � → π ).
Thus the divergent structure of the holographic complexity
of the kink is given by

Ck =
L2

8πGN

[
�

2

H2

δ2 + α(h0) log

(
δ

H

)]
. (3.12)

In Fig. 2 we have plotted α as a function of the opening angle
of the kink �. As expected our numerical result shows that
in the smooth limit, that is, � → π , the new universal term
vanishes.

3.2 Cone cn

As indicated in the previous section, to consider a conical
subregion cn with n = d − 3, we use the following form of
the bulk metric:

ds2 =
L2

z2

[
−dt2 + dz2 + dρ2 + ρ2(dθ2 + sin2 θd�2

n)
]
,

(3.13)

where d�n is the metric of a unit sphere Sn . The subregion
in the boundary is defined by ρ ∈ [0, H ] and θ ∈ [0,�].
The extension of this region in the bulk is denoted by the
function z(ρ, θ ). One should find the profile of this extension
via minimizing the following area functional:

S = Ld−1�n

∫
dρdθ

ρd−3

zd−1

× sind−3 θ
√

ρ2 + ρ2z′2 + ż2, (3.14)

where �n is the volume of the unit n-sphere and ż = ∂θ z, z′ =
∂ρz.

As in the previous case, z can depend on ρ only linearly,
i.e. z(ρ, θ ) = ρ h(θ ). Using this assumption and the change
of variable y = sin θ = y(h), which gives

ḣ =

√
1 − y2

y′ , ḧ = − yy′2 + (1 − y2)y′′

y′3 ,

the equation of motion for the case d = 4 reads as follows:
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0 = h(1 + h2)y(1 − y2)y′′

−yy′ (3 + h2 + (3 + 5h2 + 2h4)y′2)

+2hy2
(

1 + (1 + h2)y′2) − h
(

1 + (1 + h2)y′2)

+(3 + h2)y3y′ − hy4, (3.15)

where y′ = dy
dh and y′′ = d2y

dh2 . Since we are interested in the
singular behavior of the complexity near the boundary, where
h → 0, let us concentrate on this limit (still for d = 4). For
this reason we consider a power law expansion for y(h) in
terms of h and put it in Eq. (3.15). Then using the boundary
condition y(0) = sin � we find the following result:

y = sin(�) − 1

4
cos(�) cot(�)h2 + O(h4). (3.16)

The expansion for ḣ follows consequently from ḣ =√
1 − y2

y′(h)
as

ḣ = −2 tan(�)

h
− 1

2
h(3 − cos(2�)) csc(2�) log(h) + O (h) .

(3.17)

The corresponding volume is given by

V (γ ) = L4�1

∫
dρρ2

∫
dθ sin(θ )

∫ z

δ

dz

z4

=
L4

3
�1

∫
dρρ2

∫
dθ sin(θ )

(
1

δ3 − 1

z3

)

=
2πL4H3

9δ3 (1 − cos(�))

− L42π

3

∫ H

δ/h0

dρ

ρ

∫ δ/ρ

h0

dh
sin(θ )

h3ḣ
+ finite. (3.18)

Using asymptotic expansions (3.16) and (3.17) the integrand
of (3.18) has the following behavior near the boundary:

sin(θ )

h3ḣ
∼ −1

2

cos(�)

h2

+
1

8
cot2(�) sin(�) csc(2�)(3 − cos(2�)) log(h)

+
1

8
cos(�) cot2(�) + O (h) .

(3.19)

Let us divide the singular parts of V (γ ) into I1 and L2 where
the latter contains the singularities due to the integrand while
the former shows the contribution of the limits of the inte-
grations, i.e.

I1 = − L42π

3

∫ H

δ/h0

dρ

ρ

∫ δ/ρ

h0

dh

[
sin(θ )

h3ḣ
+

1

2

cos(�)

h2

× 1

8
cot2(�) sin(�) csc(2�)

× (3 − cos(2�)) log(h) − 1

8
cos(�) cot2(�)

]
, (3.20)

I2 =
2πL4H3

9δ3 (1 − cos(�)) − L42π

3

∫ H

δ/h0

dρ

ρ

∫ δ/ρ

h0

× dh

[
− 1

2

cos(�)

h2 +
1

8
cot2(�) sin(�) csc(2�)

× (3 − cos(2�)) log(h) +
1

8
cos(�) cot2(�)

]
. (3.21)

So the singular part of the complexity is given by

C4,c1 =
1

8πLGN
(I1 + I2). (3.22)

In the limit h → δ/ρ there is no singular term from integra-
tion over h (neither from the integrand nor from the integra-
tion limits); we have just a logarithmic singularity from the
lower limit of the integration over ρ as follows:

I1 =
L42π

3
log δ

∫ 0

h0

dh

(
sin(θ )

h3ḣ
+

1

2

cos(�)

h2

− 1

8
cot2(�) sin(�) csc(2�)(3 − cos(2�)) log(h)

−1

8
cos(�) cot2(�)

)
. (3.23)

The singular terms in I2 can be calculated directly. Hence we
have

C4,c1 =
L3

8GN

[
2 (1 − cos(�))

9

H3

δ3

−cos(�)

3

H

δ
+

β(h0)

3
log

(
δ

H

)]
, (3.24)

where

β(h0) = 2
∫ 0

h0

dh(
sin(θ )

h3ḣ
+

1

2

cos(�)

h2

− 1

8
cot2(�) sin(�) csc(2�)(3 − cos(2�)) log(h)

− 1

8
cos(�) cot2(�))

− cos(�)

h0
− h0

4
cos(�) cot2(�)

+
1

4
h0(1 − log(h0)) cot2(�) sin(�)

× csc(2�)(3 − cos(2�)). (3.25)

In Fig. 3 we have plotted the turning point in terms of the
opening angle for c1. As expected in the smooth limit, that is,
� → π/2, the coefficient of the new divergent term vanishes.
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Fig. 3 Right panel: The opening angle � is plotted versus the turning point h0 for a cone in d = 4. Left panel: The coefficient of the universal
(logarithmic) term of complexity is plotted versus the boundary data �
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Fig. 4 Right panel: The opening angle � is plotted versus the turning point h0 for a cone in d = 5. Left panel: The coefficient of the universal
term [first line of Eq. (3.26)] of complexity is plotted versus the boundary data �

One can perform similar computations for cones in higher
dimensions. We have done this for c2 and c3 in CFT5 and
CFT6, respectively. The method is similar to what we have
presented in d = 4, so we will skip the details and report the
results in these cases.

In the case of c2 one finds two families of divergent terms
proportional to log δ and log2 δ, which are given by

Clog
5,c2

=
L4

8GN
log

(
δ

H

)

×
(∫ 0

h0

dh

[
sin2(θ )

h4ḣ
− 4 cos2(�) cot(�)

9h

+
2 cos(�) sin(�)

3h3

]
− cos(�) sin(�)

3h2
0

)

Clog2

5,c2
=

L4

36GN
cos2(�) cot(�) log2

(
δ

H

)
. (3.26)

One should note that Clog2

5,c2
is not a universal term. In Fig. 4 we

have plotted the turning point in terms of the opening angle

for c2. As expected in the smooth limit, that is, � → π/2,
the coefficient of the new divergent term vanishes.

For the case c3 we find

Clog
6,c3

=
L5π

20GN
log

(
δ

H

) [ ∫ 0

h0

dh

(
sin3(θ )

h5ḣ
+

3

4

cos(�) sin2(�)

h4

− 3

256

cos(�)(67 + 35 cos(2�))

h2

− 27

8192
(155 + 106 cos(2�)

+ 15 cos(4�)) cot2(�) csc(�))

)

− cos(�) sin2(�)

4h3
0

+
3 cos(�)(67 + 35 cos(2�)

256h0

+
27h0

8192
(155 + 106 cos(2�)

+ 15 cos(4�)) cot2(�) csc(�))

]
. (3.27)
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3.3 Crease k × Rm

Consider the following metric for a AdSd+1 space-time in
the bulk:

ds2 =
L2

z2

[
−dt2 + dz2 + dρ2 + ρ2dθ2 +

m∑
i=1

(dxi )2

]
(3.28)

where the Cartesian coordinates xi denote a Rm flat space for
m = d−3. Consider a kink subregion defined as θ ∈ [−�,�]
and ρ ∈ [0,∞] for the full range of xi ∈ [−∞,∞]. How-
ever, to avoid IR singularities in the following calculations
we restrict ourselves to the limited region ρ ∈ [0, H ] and

xi ∈ [− H̃
2 , H̃

2 ]. Assume that the extension of the entangling
region in the bulk is given by the radial coordinate z = z(ρ, θ ).
Hence, the induced metric on the extended surface reads

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L2

z2 (1 + (z′)2)
L2

z2 z′ ż
L2

z2 z′ ż L2

z2 (ρ2 + ż2)

L2

z2

. . .
L2

z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.29)

The area functional to be minimized is given by

Sd,k×Rd−3 = Ld−1 H̃d−3
∫

dρdθ

√
ż2 + ρ2(1 + z′2)

zd−1 . (3.30)

Again one can use the scaling property z = ρh(θ ), to find
the equation of motion:

h(1 + h2)ḧ + (d − 1)ḣ2 + h4 + dh2 + (d − 1) = 0. (3.31)

Equation (3.31) can be integrated to find the following con-
stant along the θ variation:

Kd =
(1 + h2)

(d−1)
2

h(d−1)
√
ḣ2 + h2 + 1

=
(1 + h2

0)
(d−2)

2

h(d−1)
0

. (3.32)

Noticing that h is a decreasing function near the boundary,
we have from Eq. (3.32)

ḣ = −
√

1 + h2
√

(1 + h2)d−2 − K 2
d h

2(d−1)

kdhd−1 . (3.33)

One can find the volume, thus:

V (γ ) = Ld H̃d−3
∫

ρdρ

∫
dθ

∫ z

δ

dz

zd

=
LdH2 H̃d−3�

(d − 1)δd−1 − 2Ld H̃d−3

(d − 1)

×
∫ H

δ/h0

dρ

ρd−2

∫ δ/ρ

h0

dh

ḣhd−1
.

In the limit h → 0 the integrand in the last term behaves as

1

hd−1ḣ
∼ −Kd + O(h2). (3.34)

So we can write

V (γ ) =
Ld H̃d−3�H2

(d − 1)δd−1

− 2Ld H̃d−3

(d − 1)

∫ H

δ/h0

dρ

ρd−2

×
∫ δ/ρ

h0

dh

(
1

ḣhd−1
+ Kd

)
+

2Ld H̃d−3

(d − 1)

×
∫ H

δ/h0

dρ

ρd−2

∫ δ/ρ

h0

dhKd . (3.35)

We can separate the divergent term as follows:

I1 =
∫ H

δ/h0

dρ

ρd−2

∫ δ/ρ

h0

dh

(
1

ḣhd−1
+ Kd

)
. (3.36)

Let us denote

J (h) =
1

ḣhd−1
+ Kd ; (3.37)

it is clear from Eq. (3.33) that J (h) ∼ (h2) as h → 0. We
can find the integral (I1) by integration by parts

I1 = − 1

(d − 3)Hd−3

∫ δ/H

h0

dh J (h) − δ

d − 3

×
∫ H

δ/h0

dρ

ρd−1 J (h)|h= δ
ρ

= − 1

(d − 3)Hd−3

∫ δ/H

h0

dh J (h) − δ

d − 3
I2. (3.38)

Now for finding the divergences of I2, we make a change of
variable from ρ to q = δ

ρ
and then Taylor expand the terms

around δ = 0

I2 = − 1

δd−2

∫ δ/H

h0

dqqd−3 J (q)

= − 1

δd−2

×
[∫ 0

h0

dqqd−3 J (q) +
δ

H
(qd−3 J (q))q=δ/H + · · ·

]

= − 1

δd−2

∫ 0

h0

dqqd−3 J (q) + O(δd ). (3.39)
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From Eq. (3.33) qd−3 J (q) ∼ qd−1 for small q, hence in the
above expression the integral over q is finite. We have also

I1 =
δ

d − 3

1

δd−2

∫ 0

h0

dqqd−3 J (q) + finite. (3.40)

So the singular terms of the volume are as follows:

V (γ ) =
LdH2 H̃d−3�

(d − 1)δd−1 +
2Kd Ld H̃d−3

(d − 1)

×
[
− h0

d − 3

(
h0

δ

)d−3

+
δ

d − 2

(
h0

δ

)(d−2)
]

− 2Ld H̃d−3

(d − 1)(d − 3)δd−3

×
∫ 0

h0

dqqd−3 J (q) + finite. (3.41)

The complexity is finally given by

Ck×Rm =
V (γ )

8πLGN
. (3.42)

3.4 Conical crease cn × Rm

In this section we consider the special cases of n = 1, 2
and m = 1, 2 in the metric (2.1) which we denote them by
cone-crease cn × Rm . As in the previous cases the subregion
is restricted to the intervals θ ∈ [0,�], ρ ∈ [0, H ] and
xi ∈ [−H̃/2, H̃/2] where H and H̃ indicate IR cut-offs. The
extended surface in the bulk is demonstrated by the function
z = z(ρ, θ ) with the following induced metric:

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L2

z2 (1 + (z′)2) L2

z2 z′ ż
L2

z2 z′ ż L2

z2 (ρ2 + ż2)

L2ρ2 sin2(θ)
z2 gab(Sn )

L2

z2

. . .
L2

z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.43)

where g[ab](Sn) is the metric of the sphere (Sn). The surface
function to be extremized is the following:

Sd,cn×Rm = Ld−1 H̃m�n

∫
dρdθ

ρn sinn(θ )
√
ż2+ρ2(1+z′2)

zd−1 .

(3.44)

The equation of motion for z(ρ, θ ) after imposing the scaling
relation z = ρh(θ ) reads

h(1 + h2)ḧ + n cot(θ )hḣ3 + (d + nh2 − 1)ḣ2

+ n cot(θ )h(1 + h2)ḣ

+ (n + 1)h4 + (d + n)h2 + d − 1 = 0. (3.45)

First consider n = 1 and m = 1, i.e. d = 5. Let us expand
y = sin(θ ) and ḣ near the boundary in powers of h.

y = sin(�) − 1

6
h2 cos(�) cot(�)

− 1

432
h4(19−5 cos(2�)) cot2(�) csc(�)+O(h5), (3.46)

ḣ(θ ) = −3 tan(�)

h
+

1

3
h(8 − cos(2�)) csc(2�) + f0h

2

− 1

216
h3(435 − 404 cos(2�)

+ 52 cos(4�)) csc3(�) sec(�) + O(h4), (3.47)

where α0 is fixed by the condition f (h0) = 0 at O (
h2

)
and

vanishes at O (
h3

)
. Using Eqs. (3.46) and (3.47) the volume

functional is as follows:

V (γ ) =
L5H3 H̃�1

12δ4 (1 − cos(�))

− L5 H̃�1

4

∫ H

δ/h0

dρ

ρ2

∫ δ/ρ

h0

dh
sin(θ )

ḣh4

= V1 + V2. (3.48)

Near the boundary h → 0, we have

sin(θ )

ḣh4
∼ −cos(�)

3h3 +
(−13 + 5 cos 2�) cot(�) csc(�)

108h

− 1

9
f0 cos(�) cot(�). (3.49)

Now we can use it to make the h integral in holographic
complexity finite, i.e.

V2 = − L5 H̃�1

4

∫ H

δ/h0

dρ

ρ2 ×
∫ δ/ρ

h0

dh

×
[

sin(θ )

ḣh4
+

cos(�)

3h3 − (−13 + 5 cos(2�)) cot(�) csc(�)

108h

]

− L5 H̃�1

4

∫ H

δ/h0

dρ

ρ2

×
∫ δ/ρ

h0

dh

[
− cos(�)

3h3 +
(−13 + 5 cos(2�)) cot(�) csc(�)

108h

]

= I1 + I2, (3.50)
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where

I2 = − L5 H̃�1

4

[
cos(�)H

6δ2

− 1

δ

(
cos(�)

3h0
+

(−13 + 5 cos(2�)) cot(�) csc(�)h0

108

)

− (−13 + 5 cos(2�)) cot(�) csc(�)

108H
log

(
δ

H

) ]
.

(3.51)

Let us indicate the integrand in I1 by J5(h) and integrate it
by parts,

I1 = − L5 H̃�1

4

∫ H

δ/h0

dρ

ρ2

∫ δ/ρ

h0

dh J5(h)

= − L5 H̃�1

4

×
[
− 1

H

∫ δ/H

h0

dh J5(h) − δ

∫ H

δ/h0

dρ

ρ3 J5(h)|h=δ/ρ

]
.

(3.52)

Near the boundary J5(h) ∼ O(h0). We further make the
coordinate transformation q = δ/ρ and Taylor expand the
second term of Eq. (3.52) in terms of δ to find

I1 = − L5 H̃�1

4

×
[
− 1

H

∫ δ/H

h0

dh J5(h) + 1/δ

∫ δ/H

h0

dqq J5(q)

]

= − L5 H̃�1

4

×
[
− 1

H

∫ 0

h0

dh J5(h) + 1/δ

∫ 0

h0

dqq J5(q)

−δ f0 cos(�) cot(�)

9H2

]
+ O(δ). (3.53)

So we have

V (γ ) = − L5 H̃�1

4

[
− H3

3δ4 (cos(�) − 1) +
cos(�)H

6δ2

− 1

δ

(
cos(�)

3h0
+

(−13+5 cos(2�)) cot(�) csc(�)h0

108

−
∫ 0

h0

dqq J5(q)

)

− (−13 + 5 cos(2�)) cot(�) csc(�)

108H
log

(
δ

H

)]

+ finite.
(3.54)

For c1 × R2 the result is as follows:

V (γ ) = − L6�1 H̃
2

5

[
− H3(1 − cos(�))

3δ5
+

cos(�)H

12δ3

+
1

δ2

(− cos(�)

8h0
− h0 cot(�) csc(�)(−11 + 5 cos(2�))

512

+
1

2

∫ 0

h0

dqq2 J (q)

)
+

cot(�) csc(�)(−11 + 5 cos(2�))

256Hδ

]
,

(3.55)

where

J (h)=
sin(θ )

h5ḣ
+

cos(�)

4h4 − cot(�) csc(�)(−11+5 cos(2�))

256h2 .

(3.56)

For c2 × R1 similar steps lead to

V (γ ) = −�2L6 H̃

5

[
− H4(� − 1

2 sin(2�))

8δ5
+

cos(�) sin(�)H2

12δ3

× 1

δ

(
−cos(�) sin(�)

4h2
0

− cos2(�) cot(�)(log(h0) − 1)

16

+
∫ 0

h0

dqq J (q)

)
+

cos2(�) cot(�)

16

1

δ
log

(
δ

H

) ]
,

(3.57)

where

J (h) =
sin2(θ )

ḣh5
+

cos(�) sin(�)

2h4 − cos2(�) cot(�)

16h2 . (3.58)

4 Curved locus singular surfaces

In this section, we consider several singular embeddings
which have a curved locus such as k × � and cn × �, where
the locus � will take the form Sm or Sm−p × Rp.

4.1 Crease k × �

Consider the geometries k × S2, k × S3 and k × R × S2. We
will see that singularities with even dimensional locus will
contribute through a logarithmic term. To begin with, let us
consider a d = 5 CFT on background R3 × S2. The action
for the six-dimensional dual Einstein gravity reads

I6 =
1

l4p

∫
d6x

√−g

[
20

L2 + R

]
. (4.1)
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We consider the following ansatz for the solution:

ds2 =
L2

z2

[
dz2+ f1(z)(dt2 + dρ2 +ρ2dθ2)+ f2(z)R2

1d�2
2

]
,

(4.2)

where d�2
2 = dξ2

0 +sin2(ξ0)dξ2
1 represents a two-sphere met-

ric and f1 and f2 are functions of the radial coordinate. The
boundary of this solution is R3 × S2 with R1 the radius of
S2; so we can recover the flat boundary results in the limit
R1 → ∞. Using the Fefferman–Graham expansion near the
boundary to find f1 and f2 leads to

f1 = 1 +
z2

12R2
1

+
17z4

576R4
1

− z6

324R6
1

+ · · · , (4.3)

f2 = 1 − z2

4R2
1

− 5z4

192R4
1

+
z6

72R6
1

+ · · · . (4.4)

The subregion of interest here is ρ ∈ [0, H ] and θ ∈
[−�,�] where H is again a IR cut-off. The coordinates are
(z, θ, ξ0, ξ1) on the minimal surface and ρ = ρ(z, θ ) on the
sphere. In the limit R1 → ∞ one may expect from the case
of the entanglement entropy that the leading order correction
to the holographic subregion complexity would be O(1/R2

1),
however, we show that in this case there is no new divergent
term up to O(1/R4

1). We first work out the solution ρ(z, θ )
in this approximation with the following ansatz:

ρ(z, θ )=
z

h(θ )
+

z2

R1
g2(θ )+

z3

R2
1

g3(θ ) +
z5

R4
1

g5(θ ) + O
(
z7

)
.

(4.5)

Using the ansatz (4.5) in the equation of motion of ρ(z, θ )
leads to vanishing of even terms, g2n . In order to sepa-
rate the logarithmic divergence, we impose ρ = ρ0(z, θ ) +
ρ1(z, θ )/R2

1 + ρ2(z, θ )/R4
1, where ρ0 = z/h(θ ), and ρ1 =

z3g3(θ ), ρ2 = z5g5(θ ) are higher corrections in the large R1

regime. Now we come back to the metric (4.2) and find the
volume holographic complexity to be

V (γ ) = L5R2
1�2

∫
dρdθdz

f1 f2ρ

z5

= L5R2
1�2

∫
dθdz

f1 f2
z5

∫ H

ρ(z,θ)
dρρ

=
L5R2

1�2

2

(
−

∫
dθdz

f1 f2ρ2

z5
+ H2

∫
dθdz

f1 f2
z5

)

= V1 + V2. (4.6)

Now, we can insert the ansatz ρ = ρ0 + ρ1/R2
1 + ρ2/R4

1 with
ρ0 = z/h(θ ), ρ1 = z3g3(θ ) and ρ2 = z5g5(θ ) and use (4.4) in
the integrand to simplify the results,

V1 = L5R2
1�2

[ ∫ δ

zm

dz

z3

∫ h1c

h0

dh

ḣh2
− 1

6R2
1

∫ δ

zm

dz

z

×
∫ h1c

h0

dh

ḣh2
+

2

R2
1

∫ δ

zm

dz

z

∫ h1c

h0

dhg3(θ )

ḣh

− 5

288R4
1

∫ δ

zm
dzz

∫ h1c

h0

dh

ḣh2
− 1

3R4
1

∫ δ

zm
dzz

×
∫ h1c

h0

dh
g3

ḣh
+

1

R4
1

∫ δ

zm
dzz

∫ h1c

h0

dh
g2

3(θ )

ḣ

+
2

R4
1

∫ δ

zm
dzz

∫ h1c

h0

dh
g5(θ )

ḣh

]
, (4.7)

V2 = L5R2
1�2H

2�

(
1

4δ4 − 1

12R2
1δ2

)

+
5�L5R2

1�2H2

288R4
1

log δ + finite, (4.8)

where δ is the UV cut-of. We have also changed the inte-
gration limits from (−�,�) to (0,�) and then changed the
integration variable in V1 to h(θ ). It is instructive to use the
following constant of motion:

K5 =
(1 + h2)2

h4
√

1 + h2 + ḣ2
, (4.9)

which is related to h(0) at the turning point. To find the log-
arithmic divergent parts it is enough to find the asymptotic
behavior of h and g3. Solving g3 in terms of h in the limit of
small h leads to

g3 =
b3

h3 +
1 + 88b3

56h
+

4 + 72b3

189
h + O

(
h3

)
, (4.10)

g5 =
9b2

3

5h5
+
b3(345 + 15856b3)

7000h3 + O
(
h−1

)
, (4.11)

where b3 can be fixed by requiring g3 to have an extremum
at θ = 0. We will need to find the series expansion of h1c in
terms of δ as follows:

h1c(δ) =

(
1

H
+
b3H

R2
1

− b2
3H

3

5R4
1

)
δ

+

(
(1 + 88b3)

56HR2
1

+
(1 + 88b3)Hb3

56R4
1

)
δ3 + O

(
δ5

)

(4.12)

where h1c = h(� − ε). The result is obtained for the leading
corrections in R1 at any order of δ. Now we look at (4.7) to
analyze the divergent terms in the asymptotic limit
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1

ḣh2
∼ −K5h

2 + 2K5h
4 + O

(
h6

)
(4.13)

and

g3

ḣh
∼ −K5b3 − K5(1 − 24b3)h2

56
+ O

(
h4

)
, (4.14)

g2
3

ḣ
∼ −K5b2

3

h2 − k5(b3 + 32b2
3)

28
+ O

(
h2

)
, (4.15)

g5

ḣh
∼ −9K5b2

3

5h2 − b3(345 − 9344b3)K5

7000
+ O

(
h2

)
. (4.16)

We organize different terms of the integrand in the following
form:

I1 =
∫ δ

zm

dz

z3

∫ h1c

h0

dh

ḣh2
, (4.17)

I2 =
∫ δ

zm

dz

z

∫ h1c

h0

dh

ḣh2
, (4.18)

I3 =
∫ δ

zm

dz

z

∫ h1c

h0

dhg3

ḣh
=

∫ δ

zm

dz

z

∫ h1c

h0

× dh

(
g3

ḣh
+ K5b3

)
− K5b3

∫ δ

zm

dz

z
(h1c − h0)

= I ′
1 + I ′

2, (4.19)

I ′′
1 =

∫ δ

zm
zdz

∫ h1c

h0

dh

ḣh2
, (4.20)

I ′′
2 =

∫ δ

zm
zdz

∫ h1c

h0

dh
g3

ḣh2
, (4.21)

I ′′
3 =

∫ δ

zm
zdz

∫ h1c

h0

dh(
g2

3

ḣ
+
K5b2

3

h2 )

−
∫ δ

zm
zdz

∫ h1c

h0

dh
K5b2

3

h2

= I ′′′
1 + I ′′′

2 , (4.22)

I ′′
4 =

∫ δ

zm
zdz

∫ h1c

h0

dh(
g5

ḣh
+

9K5b2
3

5h2 )

−
∫ δ

zm
zdz

∫ h1c

h0

dh
9K5b2

3

5h2

= I ′′′
3 + I ′′′

4 . (4.23)

Now we differentiate each of them with respect to the UV
cut-off and look for 1/δ divergent terms. One can easily find

dI1
dδ

=
1

δ3

∫ h1c

h0

dh

ḣh2

=
1

δ3

∫ 0

h0

dh

ḣh2
+

1

δ2

dh1c

dδ

[
1

ḣh2

]
h=h1c

+ · · ·

=
1

δ3

∫ 0

h0

dh

ḣh2
+ O

(
δ0

)
(4.24)

dI2
dδ

=
1

δ

∫ h1c

h0

dh

ḣh2

=
1

δ

∫ 0

h0

dh

ḣh2
+
dh1c

dδ

[
1

ḣh2

]
h=h1c

+ · · ·

=
1

δ

∫ 0

h0

dh

ḣh2
+ O

(
δ2

)
, (4.25)

dI ′
1

dδ
=

1

δ

∫ h1c

h0

dh
[ g3

ḣh
+ K5b3

]

=
1

δ

∫ 0

h0

dh

(
g3

ḣh
+K5b3

)
+
dh1c

dδ

[
g3

ḣh
+K5b3

]
h=h1c

+ ...

=
1

δ

∫ 0

h0

dh

(
g3

ḣh
+ K5b3

)
+ O

(
δ2

)
, (4.26)

dI ′
2

dδ
= −K5b3

δ
(h1c − h0) =

h0K5b3

δ

− K5b3

H
(1 + b3H

2/R2
1 − b2

3H
4/5R4

1) + O
(
δ2

)
,

(4.27)

dI ′′
1

dδ
= δ

∫ h1c

h0

dh

ḣh2

= δ

∫ 0

h0

dh

ḣh2
+ δ2 dh1c

dδ

[
1

ḣh2

]
h=h1c

+ · · ·

= δ

∫ 0

h0

dh

ḣh2
+ O

(
δ4

)
, (4.28)

dI ′′
2

dδ
= δ

∫ h1c

h0

dh
g3

ḣh

= δ

∫ 0

h0

dh
g3

ḣh2
+ δ2 dh1c

dδ

[
g3

ḣh

]
h=h1c

+ · · ·

= δ

∫ 0

h0

dh

ḣh2
+ O

(
δ2

)
, (4.29)

dI ′′′
1

dδ
= δ

∫ h1c

h0

dh

(
g2

3

ḣ
+
K5b2

3

h2

)

= δ

∫ 0

h0

dh

(
g2

3

ḣ
+
K5b2

3

h2

)
+ δ2 dh1c

dδ

[
g2

3

ḣ
+
K5b2

3

h2

]
h=h1c

+ · · ·

= δ

∫ 0

h0

dh

(
g2

3

ḣ
+
K5b2

3

h2

)
+ O

(
δ2

)
. (4.30)

dI ′′′
2

dδ
= −δ

∫ h1c

h0

K5b2
3

h2

= δK5b
2
3

(
1

h1c
− 1

h0

)

= − δK5b2
3

h0
+ K5b

2
3H

[
1 − b3H2

R2
1

+
b2

3H
4

5R4
1

]
+ O

(
δ2

)
, (4.31)

dI ′′′
3

dδ
= δ

∫ h1c

h0

dh

(
g5

ḣh
+

9K5b2
3

5h2

)

= δ

∫ 0

h0

dh

(
g5

ḣh
+

9K5b2
3

5h2

)
+ δ2 dh1c

dδ

[
g5

ḣh
+

9K5b2
3

5h2

]
h=h1c

+ · · ·

= δ

∫ 0

h0

dh

(
g5

ḣh
+

9K5b2
3

5h2

)
+ O

(
δ2

)
, (4.32)
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dI ′′′
4

dδ
= −δ

∫ h1c

h0

9K5b2
3

5h2

= δ
9K5b2

3

5

(
1

h1c
− 1

h0

)

= −δ
9K5b2

3

5h0
+

9K5b2
3H

5

[
1 − b3H2

R2
1

+
b2

3H
4

5R4
1

]
+ O

(
δ2

)
.

(4.33)

So from (4.17)–(4.27) we can find the logarithmic diver-
gences in the holographic complexity for the k×S2 geometry
as follows:

Clog
k×S2 =

L5R2
1�2

8πLG

[
− 1

6R2
1

∫ 0

h0

dh

ḣh2
+

2

R2
1

∫ 0

h0

dh

×
(
g3

ḣh
+ K5b3

)
+

2h0K5b3

R2
1

+
5�L5�2H2

288R2
1

]

× log(δ). (4.34)

Note that in this case no new divergent term appears due to
the singular surface. All new log δ terms are suppressed with
a factor of δα where α ≥ 1.

Subregion k × S3

Now we want to find the holographic subregion complexity
for the k×S3 geometry in a CFT on R3×S3. We will show that
in this case the singularity gives no logarithmic contribution
to the subregion complexity. Consider the following metric:

ds2 =
L2

z2

[
dz2+ f1(z)(dt2 + dρ2 +ρ2dθ2)+ f2(z)R2

1d�2
3

]
,

(4.35)

where d�2
3 = dξ2

0 + sin2(ξ0)dξ2
1 + sin2(ξ0) sin2(ξ1)dξ2

2 is the
unit S3 and we find f1 and f2 to be

f1 = 1 +
3z2

20R2
1

+
69z4

1600R4
1

+
z6

R6
1

(
33

8000
− 1

200
log z

)
+ O

(
z8

)
,

f2 = 1 − 7z2

20R2
1

− 11z4

1600R4
1

+
z6

R6
1

(
67

8000
+

1

200
log z

)
+ O

(
z8

)
.

(4.36)

Similar to the previous case the induced coordinates on the
RT surface are (z, θ, ξ0, ξ1, ξ2) and ρ = ρ(z, θ ). Using the
equation of motion for h we can find the following constant
of motion:

K6 =
(1 + h2)5/2

h5
√

1 + h2 + ḣ2
, (4.37)

which can be fixed in terms of the boundary data. Using the
metric (4.35) we find the holographic complexity as

V (γ ) = L6R3
1�3

∫
dρdθdz

f1 f
3/2
2 ρ

z6

= L6R3
1�3

∫
dθdz

f1 f
3/2
2

z6

∫ H

ρ(z,θ)
dρρ =

L6R3
1�3

2

×
(

−
∫

dθdz
f1 f

3/2
2 ρ2

z6 + H2
∫

dθdz
f1 f

3/2
2

z6

)

= V1 + V2. (4.38)

Inserting the ansatz ρ = ρ0 + ρ1/R2
1, ρ0 = z/h(θ ) and

ρ1 = z3g3(θ ) and using the expansions (4.36) in the inte-
grand simplify the result to

V1 = L6R3
1�3

∫ δ

zm

dz

z2

∫ h1c

h0

dh

ḣh2

×
(

1

2z2 − 9

20R2
1

+
1

R2
1

hg3(θ )

)
(4.39)

and

V2 = L6R3
1�3H

2�

(
1

10δ5
− 9

60R2
1δ3

)
+ finite, (4.40)

where δ is the UV cut-of, such that ρ(z,� − ε) = H and zm
is defined such that ρ(zm, 0) = H . We have also changed the
integration limits from (−�,�) to (0,�) and then changed
the integration variable in V1 to h(θ ).

Similar to what we have done in the previous sections in
detail, one can work out the logarithmic divergence in this
case. Here we step the details and report to the final result

Ck×S3 =
L6R3

1�3

8πLGN

[
�H2

10δ5
− 9�H2

60R2
1δ3

− 1

6δ3

∫ 0

h0

dh

ḣh2
+

9

20R2
1δ

×
∫ 0

h0

dh

ḣh2
− 1

R2
1δ

∫ 0

h0

dh
g3

ḣh

]
. (4.41)

In this case no new divergent term appears due to the singular
surface and all new log δ terms are suppressed with a factor
of δα where α ≥ 1.

Subregion k × R1 × S2

In the following we give another example showing that an
odd dimensional locus does not contribute to logarithmic
singularities, although it has non-zero curvature. We consider
a CFT defined on R4 × S2. The bulk metric is given by
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ds2 =
L2

z2

[
dz2 + f1(z)(dt2 + dρ2 + ρ2dθ2 + dx2)

+ f2(z)R2
1d�2

2

]
, (4.42)

where d�2 is the line element over S2, and f1 and f2 have
the following expansions:

f1 =1+
z2

20R2
1

+
z4

100R4
1

+
z6

R6
1

(
1

1200
− 1

400
log z

)
+ O

(
z8

)
,

f2 =1 − z2

5R2
1

− 7z4

800R4
1

+
z6

R6
1

(
7

4800
+

1

200
log z

)
+ O

(
z8

)
.

(4.43)

The subregion k × R1 × S2 is defined by θ ∈ [−�,�], x ∈
[−∞,∞] and ρ ∈ [0,∞]. we put IR cut-offs on the x and
ρ directions such that x ∈ [−H̃/2, H̃/2] and ρ ∈ [ρm, H ],
where ρm is given in terms of δ. Similar to the previous cases
(z, θ, x, ξ0, ξ1) are the coordinates on the RT surface with
ρ = ρ(z, θ ). The equation of motion for h gives the following
constant of motion:

K6 =
(1 + h2)5/2

h5
√

1 + h2 + ḣ2
. (4.44)

Returning to the metric (4.42) we find the holographic com-
plexity as

V (γ ) = L6R2
1 H̃�2

∫
dρdθdz

f2 f
3/2
1 ρ

z6

= L6R2
1 H̃�2

∫
dθdz

f2 f
3/2
1

z6

∫ H

ρ(z,θ)
dρρ

=
L6R2

1 H̃�2

2

×
(

−
∫

dθdz
f2 f

3/2
1 ρ2

z6 + H2
∫

dθdz
f2 f

3/2
1

z6

)

= V1 + V2. (4.45)

We then insert the ansatz ρ = ρ0 + ρ1/R2
1, ρ0 = z/h(θ ) and

ρ1 = z3g3(θ ) and use (4.43) in the integrand to simplify the
expressions as follows:

V1 = −L6R2
1 H̃�2

∫ zm

δ

dz

z2

∫ h1c

h0

dh

ḣh2

×
(

1

z2 − 1

8R2
1

+
2

R2
1

hg3(θ )

)
, (4.46)

V2 = L6R2
1�2H

2 H̃�

(
1

5δ5
− 1

24R2
1δ3

)
+ finite. (4.47)

Again we step over the details of the rest of this calculation
and find

Ck×R1×S1 =
L6R2

1 H̃�2

8πLG

(
�H2

5δ5
− �H2

24R2
1δ3

− 1

3δ3

∫ 0

h0

dh

ḣh2
+

1

8R2
1δ

∫ 0

h0

dh

ḣh2
− 2

R2
1δ

∫ 0

h0

dh
g3

ḣh

)
.

(4.48)

As in the case of k×S2 and k×S3 new logarithmic divergent
terms in this case are also suppressed by a factor of δα with
a positive power.

4.2 Conical crease cn × �

In this section, we will calculate the holographic complexity
for subregions with conical singularities of the form cn ×Sm .

Subregion c1 × S1

To begin with, we consider the simplest case with m = 1. In
this case, the background geometry for CFT is R4 × S1. The
dual bulk geometry is then given by

ds2 =
L2

z2

[
dz2 + f1(z)(dt2 + dρ2 + ρ2dθ2

+ ρ2 sin2(θ )dφ2) + f2(z)R2
1dξ2

0

]
, (4.49)

where f1 = 1+O(1/R6
1) and f2 = 1+O(1/R6

1). The singular
subregion of our interest is defined as θ ∈ [0,�], ξ0 ∈
[0, 2π ], φ ∈ [0, 2π ] and ρ ∈ [0, H ].

One can find that g3 = 0 is the exact solution for this
case and since the equation of motion for h is the same as
c1 × R1 case, the holographic subregion complexity might
become the same. Returning to the metric (4.49) gives the
holographic complexity:

V (γ ) = L5R14π2
∫

dρdθdz
f 1/2
2 f 3/2

1 ρ2 sin(θ )

z5

= L5R14π2
∫

dθdz
f 1/2
2 f 3/2

1 sin(θ )

z5

∫ H

ρ(z,θ)
dρρ2

=
L5R14π2

3

×
(
−

∫
dθdz

f 1/2
2 f 3/2

1 ρ3

z5
+H3

∫
dθdz

f 1/2
2 f 3/2

1

z5

)
.

A similar analysis to the previous cases leads to the following
divergence structure for the holographic subregion complex-
ity for this case:
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Cc1×S1 =
L4R1π

6GN

[
1

4δ4 H
3(1 − cos(�)) − cos(�)H

6δ2

+
1

δ

(
cos(�)

3h0
+

(−13 + 5 cos(2�)) cot(�) csc(�)h0

108

− cos(�) cot(�) f0h2
0

18

−
∫ 0

h0

dh

(
sin(θ)

ḣh3
+

cos(�)

3h2

− (−13 + 5 cos(2�)) cot(�) csc(�)

108
+

cos(�) cot(�) f0h

9

) )

+
(−13 + 5 cos(2�)) cot(�) csc(�)

108H
log(δ)

]
+ finite.

(4.50)

Subregion c1 × S2

Next we consider the singular subregion c1 × S2 in a CFT
defined on R4 × S2. The bulk metric is given by

ds2 =
L2

z2

[
dz2 + f1(z)(dt2 + dρ2 + ρ2dθ2

+ ρ2 sin(θ )2dφ2) + f2(z)R2
1d�2

2

]
, (4.51)

where d�2 is the line element over S2, and f1 and f2 have
the following expansions:

f1 = 1+
z2

20R2
1

+
z4

100R4
1

+
z6

R6
1

(
1

1200
− 1

400
log z

)
+O

(
z8

)
,

f2 = 1 − z2

5R2
1

− 7z4

800R4
1

+
z6

R6
1

(
7

4800
+

1

200
log z

)
+O

(
z8

)
.

(4.52)

Using the metric (4.51) we find the holographic complexity
as

V (γ ) = 2πL6R2
1�2

∫
dρdθdz

f2 f
3/2
1 ρ2 sin(θ )

z6

= 2πL6R2
1�2

∫
dθdz

f2 f
3/2
1 sin(θ )

z6

∫ H

ρ(z,θ)
dρρ2

=
2πL6R2

1�2

3

×
(

−
∫

dθdz
f2 f

3/2
1 ρ3

z6 + H3
∫

dθdz
f2 f

3/2
1

z6

)
.

(4.53)

A similar analysis to the previous sections leads to

Clog
c1×S2 =

L5R2
1�2

12GN

[
3

R2
1

(∫ 0

h0

dh

[
sin(θ )g3

ḣh2
− cos(�)

80h2

+
cos(�)(1 + csc2(�)) log(h)

384

+
cos(�)(−3 + 27 cot2(�) − 45 csc2(�) + 3840b3)

15360

]

+
cos(�)

80h0

+
cos(�)(1 + csc2(�))

384
(h0 log(h0) − h0)

+
cos(�)(−3 + 27 cot2(�) − 45 csc2(�) + 3840b3)h0

15360

)

− 1

8R2
1

(∫ 0

h0

dh

[
sin(θ )

ḣh3
+

cos(�)

4h2

− cos(�) csc2(�)(−11 + 5 cos(2�))

256

]

− cos(�)

4h0
− cos(�) csc2(�)h0(−11 + cos(2�))

256

)]
log(δ).

(4.54)

5 Discussions

In this paper we studied the divergence structure of holo-
graphic subregion complexity for various singular surfaces.
We showed that there are new divergences due to singularities
in the subregion. More specifically we have shown that for
a kink in a (2+1)-dimensional field theory and also cones cn
in even dimensional field theories a new universal log δ term
appears. In odd dimensional field theories the singularity of a
cone cn gives rise to a log2 δ divergent term. We also showed
that surprisingly crease singularities of any type do not give
rise to any universal term or even any new divergent term. For
generalized conical singularities the situation is completely
different. There are examples for which new power law diver-
gences appear but there is no new universal term due to the
singularity. We found also an example, i.e. c1 × S2, with a
curved locus that has a new universal term. Another type of
conical singularity has 1

δ
log δ and 1

δ2 log δ divergent terms
for even and odd dual field theories, respectively. The latter
family is very similar to what has been recently found using
the ‘complexity = action’ proposal on the Wheeler–DeWitt
patch which also possesses corners. We have summarized all
of these results in a table in Sect. 2.

There are several directions to follow in future work.
Regarding the divergence structure of subregion complexity,
the most important question is whether one can define any
monotonic function from the universal terms which leads to
a kind of ’c-function’ in higher odd-dimensional dual field
theories.

Another interesting open question is how to general-
ize complexity proposals beyond Einstein gravity. Recently
there have been some proposals trying to address this ques-
tion (see e.g. [39]).

A natural question as regards this work is how to study
the role of singularities of subregions in the ‘complexity =
action’ proposal. Recently some progress have been made in
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[11] for spherical subregions. The authors have proposed the
intersection between the “entanglement wedge” and the cor-
responding WDW patch for ‘complexity = action’ for mixed
states constructed from subregions. It would be instructive to
understand this proposal by considering more complicated
examples.
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