Physics Letters B ••• (••••) •••-••

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Corrigendum

Corrigendum to "Onset of η -nuclear binding in a pionless EFT approach" [Phys. Lett. B 771 (2017) 297–302]

N. Barnea^a, B. Bazak^b, E. Friedman^a, A. Gal^{a,*}

ARTICLE INFO

Article history: Received 19 September 2017 Accepted 3 October 2017 Available online xxxx Editor: W. Haxton

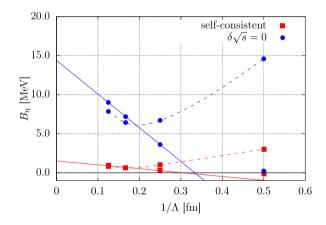
ABSTRACT

A three-body force acting between the η -meson and two nucleons was overlooked inadvertently in the model description and discussion in the published version of our paper "Onset of η -nuclear binding in a pionless EFT approach" [Phys. Lett. B 771 (2017) 297–302] while present in the actual numerical calculations. The stated conclusion that a stabilizing ηNN contact term was not needed is therefore incorrect. Such a three-body force, associated with a new low energy constant $d_{\eta NN}^{\Lambda}$, must be introduced at leading order to stabilize η -nucleus systems.

© 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

A three-body ηNN force was inadvertently overlooked in the potential model description and discussion in Ref. [1]. In the actual calculations, however, the leading order interaction between the η and the nucleons was composed of the ηN term discussed in Sect. 2.3, supplemented by an ηNN term

$$V_{\eta N_i N_i} = d_{\eta NN}^{\Lambda} \delta_{\Lambda}(r_{\eta N_i}, r_{\eta N_i}). \tag{1}$$


Here, $\delta_{\Lambda}(r_{\eta N_i}, r_{\eta N_j})$ is a product of normalized pairwise Gaussians $\delta_{\Lambda}(r_{\eta N_i})$ and $\delta_{\Lambda}(r_{\eta N_j})$, with range parameter inversely proportional to the momentum-scale parameter Λ , as defined by Eq. (4) of Ref. [1]. For the results presented in the paper, the low energy constant (LEC) $d_{\eta NN}^{\Lambda}$ was set equal to the nuclear NNN LEC d_3^{Λ} . Setting $d_{\eta NN}^{\Lambda}=0$, the η -deuteron (ηd) system, and therefore any η -nucleus system, would collapse as $\Lambda \to \infty$.

The parameter $d_{\eta NN}^{\Lambda}$ is a free parameter to be fixed by experimental data. In the absence of such data one may estimate its value using the nuclear NNN LEC, $d_{\eta NN}^{\Lambda} = d_3^{\Lambda}$, as done in [1], or to set a bound on its value accepting that ηd is unbound [2], i.e. set $d_{\eta NN}^{\Lambda}$ so that $B_{\eta}(\eta d) = 0$. To check the sensitivity of the results in [1] to these distinct choices of $d_{\eta NN}^{\Lambda}$, we present in Figs. 1 and 2 calculations of η separation energies B_{η} in η^3 He and η^4 He,

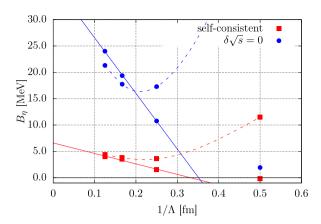
E-mail address: avragal@savion.huji.ac.il (A. Gal).

https://doi.org/10.1016/j.physletb.2017.10.008

0370-2693/© 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

Fig. 1. $B_{\eta}(\eta^3 \text{He})$ as a function of $1/\Lambda$, calculated using ηN potentials $v_{\eta N}^{\text{GW}}(E)$ for two choices of the ηNN LEC. Solid lines: $d_{\eta NN}^{\Lambda} = d_{\Lambda}^{\Lambda}$ [1], dashed lines: $d_{\eta NN}^{\Lambda}$ fitted to produce $B_{\eta}(\eta d) = 0$. Self consistent calculations are marked by squares (red); calculations using threshold values $v_{\eta N}^{\text{GW}}(E_{\text{th}})$ are marked by spheres (blue). Linear extrapolations to a point-like interaction, $\Lambda \to \infty$, are marked by straight lines.

respectively, using ηN potentials $v_{\eta N}^{\rm GW}(E)$ under these two choices of $d_{\eta NN}^{\Lambda}$. Figs. 1 and 2 update the original Figs. 4 and 5 in [1].


Figs. 1 and 2 demonstrate that the two choices made for the three-body ηNN LEC yield practically identical values of B_{η} in the limit $\Lambda \to \infty$. For values of Λ near the physical breakdown scale $\Lambda \approx 4 \text{ fm}^{-1}$, however, B_{η} differs by about 0.7 MeV for η^3 He and 2 MeV for η^4 He between the two choices applied in self consistent

^a Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel

^b IPNO, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France

DOI of original article: https://doi.org/10.1016/j.physletb.2017.05.066.

Corresponding author.

Fig. 2. Same as in Fig. 1, but for η^4 He instead of η^3 He.

calculations (lower group of curves). Since ηd is unbound [2], the choice marked in dashed lines in both figures is likely to somewhat overestimate B_{η} . Nevertheless, these η separation energies are in good agreement with the non-EFT B_{η} values calculated recently using the same two-body energy dependent ηN interaction [3].

References

- [1] N. Barnea, B. Bazak, E. Friedman, A. Gal, Phys. Lett. B 771 (2017) 297.
- [2] B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80 (2015) 43.
- [3] N. Barnea, E. Friedman, A. Gal, Nucl. Phys. A 968 (2017) 35.