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We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and
relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics
in an attempt to learn about the light quark dynamics. We highlight the properties of particular states
accessible in nowadays laboratories that would help in discriminating between different dynamical
models. The advance in the knowledge of light quark dynamics is a key tool for the understanding
of the existence of exotic hadrons.
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1. Introduction

Recently, there have been exciting developments in heavy-
baryon physics, both theoretically and experimentally. Results from
LHC and future charm-bottom factories are expected to add to
the excitement in this field in the near future. A major focus of
activity with the current LHCb detector is the study of the proper-
ties of beauty and charm hadrons [1,2]. Baryonic states containing
two heavy quarks should be visible with the current detector, as
the Ξcc isodoublet. However, current set of data will certainly be
insufficient for angular analyses aimed at confirming the quark
model predictions for the spin–parity of these states. These stud-
ies will require the statistics and improved triggering of the LHCb
upgrade [3]. In the next few years, more results are expected to ap-
pear in currently running experiments, e.g. Belle [4], BES-III [5] and
the future PANDA experiment at the FAIR facility [6]. Tremendous
efforts are also being done in lattice QCD simulations to minimize
the systematic errors in the prediction of ground and excited heavy
baryon masses [7–14].

Baryons containing heavy quarks provide an interesting lab-
oratory for studying QCD. They combine two different regimes:
the slow relative motion of the heavy quark with the relativistic
motion of the light quarks. While the mass of heavy baryons is
measured as part of the discovery process, no spin or parity quan-
tum numbers of a given state have been measured experimentally,
but they are assigned based on quark model expectations. Such
properties can only be extracted by studying angular distributions
of the particle decays, that are available only for the lightest and
most abundant species. For excited heavy baryons the data sets are
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typically one order of magnitude smaller than for heavy mesons
and therefore the knowledge of radially and orbitally excited states
is very much limited. Therefore, guidelines for assigning quantum
numbers to new states or to indicate new states to look for are re-
quired by experiment. Likewise, forthcoming experimental studies
will also help to constrain theoretical models and to advance in the
understanding of QCD realizations at low energies. We do under-
stand ground state heavy quark baryons, both in the quark model
and in the lattice QCD. The main issue is therefore to determine
quantum numbers of excited states. Here, a coherent theoretical
and experimental effort is required.

On the other hand, the advent of the XY Z puzzle, new particles
that hint at four-quark matter [15], has made manifest our poor
knowledge about the light quark dynamics and the urgent need of
a better understanding before any explanation about states already
observed or predictions of other resonances could be thoughtfully
made. Particular dynamics proposed predicted a handful of exotics
that had not been observed and therefore could be used as a hint
of the inadequacy of the dynamical model. In this respect, it has
been suggested that we can learn more on light quark dynamics
from singly heavy baryons, Q qq, than from the light baryon sector,
qqq [16].

Heavy baryons have been the matter of study during the last
two decades [17–39]. After the discovery of the first charmed
baryons, several theoretical works [17–21] based on potential
models developed for the light baryon or meson spectra started
analyzing properties of the observed and expected states. Later on,
Capstick and Isgur [22] studied heavy baryon systems in a rela-
tivized quark potential model applying a variational approach to
obtain the mass eigenvalues and bound state wave functions by
using a harmonic oscillator basis. Roncaglia et al. [23] predicted
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the masses of baryons containing one or two heavy quarks us-
ing the Feynman–Hellmann theorem and semiempirical mass for-
mulas. Silvestre-Brac [24] studied ground state charmed and bot-
tom baryons using Faddeev equations in configuration space. Ex-
cited states were studied by diagonalization in a harmonic oscil-
lator basis up to eight quanta. Jenkins [25] studied heavy baryon
masses in a combined expansion in 1/mQ , 1/Nc , and SU(3) fla-
vor symmetry breaking. Bowler et al. [26] made an exploratory
study using lattice techniques to predict charmed and bottom
baryons. Mathur et al. [27] gave a more precise prediction of
the masses of charmed and bottom baryons from quenched lat-
tice QCD. Ebert et al. [28] calculated the masses of ground state
heavy baryons with the relativistic quark–diquark approximation.
QCD sum rules have been also applied to study heavy baryon
masses [29,30]. Stimulated by the experimental progress, there had
been several theoretical papers on the heavy baryon spectra us-
ing a perturbative treatment of the hyperfine interaction in the
quark model [31], heavy quark effective field theory [32], an ex-
act solution of the Schrödinger equation by the Faddeev method
in momentum space [33,34], a variational calculation in a har-
monic oscillator expansion [35], and a relativistic quark–diquark
approximation [36]. Dynamically generated baryon resonances in
the charm-sector have also been recently studied by a unitary
baryon–meson coupled-channel model [37] and also incorporat-
ing heavy-quark spin symmetry [38,39]. Comprehensive reviews
discussing the recent experimental progress and an overview of
theoretical approaches can be found in Refs. [40,41]

Our purpose in this letter is to scrutinize particular features
of heavy hadron spectroscopy that may help in distinguishing be-
tween the different dynamical quark models. As discussed above,
in the literature there are plenty of studies of heavy baryons with
a great variety of interactions, different kinematics and calculation
techniques. We pretend to learn about the possible realizations of
QCD at low energies by comparing the predictions of the different
dynamical models used in the light baryon sector together with
different kinematics when applied to the heavy baryon sector. We
will try to minimize the changes in an attempt to find predictions
that may allow us in discriminating between the different dynami-
cal models. If one finds outstanding differences, the advent of new
experimental data will be an important test that will tell us about
the adequate realization of QCD al low energies. For this objective
heavy hadrons containing a single heavy quark are particularly in-
teresting because they merge the relativistic light quark dynamics
and the dynamics of a heavy and light quark in such a way that
they can be easily isolated, obtaining a composition of two two-
body problems.

The paper is organized as follows. In Section 2 we review Fad-
deev solution of the three-body bound-state problem in momen-
tum space. In Section 3 we will describe the relevant features of
the heavy baryon spectra from the quark-model point of view and
we will define the method and interacting potentials we will use.
In Section 4 we show the results for the models defined in Sec-
tion 3 and we analyze the main differences in their predictions.
Finally, in Section 5 we will summarize our most important find-
ings.

2. Formalism

Let us briefly revise the most important aspects of the solu-
tion of the Schrödinger equation with relativistic kinematics for the
bound-state problem. The three-body Schrödinger equation can be
written as,

|ψ〉 = G0(W0)[V 1 + V 2 + V 3]|ψ〉, (1)
where if one assumes that the three particles are in the c.m. sys-
tem, i.e., �k1 + �k2 + �k3 = 0, then W0 is the invariant mass of the
system and

G0(W0) = 1

W0 − ω1(k1) − ω2(k2) − ω3(k3)
, (2)

with ωi(ki) =
√

m2
i + k2

i . Making the Faddeev decomposition

|ψ〉 = |φ1〉 + |φ2〉 + |φ3〉, (3)

one obtains the Faddeev equations

|φi〉 = G0(W0)ti(W0)
[|φ j〉 + |φk〉

]
, (4)

with

ti(W0) = V i + V i G0(W0)ti(W0). (5)

Our basis states are |�pi�qi〉 where �pi is the relative momentum of
the pair jk measured in the c.m. frame of the pair (that is, the
frame in which particle j has momentum �pi and particle k has
momentum −�pi ) and �qi = −�ki is the relative momentum between
the pair jk and particle i measured in the three-body c.m. frame
(that is, the frame in which the pair jk has total momentum �qi and
particle i has momentum −�qi ). In terms of these relative momenta
the propagator of three free particles (2) takes the form

G0(W0; pi,qi) = 1

W0 − W i(pi,qi) − ωi(qi)
, (6)

where

W i(piqi) =
√

ω2(pi) + q2
i , (7)

and

ω(pi) =
√

m2
j + p2

i +
√

m2
k + p2

i ≡ ω j(pi) + ωk(pi). (8)

Thus, if the single-particle states are normalized invariantly on the
mass shell, i.e., 〈�ki |�k ′

i 〉 = 2ωi(ki)δ(�ki − �k ′
i ), then the invariant vol-

ume element for three particles in the three-body c.m. frame can
be written in terms of the corresponding volume element for the
relative momenta as

d�k1

2ω1(k1)

d�k2

2ω2(k2)

d�k3

2ω3(k3)
δ(�k1 + �k2 + �k3)

= ω(pi)

8W i(piqi)ωi(qi)ω j(pi)ωk(pi)
d�pid�qi . (9)

The basis states |�pi�qi〉 are normalized as
〈�pi�qi

∣∣�p ′
i �q ′

i

〉
= 8W i(piqi)ωi(qi)ω j(pi)ωk(pi)

ω(pi)
δ
(�pi − �p ′

i

)
δ
(�qi − �q ′

i

)
, (10)

and satisfy the completeness relation

1 =
∫

ω(pi)

8W i(piqi)ωi(qi)ω j(pi)ωk(pi)
d�pid�qi |�pi�qi〉〈�pi�qi | . (11)

The matrix elements of the two-body interaction in the three-body
c.m. frame are connected to the corresponding matrix elements in
the two-body c.m. frame by [42]
〈�pi�qi

∣∣V i
∣∣�p ′

i �q ′
i

〉

= 8ωi(qi)

[
W i(piqi)ω j(pi)ωk(pi)W i(p′

iqi)ω j(p′
i)ωk(p′

i)

ω(pi)ω(p′
i)

]1/2

× δ
(�qi − �q ′)V i

(�pi, �p ′), (12)
i i
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Fig. 1. Experimental mass difference [43] among the ΣQ (3/2+), the ΣQ (1/2+) and
the ΛQ (1/2+) baryons for Q = s, c, and b.

with V i(�pi, �p ′
i ) the usual Fourier transform of the potential.

If we introduce a complete set of basis states into Eq. (5) and
use Eq. (12), we obtain that 〈�pi�qi |ti |�p ′

i �q ′
i 〉 is given by an expression

similar to (12) with V i(�pi, �p ′
i ) replaced by ti(W0,qi; �pi, �p ′

i ), where
ti(W0,qi; �pi, �p ′

i ) satisfies the Lippmann–Schwinger equation

ti
(
W0, �qi; �pi, �p′

i

)
= V i

(�pi, �p′
i

)
+

∫
d�p′′

i V i
(�pi, �p′′

i

)
G0

(
W0; p′′

i qi
)
ti
(
W0, �qi; �p′′

i , �p′
i

)
. (13)

Following the same procedure in Eqs. (4) one finds that, in the
absence of noncentral forces, the Faddeev equations for the bound-
state problem of the three-quark system can be written as
〈
piqi;	iλi Si T i

∣∣φLST
i

〉

= G0(W0; pi,qi)
∑
j �=i

∑
	 jλ j S j T j

1

2

1∫
−1

d cos θ

∞∫
0

q2
j dq j

1

ω j(q j)ωk(qk)

×
[

W i(p′
iqi)ω j(p′

i)ωk(p′
i)W j(p jq j)ωk(p j)ωi(p j)

ω(p′
i)ω(p j)

]1/2

× t	i Si T i
i

(
W0,qi; pi, p′

i

)
A

	iλi	 jλ j
L

(
p′

iqi p jq j
)

× 〈Si Ti|S j T j〉ST 〈p jq j;	 jλ j S j T j|φLST
j 〉, (14)

with ωk(qk) ≡
√

m2
k + q2

i + q2
j + 2qiq j cos θ . Si and Ti are the spin

and isospin of the pair jk while S and T are the total spin and
isospin. 	i (�pi ) is the orbital angular momentum (momentum) of
the pair jk, λi (�qi) is the orbital angular momentum (momentum)
of particle i with respect to the pair jk, and L is the total orbital
angular momentum. The spin–isospin and orbital angular momen-

tum recoupling coefficients 〈Si Ti |S j T j〉S T and A
	iλi	 jλ j
L (p′

iqi p jq j)

are given by Eqs. (24)–(27) and (33) of Ref. [42]. In Ref. [42] it is
also demonstrated that in the nonrelativisitc limit these relativistic
Faddeev equations go into the nonrelativistic ones.

3. Discussion

Let us start by discussing Fig. 1. In this figure we have plotted
the experimental mass difference [43] among the ΣQ (3/2+), the
ΣQ (1/2+) and the ΛQ (1/2+) baryons for Q = s, c, and b. When
the heavy quark mass mQ → ∞, the angular momentum of the
light degrees of freedom is a good quantum number. Thus, heavy
quark baryons belong to either flavor SU(3) antisymmetric 3̄F or
symmetric 6F representations. The spin of the light diquark is 0 for
3̄F , while it is 1 for 6F . Thus, the spin of the ground state baryons
is 1/2 for 3̄F , representing among others the ΛQ (1/2+) baryon,
while it can be both 1/2 or 3/2 for 6F , allocating among others
the ΣQ (1/2+) and the ΣQ (3/2+). Therefore heavy hadrons form
doublets. As can be seen in Fig. 1, ΣQ (1/2+) and ΣQ (3/2+) will
be degenerate in the heavy quark limit, their mass splitting being
caused by the spin–spin interaction at the order 1/mQ . As also
seeing in this figure, the mass difference between states belonging
to the flavor 3̄F and 6F representations tends to a constant when
the heavy quark mass mQ → ∞, due to the dynamics of the light
diquark subsystem. Thus:

M
[
ΣQ

(
3/2+)] − M

[
ΣQ

(
1/2+)] ⇒ �M

([6F] − [6F]
) ≡ VqQ

M
[
ΣQ

(
3/2+)] − M

[
ΛQ

(
1/2+)] ⇒ �M

([6F] − [3̄F]
) ≡ Vqq.

(15)

Let us note that in ΛQ (1/2+) there is an attractive ud diquark
(“good” diquark) with color 3̄, spin 0 and isospin 0,1 whereas in
ΣQ (1/2+) and ΣQ (3/2+) there is a repulsive ud diquark (“bad”
diquark) with color 3̄, but spin 1 and isospin 1. Thus, single heavy
baryons are ideal laboratories for testing the dynamics of the dif-
ferent two-quark subsystems: heavy–light and light–light, that may
drive important differences in the final spectrum. Effects like the
degeneracy of the members of the flavor 6F representation when
mQ → ∞ can be, for example, taken into account systematically in
the framework of heavy quark effective field theory (HQET). How-
ever, the mass difference between states belonging to the flavor 3̄F
and 6F representations, mainly due to the dynamics of the light
diquark, is hard to accommodate in any heavy quark mass ex-
pansion. Therefore, exact solutions of the three-body problem for
heavy hadrons are theoretically desirable because they will serve
to test the reliability of the predictions of approximate techniques,
that would only be exact in the infinite heavy-quark mass limit, as
could be heavy quark mass expansions, variational calculations, or
quark–diquark approximations.

Most of the potentials used in the literature to study heavy
baryons differ essentially on the treatment of the hyperfine inter-
action and the value of the parameters used. Among them, the
model proposed by Bhaduri et al. [19] works quite well both in
the meson and baryon sectors. For the case of baryons, it reads,

V Bha(r) = 1

2

[
−κ

r
+ λr − C + κ

mim j

e(−r/r0)

rr2
0

�σi · �σ j

]
, (16)

with κ = 0.52, λ = 0.186 GeV2, C = 0.9135 GeV, r0 = 2.305 GeV−1

(r0 = 0.45 fm), mu = md = 0.337 GeV, mc = 1.870 GeV. The pa-
rameters were essentially fitted in the charmonium system.

An alternative to the Bhaduri model based just on a one-gluon
exchange (OGE) interaction emerged with models aiming a coher-
ent understanding of the hadron spectra and the hadron–hadron
interactions [46,47]. These hybrid models combine the hyperfine
effect of the OGE potential and a pseudoscalar interaction between
the light quarks consequence of the spontaneous breaking of chi-
ral symmetry. The simplest way of considering the pseudoscalar
potential is to supplement the interaction of Eq. (16) by a standard
one-pion exchange potential,

1 The attractive ud diquark is a source to form the color superconductivity in
quark matter at high density [44,45]
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Table 1
Different models used for the study of heavy baryons.

Model Kinematics Interacting potential

No Rel Rel Bha Bha + Ps

A X X
B X X
C X X
D X X

V Ps(r) = 1

3
αch

Λ2
π

Λ2
π − m2

π

mπ

[
Y (mπ r) − Λ3

π

m3
π

Y (Λπ r)

]

× �σi · �σ j �τi · �τ j , (17)

where mπ = 0.7 fm−1 is the pion mass, αch = 0.029 is the chiral
coupling constant, Λπ = 4.2 fm−1 is a cutoff parameter, and Y (x)
is the standard Yukawa function Y (x) = e−x/x.

As has been discussed in the introduction, there are plenty of
studies of heavy baryons [17–39] with a great variety of inter-
actions, different kinematics and calculation techniques. Our aim
in this work is to learn about the possible realizations of QCD at
low energies by comparing the predictions of different dynami-
cal models used in the light baryon sector together with different
kinematics when applied to the heavy baryon sector. The particu-
lar dynamics of these three-body systems combining two different
regimes: the slow relative motion of the heavy quark with the rel-
ativistic motion of the light quarks, provides with an interesting
laboratory for studying QCD. We will try to minimize the changes
in an attempt to find predictions that may allow us in discrimi-
nating between the different dynamical models. If one finds out-
standing differences, the advent of new experimental data will be
an important test for the predictions of the different models that
will tell us about the adequate realizations of QCD al low ener-
gies. As it has also been discussed in the introduction this could
be relevant for the study of exotic hadrons [15,48–51].

The models we will use are summarized in Table 1. Model A
corresponds to a simple Bhaduri potential, Eq. (16), with nonrela-
tivistic kinematics. Model B represents the Bhaduri interaction but
with relativistic kinematics. Model C stands for a Bhaduri potential
supplemented by a pseudoscalar source of hyperfine interaction,
Eq. (17), with nonrelativistic kinematics. Finally, Model D will be
the last interacting potential but with relativistic kinematics. We
will try to highlight the most important differences among the
patterns for the heavy baryon sector predicted by the different
models as well as to point to those states whose experimental
measurement or lattice QCD simulation will help in the assign-
ment of quantum numbers to new states.

4. Results

Let us start by showing the comparison with results presented
in the literature as well as the convergence of the Faddeev method.
Using Model A in the Feshbach–Rubinow variational approach [52],
Bhaduri et al. [19] obtained for the masses of the Λc(1/2+), the
Σc(1/2+), and the Σc(3/2+) the results shown in the second col-
umn of Table 2. In order to compare with these results, we have
calculated the masses of these states considering only the three-
body configurations where all orbital angular momenta 	i, λi ≤ 1.
As can be seen, our results for the nonrelativistic case, third col-
umn of Table 2, are in good agreement with those of Ref. [19],
since the accuracy of the Feshbach–Rubinow method is about
20 MeV. We have also studied the convergence with respect to the
number of Faddeev amplitudes considered, the results are shown
in Table 3. As one can see in the second and third columns of
Table 2
Masses of Λc(1/2+), Σc(1/2+), and Σc(3/2+) (in MeV) obtained with the poten-
tial of Eq. (16) for both the nonrelativistic (Model A) and the relativistic (Model B)
Faddeev equations including three-body configurations with 	i , λi ≤ 1 compared to
the results of Ref. [19].

Ref. [19] Model A (r0 = 0.45 fm) Model B (r0 = 0.45 fm)

Λc(1/2+) 2334 2331 364
Σc(1/2+) 2511 2498 2249
Σc(3/2+) 2585 2570 2374

Table 3
Masses of Λc(1/2+) and Σc(1/2+) (in MeV) obtained with the potential of Eq. (16)
for the nonrelativistic (Model A) and the relativistic (Model B) Faddeev equations
including the three-body configurations with the indicated 	i and λi .

	i , λi Model A (r0 = 0.45 fm) Model B (r0 = 0.75 fm)

Λc(1/2+) Σc(1/2+) Λc(1/2+) Σc(1/2+)

≤ 1 2331 2498 2304 2460
≤ 2 2323 2495 2294 2454
≤ 3 2320 2495 2288 2452
≤ 4 2319 2494 2286 2451

this table, the largest effect of higher order Faddeev amplitudes is
obtained for states with a spin 0 diquark, the Λc(1/2+), the non-
relativistic results being almost fully converged when considering
all Faddeev amplitudes in S and P waves.

In the fourth column of Table 2 we also show the results for
Model B, the relativistic Bhaduri potential, using the same set of
parameters as in Model A. As can be seen the relativistic effects are
very large, particularly for the Λc(1/2+), the state with a good ud
diquark, and they tend to lower the masses. The Λc(1/2+) mass is
lowered by 1964 MeV, while the Σc mass is lowered by 249 MeV
for the 1/2+ state and 196 MeV for the 3/2+ state, so that the
mass splitting Σc–Λc , which is 167 MeV for the nonrelativistic
case, increases to 1885 MeV for the relativistic one, i.e., to about
eleven times the experimental value. From the results of Table 2,
one may think that a relativistic description of the heavy baryon
spectrum based on the potential of Eq. (16) would not be pos-
sible. This, however, is not the case as it will be shown below.
The large sensitivity to relativistic effects shown in Table 2, as we
will see next, is due to a particular feature of the interaction at
short distances. The last term of the interaction of Eq. (16) con-
tains a smeared-out δ function with smearing parameter r0. The δ

function must be smeared-out otherwise the mass of the nucleon
would collapse to −∞ when r0 → 0 [53]. We show this effect in
Fig. 2, where we plot the eigenvalue of the Schrödinger equation2

for Λc(1/2)+ , Σc(1/2+), and Σc(3/2+) as a function of the pa-
rameter r0 using the relativistic Faddeev equations, Model B.

As one can see from Fig. 2, the relativistic kinematics pro-
duces two main effects: first of all, as already noticed, it lowers
the masses of the baryons and second, one needs of larger val-
ues of the parameter r0 to avoid that the mass of the Λc (or any
other baryon with a “good” diquark) would collapse to negative
values. Thus, while r0 = 0.45 fm is a reasonable value for nonrel-
ativistic kinematics, it is not so in the case of the relativistic one
where instead the value of r0 should be larger, r0 = 0.75 fm, in
order to get the correct excitation energy (one also has to rede-
fine the constant C in Eq. (16) that for the relativistic Model B
with r0 = 0.75 fm should be 782 MeV). Another aspect that de-
serves attention when fitting the parameters of the smeared δ

function is the number of Faddeev amplitudes considered. In the
last two columns of Table 3 we show the masses of Λc(1/2+)

2 The mass is given by M = m1 + m2 + m3 − 3
2 C + E , where E is the eigenvalue

of the Schrödinger equation.
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Fig. 2. Variation of the masses of Σc(3/2+), Σc(1/2+) and Λc(1/2+) with the
regularization parameter of the spin–spin interaction r0 for Model B. See text for
discussion.

Table 4
Excitation spectra of Λc and Σc baryons, M[ J P ] − M[Λc(1/2+)], for the nonrela-
tivistic (Model A) and relativistic (Model B) Bhaduri potential. The star stands for
radial excitations. Masses are in MeV. Experimental data are from Ref. [43].

State J P Model A (r0 = 0.45 fm) Model B (r0 = 0.75 fm) Exp.

Λc 1/2+∗ 610 417 –
3/2+ 697 666 –
3/2+∗ 925 817 –
1/2− 371 372 324

Σc 1/2+ 175 165 167
1/2+∗ 772 830 –
3/2+ 248 226 232
1/2− 540 518 –

and Σc(1/2+) obtained from the potential of Eq. (16) for the
relativistic Faddeev equations including the three-body configura-
tions with the indicated 	i and λi . As one can see the problem is
fully converged when considering all three-body amplitudes with
	i and λi ≤ 4 (what means that considering another orbital angu-
lar momentum induces a change in the energy eigenvalue smaller
than 1 MeV). Model B with r0 =0.75 fm allows to correctly re-
produce the experimental data, supporting a description of the
heavy baryon spectra based on the Bhaduri potential with relativis-
tic kinematics. It gives M[Σc(1/2+)]− M[Λc(1/2+)] = 165 MeV, to
be compared with the experimental result of 167 MeV [43], and
M[Σc(3/2+)] − M[Σc(1/2+)] = 61 MeV, to be compared with the
experimental result of 65 MeV [43].

It is interesting to note that in Ref. [42] we used almost the
same regularization for the δ function, r0 = 0.74 fm, to get the
correct description of the light baryon masses in the relativistic
Bhaduri model. As we can see here with the same value we get
a description of the same quality as in the nonrelativistic case for
the lowest known excitations of the charmed baryon spectrum. The
behavior of the “good” diquark baryons (N,Λ,Λc, . . .) masses in
the relativistic theory is a consequence of being more sensitive to
the form of the interaction at short distances, due to the nonrel-
ativistic propagator falling down as 1/k2 while the relativistic one
does it as 1/k. That is the reason why the pathological effects pro-
duced by the δ function appear in the case of the relativistic theory
much sooner, i.e., at larger values of r0 than in the case of the non-
relativistic one.
Fig. 3. Variation of the masses of Σc(3/2+), Σc(1/2+) and Λc(1/2+) with the reg-
ularization parameter of the spin–spin interaction between the light quarks r		

0 for
Model C.

It seems therefore that a correct description of the low ly-
ing states of the charmed baryon spectrum3 can be obtained by
means of a nonrelativistic and a relativistic treatment of the ki-
netic energy operator. In the following we will try to see if this
modification has any important effect in other states of the spec-
tra. Thus, we show in Table 4 the excitation spectra of Λc and Σc

baryons for the nonrelativistic (Model A) and relativistic (Model B)
Bhaduri potential. As can be seen the mass difference between the
members of the flavor 6F representation, controlled by the Q q in-
teraction, as well as the mass difference between the members
of the flavor 3̄F and 6F representations, controlled by the qq in-
teraction, can be perfectly described in both cases. One could have
fitted the strength of confinement to get a better description of the
first negative parity state, but it is not the purpose of the present
work to get the better χ2 fit to the experimental data but to high-
light the mechanisms controlling the relevant aspects of the heavy
baryon spectrum.4 To this respect we find the first relevant dif-
ference between the relativistic and the nonrelativistic treatment
of the kinetic energy operator in the heavy baryon spectroscopy
that resembles what has been observed in the case of the light
baryon spectroscopy [42,54–56]. Being the spin–spin part fixed, the
most important difference comes from the radial excitation of the
ground state baryon with a “good” diquark, the Λc(1/2+). Giving
the same excitation for the negative parity state, the nonrelativistic
case predicts a 1/2+ excited state that it is 200 MeV higher than
the relativistic state. The relativistic description gives an almost
degenerate positive and negative Λc excited states. As mentioned
above, the tendency to the level inversion between the negative
and positive parity excited states of “good” diquark baryons takes
place also in the light baryon spectra, and it is thus a remnant
of the relativistic light quarks dynamics as we will observe in the
following. A second difference comes from the radial excitation of
the Λc(3/2+). It corresponds to the configuration with total or-
bital momentum and total spin (L, S) = (0,3/2), being the ground
state (L, S) = (2,1/2). The configuration in S wave is lowered by
the relativistic kinetic energy operator as compared to the D wave,
giving 100 MeV difference. The other states of the spectra are pre-
dicted by both models with approximately the same mass.

3 Note that the present reasoning would remain valid for bottom baryons.
4 Reducing the strength of confinement would lower correspondingly all states in

the spectrum.
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Fig. 4. Variation of the masses of Σc(3/2+), Σc(1/2+) and Λc(1/2+) with (a) the regularization parameter of the pseudoscalar interaction Λπ , and (b) the regularization
parameter of the OGE spin–spin interaction r		

0 , for Model D.
Table 5
Excitation spectra of Λc and Σc baryons, M[ J P ] − M[Λc(1/2+)], for the nonrel-
ativistic (Model C) and relativistic (Model D) Bhaduri plus pseudoscalar potential.
The star stands for radial excitations. Masses are in MeV. Experimental data are
from Ref. [43].

State J P Model C
(Λπ = 4.2 fm−1)

Model D
(Λπ = 1.9 fm−1)

Exp.

Λc 1/2+∗ 623 464 –
3/2+ 726 688 –
3/2+∗ 966 857 –
1/2− 387 383 324

Σc 1/2+ 169 171 167
1/2+∗ 779 824 –
3/2+ 245 235 232
1/2− 544 538 –

Let us now analyze the second alternative for the description
of the hyperfine splitting in the meson and baryon spectra coming
from the hybrid models mentioned in Section 3, where the Bhaduri
potential is supplemented by a pseudoscalar exchange between the
light quarks, Models C and D in Table 1. When the pseudoscalar
exchange is added to the standard Bhaduri potential, the strength
of the hyperfine interaction between the light quarks is increased.
As explained above, this enlarges the mass difference between the
Σ ’s and the Λ’s (members of the flavor 6F and 3̄F representations,
respectively). Thus, one has to reduce the strength of the OGE as
noticed in the description of the NN interaction [46]. In Fig. 3
we have represented the variation of the masses of Σc(3/2+),
Σc(1/2+) and Λc(1/2+) with the regularization parameter of the
spin–spin interaction between the light quarks r		

0 for Model C,
containing OGE and a pseudoscalar interaction with nonrelativistic
kinematics. A correct description of the low-lying spectrum can be
obtained with the standard pseudoscalar interaction if one takes
r		

0 = 1.40 fm. The results are shown in Table 5.
When the relativistic kinematics is considered for this model

we note the same effect observed previously. As can be seen in
Eq. (17) the pseudoscalar potential consists of a Yukawa interaction
with a range equal to the inverse of the pion mass plus a smeared-
out delta function with smearing parameter 1/Λπ . Therefore, also
in this case the mass of the baryon with a good diquark, the
Λc , will collapse if 1/Λπ ≤ 0.1 fm in the case of the nonrel-
ativistic kinematics and if 1/Λπ ≤ 0.45 fm in the case of the
relativistic one. Thus, the cutoff parameter Λπ must be smaller
than ∼10 fm−1 in the case of the nonrelativistic kinematics and
∼2.2 fm−1 in the case of the relativistic one. As explained above,
this is due to the nonrelativistic propagator falling down as 1/k2

while the relativistic one doing it as 1/k. In Fig. 4(a) we have rep-
resented the variation of the masses of Σc(3/2+), Σc(1/2+) and
Λc(1/2+) with the regularization parameter of the pseudoscalar
interaction, Λπ , for Model D. Stable results compatible with the
experimental data are obtained with a similar regularization of the
pseudoscalar interaction we have used in Ref. [54] for the study
of the light baryon spectrum, Λπ = 1.9 fm−1. Once we have fixed
the regularization of the pseudoscalar interaction, as in the non-
relativistic case, one has to refit the strength of the OGE between
the light quarks. In Fig. 4(b) we have represented the variation of
the masses of Σc(3/2+), Σc(1/2+) and Λc(1/2+) with the regu-
larization parameter of the spin–spin interaction between the light
quarks r		

0 for Model D. Once again a nice description of the split-
tings between the members of the flavor 6F and 3̄F representa-
tions can be obtained using the same regularization as in the light
baryon spectra [54].

We show in Table 5 the excitation spectra of Λc and Σc

baryons for the nonrelativistic (Model C) and relativistic (Model D)
Bhaduri plus pseudoscalar potential. As can be seen the mass
difference between the members of the flavor 6F representation,
controlled by the Q q interaction, as well as the mass difference
between the members of the flavor 3̄F and 6F representations, con-
trolled by the qq interaction, is again perfectly described in both
cases. As said in the case of the Bhaduri model, one could fit the
strength of confinement to get a correct description of the first
negative parity state. We confirm the relevant differences between
the relativistic and the nonrelativistic description noted in the case
of the Bhaduri model. Being the spin–spin part fixed, we observed
again how the radial excitation of the ground state baryon with
a “good” diquark, the Λc(1/2+), has a larger excitation energy than
the negative parity state in the nonrelativistic case, being both
almost degenerate in the relativistic one, a remnant of the rela-
tivistic light quarks dynamics. The second difference observed with
the Bhaduri model is also preserved here. The S wave Λc(3/2+),
(L, S) = (0,3/2), is lowered by the relativistic theory as compared
to the ground state D wave, (L, S) = (2,1/2), giving 100 MeV
difference. The other states of the spectra are predicted by both
models with approximately the same mass.

At difference with the light baryon spectrum, the combined
effect of the pseudoscalar exchange together with relativistic
kinematics is not translated into a more effective level ordering
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Table 6
Excitation spectra of double charmed baryons, M[ J P ]− M[Ξcc(1/2+)], as compared
to recent lattice calculations. The star stands for radial excitations. Masses are in
MeV.

State J P Model A Model B Ref. [7] Ref. [8] Ref. [10]

Ξcc 1/2+∗ 462 437 – – –
3/2+ 80 53 53±64 103±35 109±49
1/2− 332 324 – – –

effect [54]. This was already noticed when studying the strange
baryon spectrum [57]. In the case of Λ baryons the two light
quarks are in a flavor antisymmetric spin 0 state, the pseudoscalar
and the one-gluon exchange forces being both attractive. For Σ

baryons they are in a flavor symmetric spin 1 state. The pseu-
doscalar force, being still attractive, is suppressed by one order
of magnitude due to the expectation value of the (�σi · �σ j)(�λi · �λ j)

operator [57] and the one-gluon exchange between the two light
quarks becomes repulsive. Therefore, the attraction is provided by
the interaction between the light diquark and the heavy quark,
which for heavy quarks c or b is given only by the one-gluon
exchange potential. The simpler wave function of the charmed
baryons, containing only good light diquarks in the members of
the flavor 3̄F representation, the Λc ’s, and only bad diquarks in
the members of the flavor 6F representation, the Σc ’s, makes
the (�σ · �σ)(�τ · �τ ) structure less effective when giving attraction
for symmetric spin–isospin pairs and repulsion for antisymmetric
ones.

Finally, all these models could be applied to double heavy
baryons where relativistic effects are clearly perturbative. As the
kinematics determined the parameters of the model in the sin-
gle heavy baryon sector, the different models will give rise to
different predictions. We show in Table 6 the predictions of Mod-
els A and B compared to recent lattice QCD calculations. As can
be seen the relativistic theory would give rise to a smaller spin
splitting. However we can see how the difference between the
negative and the positive parity states is minimized regarding the
kinematics chosen, due to the nonexistence of baryons with good
diquarks as a consequence of the restrictions imposed by the Pauli
principle. In this system all states belong to the flavor 6F rep-
resentation, and the spin splitting M[Ξcc(3/2+)] − M[Ξcc(1/2+)]
comes determined exactly by the same interaction responsible for
the M[Σc(3/2+)]− M[Σc(1/2+)] splitting, the dynamics of the qQ
subsystem (see Eq. (15)). As we can see in Table 6 the predictions
of lattice QCD calculation are still uncertain, but the progress in
this field as well as the measurement of double charmed baryons
in current factories will help in determining the correct dynamics
at the level of quarks. Among the baryons with two heavy quarks
the first question to be settled is where do exactly these states lie.
In any case, the excited spectra of double charmed baryons do not
depend much on the mass of the heavy quarks, and therefore the
predicted excited spectra should serve as a guideline for potential
future experiments looking for such states.

From the point of view of lattice QCD, determining resonance
energies is no trivial matter. Currently, there is a clear yet chal-
lenging way for obtaining energies of resonances that decay into
two-particle states. Unfortunately, there is currently no formal-
ism that would allow the determination of resonances that have
large overlap with three-particle states. It will take a few more
years for the community to have these issues well under con-
trol to be able to study such resonances [58]. Thus, the Λc(3/2+),
is currently out of the scope of what is accessible via lattice
QCD. It has a predicted mass in the order of 3 GeV, which is of
the order of 800 MeV above the lowest Λc . Therefore, this state
is most likely a hadronic resonance with potential large overlap
with Λc(1/2+)π+π− , among other few particle states, just like
Λc(5/2+). Consequently one cannot apply all lattice techniques
used for the ground state calculation. However, the first radial and
orbital excitations of the good diquark baryon, Λc(1/2+) would be
accessible in the near future.

5. Conclusions

We have presented a comparative Faddeev study of baryons
with one and two heavy quarks with nonrelativistic and relativistic
kinematics. We have used different standard interacting potentials
appearing in the literature that differ in the description of the hy-
perfine splitting between the light quarks as well as in the parame-
ters trying to minimize the changes to get as much information as
possible from the dynamics. We have analyzed in detail the per-
formance of the relativistic and nonrelativistic Faddeev equations
for the different interacting potentials used. We have identified
particular states of singly heavy baryons whose masses will be
different depending on the particular dynamics governing the in-
teraction between the two light quarks. In particular, the measure-
ment and identification of the radial excitation of the Λc(1/2+)

will provide enough information to clarify the relativistic or non-
relativistic kinematics of the light quarks inside heavy baryons.
The consequent measurement of the spin splitting in the double
heavy baryon sector will provide definitive constraints about the
light quark dynamics. The radial excitation of the Λc(3/2+) will
also shed hints about the dynamical model used, but its large ex-
citation energy and significant overlapping with three-body decay
channels makes it more adequate as a theoretical test for future
lattice QCD simulations.

We have clearly illustrated the uncertain situation when using
just the quark model energy for assigning quantum numbers to
new observed heavy baryon resonances. We have also illustrated
the correlation between the predictions for the single and double
heavy baryon systems. Angular analysis based on larger statistics
and improved triggering in forthcoming experiments will help us
in the coherent theoretical and experimental effort needed to learn
about quarks dynamics. We have analyzed the interplay between
the kinematics and the spin splitting, already observed for the light
baryons, that translates into the relative position between the ra-
dial and orbital excitations of baryons with good diquarks, that
may also constitute a basic ingredient for the description of heavy
baryons. Our findings would be equally applicable to the bottom
sector.

Heavy baryons constitute an extremely interesting problem
joining the dynamics of light–light and heavy–light subsystems in
an amazing manner. While the mass difference between mem-
bers of the same SU(3) configuration, either 3̄F or 6F , is de-
termined by the interaction in the light–heavy quark subsystem,
the mass difference between members of different representations
comes mainly determined by the dynamics of the light diquark,
and should therefore be determined in consistency with the light
baryon spectra.

The study of heavy baryons may provide us with critical in-
sights into the nature of QCD. There are still important questions
to be resolved on the nature of the short-distance interactions of
the quarks. The parametrization of the true degrees of freedom
of any theory becomes a challenge that will allow to advance in
the understanding of QCD. The advent of experimental data for
singly and double heavy baryons could be the appropriate labo-
ratory to understand the dynamics of the light quark subsystem.
Heavy baryon spectroscopy may play a pivotal role in answering
these questions. Meanwhile, the encouraging results of this letter
suggest a complete study of the heavy baryon spectroscopy to have
at our disposal the complete pattern of models based on relativis-
tic kinematics [59].
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