
Research Article
Binding Energies and Dissociation Temperatures of
Heavy Quarkonia at Finite Temperature and Chemical
Potential in the𝑁-Dimensional Space

M. Abu-Shady ,1 T. A. Abdel-Karim,1 and E. M. Khokha2

1Department of Applied Mathematics, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
2Department of Basic Science, Modern Academy of Engineering and Technology, Cairo, Egypt

Correspondence should be addressed to M. Abu-Shady; dr.abushady@gmail.com

Received 23 July 2017; Accepted 29 November 2017; Published 8 January 2018

Academic Editor: Juan José Sanz-Cillero
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The N-dimensional radial Schrödinger equation has been solved using the analytical exact iteration method (AEIM), in which the
Cornell potential is generalized to finite temperature and chemical potential. The energy eigenvalues have been calculated in the
N-dimensional space for any state.The present results have been applied for studying quarkonium properties such as charmonium
and bottomonium masses at finite temperature and quark chemical potential. The binding energies and the mass spectra of heavy
quarkonia are studied in the N-dimensional space. The dissociation temperatures for different states of heavy quarkonia are
calculated in the three-dimensional space. The influence of dimensionality number (N) has been discussed on the dissociation
temperatures. In addition, the energy eigenvalues are only valid for nonzero temperature at any value of quark chemical potential.
A comparison is studied with other recent works. We conclude that the AEIM succeeds in predicting the heavy quarkonium at
finite temperature and quark chemical potential in comparison with recent works.

1. Introduction

The solution of the radial Schrödinger equation with spheri-
cally symmetric potentials has vital applications in different
fields of physics such as atoms, molecules, hadronic spec-
troscopy, and high energy physics.The Schrödinger equation
has been solved by operator algebraic method [1], power
seriesmethod [2, 3], and path integralmethod [4], in addition
to quasi-linearization method (QLM) [5], point canonical
transformation (PCT) [6], Hill determinant method [7],
and the conventional series solution method [8]. Recently,
most of the theoretical studies have been developed to
study the solutions of radial Schrödinger equation in the
higher dimensions. These studies are general and one can
directly obtain the results in the lower dimensions [9–23].
The𝑁-dimensional Schrödinger equation has been solved by
various methods as the Nikiforov-Uvarov (NU) method [9–
12], asymptotic iteration method (AIM) [13], Laplace Trans-
form method [14, 15], supersymmetric quantum mechanics

(SUSQM) [16], power series technique [17], Pekeris type
approximation [18], and the analytical exact iterationmethod
(AEIM) [19].

TheN-dimensional radial Schrödinger equation has been
solved for different types of spherical symmetric potentials
as Coulomb potential [15], pseudo-harmonic potential [20],
Mie-type potential [21], energy-dependent potential [11],
Kratzer potential [22], and Cornell potential type [13, 23] that
consists of the Coulomb term and the linear term, anhar-
monic potential [14], the Cornell potential with harmonic
oscillator potential [12], and the extended Cornell potential
[19].

The solution of Schrödinger equation has been used
in different studies to describe the properties of heavy-
quarkonium systems at finite temperature. Many efforts
have been devoted to calculating the mass spectra of char-
monium and bottomonium mesons and determining the
binding energy and the dissociation temperatures of heavy
quarkonia. In [24, 25], the authors have calculated the
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dissociation rates of quarkonium ground states by tunneling
and direct thermal activation to the continuum and the
binding energies and scattering phase shifts for the lowest
eigenstates in the charmonium and bottomonium systems
in hot gluon plasma. In [26, 27], the deconfinement and
properties of the resulting quark-gluon plasma (QGP) have
been investigated by studying themediumbehavior of heavy-
quark bound states in statistical quantum chromodynamics
and the spectral analysis of quarkonium states in a hot
medium of deconfined quarks and gluons and the thermal
properties of QGP are discussed. In [28–30], the authors
have solved the Schrödinger equation at finite temperature
for the charmonium and bottomonium states by employing
an effective temperature dependent potential given by a linear
combination of the color singlet free and internal energies
and discussed the quarkonium spectral functions in a quark-
gluon plasma.The dissociation of quarkonia has been studied
by correcting the full Cornell potential through the hard-loop
resumed gluon propagator and the hard thermal loop (HTL)
approximation [31, 32]. Moreover, the binding energies of the
heavy quarkonia states are studied in detail in [33, 34].

At finite temperature and chemical potential, Vija and
Thoma [35] have extended the effective perturbation the-
ory for gauge theories at finite temperature and chemical
potential for studying the collisional energy loss of heavy
quarks in QGP. In [36, 37], the authors have generalized
a thermodynamic quasi-particle description of deconfined
matter to finite chemical potential and analyzed the response
of color singlet and color averaged heavy-quark free energies
to a nonvanishing baryon chemical potential. On the same
hand, the effect of chemical potential is studied on the photon
production of quantum chromodynamics (QCD) plasma,
dissipative hydrodynamic effects on QGP, and thermody-
namic properties of the QGP [38–42] by using different
methods. At finite chemical potential and small temperature
region, the dissociation of quarkonia states has been studied
in a deconfined medium of quarks and gluons in [43].

The aim of this work is to find the analytic solution of the
N-dimensional radial Schrödinger equation with generalized
Cornell potential at finite temperature and chemical potential
using the analytical exact iteration method (AEIM) to obtain
the energy eigenvalues, where the energy eigenvalues are only
valid for nonzero temperature for any value of quark chemical
potential. So far no attempt has been made to solve the N-
dimensional radial Schrödinger when finite temperature and
chemical potential are included by using AEIM. In addition,
the application of present results on quarkonium properties
has been investigated such as the mass spectra of heavy
quarkonium and the dissociation temperature for different
states of heavy quarkonia.The influence of the dimensionality
number, which is not considered in many recent works, has
been investigated on the binding energy and the dissociation
temperature at finite temperature and chemical potential.

The paper is organized as follows: the background of
the study of previous efforts is introduced in Section 1. In
Section 2, the analytic solution of the 𝑁-dimensional radial
Schrödinger equation is derived. In Section 3, the results
are discussed. In Section 4, summary and conclusion are
presented.

2. Analytic Solution of the𝑁-Dimensional
Radial Schrödinger Equation with the
Cornell Potential at Finite Temperature
and Chemical Potential

The 𝑁-dimensional radial Schrödinger equation for two
particles interacting via a spherically symmetric potential
takes the following form [14, 44]:

[ 𝑑2𝑑𝑟2 + 𝑁 − 1𝑟 𝑑𝑑𝑟 − 𝑙 (𝑙 + 𝑁 − 2)𝑟2
+ 2𝜇𝑄𝑄 (𝐸𝑛𝑙 − 𝑈 (𝑟))]𝜓 (𝑟) = 0,

(1)

where 𝑙, 𝑁, and 𝜇𝑄𝑄 are the angular quantum number, the
dimensional number, and reduced mass of the two particles𝜇𝑄𝑄 = 𝑚𝑄𝑚𝑄/(𝑚𝑄 + 𝑚𝑄), respectively.

Inserting 𝜓(𝑟) = 𝑅(𝑟)/𝑟(𝑁−1)/2 in (1), we obtain

[ 𝑑2𝑑𝑟2 − 𝜆
2 − 1/4𝑟2 + 2𝜇𝑄𝑄 (𝐸𝑛𝑙 − 𝑈 (𝑟))] 𝑅 (𝑟) = 0, (2)

with 𝜆 = 𝑙 + (𝑁 − 2)/2, where 𝑈(𝑟) is the Cornell potential
that takes the following form [45]:

𝑈 (𝑟) = 𝜎𝑟 − 𝛼𝑠𝑟 , (3)

with 𝜎 = 0.192GeV2 and 𝛼𝑠 = 0.471.The potential is mod-
ified in QGP to study the binding energy and dissociation
temperature by including Debye screening mass as follows
[45, 46]:

𝑈 (𝑟,𝑚𝐷) = 𝜎𝑚𝐷 (1 − 𝑒−𝑚𝐷(𝑇,𝜇)𝑟) − 𝛼𝑠𝑟 𝑒−𝑚𝐷(𝑇,𝜇)𝑟, (4)

where𝑚𝐷(𝑇, 𝜇) is the Debye screening mass at finite temper-
ature and quark chemical potential [37]:

𝑚𝐷 (𝑇, 𝜇)
= 𝑔 (𝑇) 𝑇√𝑁𝑐3 + 𝑁𝑓6 √1 + 3𝑁𝑓(2𝑁𝑐 + 𝑁𝑓) 𝜋2 (

𝜇𝑇)2, (5)

where 𝑁𝑓 is the number of quark flavors, 𝑁𝑐 is the number
of colors, and 𝑔(𝑇) is the QCD coupling constant at finite
temperature [47]:

𝑔 (𝑇) = 1(11𝑁𝑐 − 2𝑁𝑓) log (𝑇2/Λ2QCD) . (6)

Using 𝑒−𝑚𝐷(𝑇,𝜇)𝑟 = ∑∞𝑘=0(−𝑚𝐷(𝑇, 𝜇)𝑟)𝑘/𝑘! in (4) with neglect-
ing the higher orders at 𝑚𝐷(𝑇, 𝜇)𝑟 ≪ 1, thus (4) takes the
following form:

𝑉 (𝑟) = −𝑎𝑟2 + 𝑏𝑟 + 𝑐 − 𝑑𝑟 , (7)

where
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𝑎 = 12𝜎𝑚𝐷 (𝑇, 𝜇) ,
𝑏 = 12 (2𝜎 − 𝛼𝑠𝑚𝐷 (𝑇, 𝜇)2) ,𝑐 = 𝛼𝑠𝑚𝐷 (𝑇, 𝜇) ,𝑑 = 𝛼𝑠.

(8)

Substituting (7) into (2), we obtain

𝑅󸀠󸀠 (𝑟)
= [−𝜀𝑛𝑙 + 𝑎1𝑟2 + 𝑏1𝑟 + 𝑐1 − 𝑑1𝑟 + 𝜆

2 − 1/4𝑟2 ]𝑅 (𝑟) , (9)

where 𝜀𝑛𝑙 = 2𝜇𝑄𝑄𝐸𝑛𝑙,
𝑎1 = 󵄨󵄨󵄨󵄨󵄨−2𝜇𝑄𝑄𝑎󵄨󵄨󵄨󵄨󵄨 ,𝑏1 = 2𝜇𝑄𝑄𝑏,
𝑐1 = 2𝜇𝑄𝑄𝑐,
𝑑1 = 2𝜇𝑄𝑄𝑑.

(10)

The analytical exact iteration method (AEIM) requires the
following ansatz for the wave function as in [48–50]:𝑅 (𝑟) = 𝑓𝑛 (𝑟) exp [𝑔𝑙 (𝑟)] , (11)

where

𝑓𝑛 (𝑟) = {{{{{{{
1, 𝑛 = 0
𝑛∏
𝑖=1

(𝑟 − 𝛼(𝑛)𝑖 ) 𝑛 = 1, 2, 3, . . . , (12)

𝑔𝑙 (𝑟) = −12𝛼𝑟2 − 𝛽𝑟 + 𝛿 ln 𝑟, 𝛼 > 0, 𝛽 > 0. (13)

From (11), we obtain

𝑅󸀠󸀠𝑛𝑙 (𝑟) = (𝑔󸀠󸀠𝑙 (𝑟) + 𝑔󸀠2𝑙 (𝑟) + 𝑓󸀠󸀠𝑛 (𝑟) + 2𝑔󸀠𝑙 (𝑟) 𝑓󸀠𝑛 (𝑟)𝑓𝑛 (𝑟) )
⋅ 𝑅𝑛𝑙 (𝑟) .

(14)

By comparing (9) and (14), we obtain

𝑎1𝑟2 + 𝑏1𝑟 + 𝑐1 − 𝑑1𝑟 + 𝜆
2 − 1/4𝑟2 − 𝜀𝑛𝑙

= 𝑔󸀠󸀠𝑙 (𝑟) + 𝑔󸀠2𝑙 (𝑟) + 𝑓󸀠󸀠𝑛 (𝑟) + 2𝑔󸀠𝑙 (𝑟) 𝑓󸀠𝑛 (𝑟)𝑓𝑛 (𝑟) . (15)

At (𝑛 = 0), substituting (12) and (13) into (15) gives

𝑎1𝑟2 + 𝑏1𝑟 + 𝑐1 − 𝑑1𝑟 + 𝜆
2 − 1/4𝑟2 − 𝜀0𝑙

= 𝛼2𝑟2 + 2𝛼𝛽𝑟 − 𝛼 [1 + 2 (𝛿)] + 𝛽2 − 2𝛽𝛿𝑟
+ 𝛿 (𝛿 − 1)𝑟2 .

(16)

By comparing the corresponding powers of r on both sides of
(16), one obtains

𝛼 = √𝑎1, (17a)

𝛽 = 𝑏12√𝑎1 , (17b)

𝑑1 = 2𝛽𝛿, (17c)

𝛿 (𝛿 + 1) = 𝜆2 − 14 󳨐⇒
𝛿 = 12 (1 ± 2𝜆) ,

(17d)

𝜀0𝑙 = 𝛼 [1 + 2 (𝛿)] + 𝑐1 − 𝛽2. (17e)

From (17a)–(17e) and (10), by taking the positive sign in (17d),
then the ground state energy is

𝐸0𝑙 = √ 𝑎2𝜇𝑄𝑄 (𝑁 + 2𝑙) + 𝑐 − 𝑏
2

4𝑎 . (18)

For the first node (𝑛 = 1), we use the functions 𝑓1(𝑟) = (𝑟 −𝛼(1)1 ) and 𝑔𝑙(𝑟) from (13). Equation (15) takes the following
form:

𝑎1𝑟2 + 𝑏1𝑟 + 𝑐1 − 𝑑1𝑟 + 𝜆
2 − 1/4𝑟2 − 𝜀1𝑙

= 𝛼2𝑟2 + 2𝛼𝛽𝑟 − 𝛼 [1 + 2 (𝛿 + 1)] + 𝛽2
− 2 [𝛽 (𝛿 + 1) + 𝛼𝛼(1)1 ]𝑟 + 𝛿 (𝛿 − 1)𝑟2 .

(19)

Then, the relations between the parameters of the potential
and the coefficients 𝛼, 𝛽, 𝛿, and 𝛼(1)1 are given by

𝛼 = √𝑎1, (20a)

𝛽 = 𝑏12√𝑎1 , (20b)

𝑑1 = 2𝛽 (𝛿 + 1) , (20c)

𝛿 = 12 (1 ± 2𝜆) , (20d)

𝜀1𝑙 = 𝛼 [1 + 2 (𝛿 + 1)] + 𝑐1 − 𝛽2, (20e)

𝑑1 − 2𝛽 (𝛿 + 1) = 2𝛼𝛼(1)1 , (20f)

(𝑑1 − 2𝛽𝛿) 𝛼(1)1 = 2𝛿. (20g)

Using (20a)–(20g) and (10), we obtain the formula 𝐸1𝑙 as
𝐸1𝑙 = √ 𝑎2𝜇𝑄𝑄 (𝑁 + 2𝑙 + 2) + 𝑐 − 𝑏

2

4𝑎 . (21)
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Figure 1: The comparison between the two potentials. The red line is the exact potential 𝑈(𝑟, 𝑇, 𝜇) and the blue line is the approximate
potential 𝑉(𝑟, 𝑇, 𝜇) for different values of chemical potential at 𝑇 = 250MeV.

For the second node (𝑛 = 2), we use𝑓2(𝑟) = (𝑟−𝛼(2)1 )(𝑟−𝛼(2)2 )
and 𝑔𝑙(𝑟) from (13) to solve (15) which gives

𝑎1𝑟2 + 𝑏1𝑟 + 𝑐1 − 𝑑1𝑟 + 𝜆
2 − 1/4𝑟2 − 𝜀2𝑙

= 𝛼2𝑟2 + 2𝛼𝛽𝑟 − 𝛼 [1 + 2 (𝛿 + 2)] + 𝛽2
− 2 [𝛽 (𝛿 + 2) + 𝛼 (𝛼(2)1 + 𝛼(2)2 )]𝑟 + 𝛿 (𝛿 − 1)𝑟2 .

(22)

Thus, the relations between the coefficients 𝛼, 𝛽, 𝛿, 𝛼(2)1 , and𝛼(2)2 are given by

𝛼 = √𝑎1, (23a)

𝛽 = 𝑏12√𝑎1 , (23b)

𝛿 = 12 (1 ± 2𝜆) , (23c)

𝜀2𝑙 = 𝛼 [1 + 2 (𝛿 + 2)] + 𝑐1 − 𝛽2, (23d)

𝑑1 − 2𝛽 (𝛿 + 2) = 2𝛼 (𝛼(2)1 + 𝛼(2)2 ) , (23e)

(𝑑1 − 2𝛽𝛿) 𝛼(2)1 𝛼(2)2 = 2𝛿 (𝛼(2)1 + 𝛼(2)2 ) , (23f)

[𝑑1 − 2𝛽 (𝛿 + 1)] (𝛼(2)1 + 𝛼(2)2 )
= 4𝛼 (𝛼(2)1 𝛼(2)2 ) + 2 (2𝛿 + 1) . (23g)

Hence, the formula 𝐸2𝑙 is given by

𝐸2𝑙 = √ 𝑎2𝜇𝑄𝑄 (𝑁 + 2𝑙 + 4) + 𝑐 − 𝑏
2

4𝑎 . (24)

Then, the iterationmethod is repeatedmany times.Therefore,
the exact energy formula for any state in the N-dimensional
space is written as

𝐸𝑁𝑛𝑙 = √ 𝑎2𝜇𝑄𝑄 (𝑁 + 2𝑙 + 2𝑛) + 𝑐 − 𝑏
2

4𝑎 ,
𝑛 = 0, 1, 2, . . . .

(25)

According to (8), we note that (25) is only valid for finite
temperature, since, at 𝑇 = 0, the parameter 𝑎 equals zero.
Therefore, the energy eigenvalues diverge at this case.

3. Discussion of Results

In the first part of this section, we compare between the
exact potential𝑈(𝑟, 𝑇, 𝜇) in (4) and the approximate potential𝑉(𝑟, 𝑇, 𝜇) in (7) for different values of chemical potential and
temperature.

In Figure 1, the exact 𝑈(𝑟, 𝑇, 𝜇) and the approximate
potential𝑉(𝑟, 𝑇, 𝜇) are plotted for different values of chemical
potentials. We note that there is a good qualitative agree-
ment between exact potential and approximate potential. In
Figure 2, we note a good qualitative agreement between two
potentials. By increasing temperature, the positive part of two
potentials is reduced.Thus, the present potential gives a good
accuracy in comparison with original potential.

In Figure 3, the Debye screening mass is plotted with
temperature for different values of chemical potential (a)
and also with the chemical potential for different values of
temperatures (b). (a) shows that the Debye screening mass
decreases with temperature but shifts to upper values by
increasing chemical potential. This behavior is in agreement
with [51, 52]. (b) shows that the Debye screening mass
increases with the chemical potential but shifts to lower
values by increasing temperature in agreement with [43].

3.1. Binding Energy and Heavy-Quarkonium Mass in the 𝑁-
Dimensional Space. In this subsection, the binding energy
and the heavy-quarkoniummass are calculated such as char-
monium and bottomonium mesons in the N-dimensional
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Figure 2: Two potentials are functions of distance (r), for different temperature and chemical potential. The exact potential 𝑈(𝑟, 𝑇, 𝜇) in (a)
and the approximate potential 𝑉(𝑟, 𝑇, 𝜇) in (b).
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Figure 3: Debye screening mass with the temperature at different values of chemical potential (a) and Debye screening mass with chemical
potential at different values of temperatures (b).

space for any state at finite temperature and chemical poten-
tial.

Substituting (8) into (25), therefore the binding energies
for the different states of heavy-quarkonium meson at finite
temperature and chemical potential take the form

𝐸bin (𝑇, 𝜇) = 𝛼𝑠𝑚𝐷 (𝑇, 𝜇)
+ √ 𝜎𝑚𝐷 (𝑇, 𝜇)4𝜇𝑄𝑄 (2𝑛 + 2𝑙 + 𝑁)

− (2𝜎 − 𝛼𝑠𝑚𝐷2 (𝑇, 𝜇))28𝜎𝑚𝐷 (𝑇, 𝜇) ,
(26)

where 𝜇𝑄𝑄 = 𝑚𝑐/2 for charmonium and 𝜇𝑄𝑄 = 𝑚𝑏/2 for
bottomonium. At zero temperature, we note that Debye mass
vanishes. Therefore, energy eigenvalue in (26) is divergent.
Thus, (26) is valid only at finite temperature. The behavior
of the binding energy for the different states of heavy-
quarkonium meson is shown in Figures 4, 5, and 6.
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Figure 4:Dependence ofΥ binding energy (inGeV) on temperature𝑇/𝑇𝑐 (a) and dependence of 𝐽/𝜓 binding energy (inGeV) on temperature𝑇/𝑇𝑐 (b) at different values of chemical potential.
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Figure 5: Dependence of 𝜒𝑏 binding energy (in GeV) on temperature𝑇/𝑇𝑐 (a) and dependence of 𝜒𝑐 binding energy (in GeV) on temperature𝑇/𝑇𝑐 (b) at different values of chemical potential.

Figures 4 and 5 show the behavior of the binding energy
of heavy quarkonia as a function of temperature (in units of𝑇𝑐) for 1S and 1P states, respectively.

We note that the binding energy becomes weaker with
increasing temperature. The dependence of the binding
energy on the temperature shows a qualitative agreement
with similar results in [25, 29–33] and becomes stronger with
the chemical potential. Figure 6 shows the dependence of
the binding energy of 𝐽/𝜓 and Υ states on the number of
dimensions.The binding energy of 𝐽/𝜓 andΥ states increases
with the increasing dimensionality number. In Figure 7, the
binding energy of charmonium and bottomoniummesons is
plotted in the 3-dimensional space. We note that the binding
energy increases with increasing finite temperature and
chemical potential. Therefore, the effect of finite temperature
is stronger than the effect of chemical potential.

Now, for calculating quarkoniummass, we use the follow-
ing relation [13]:

𝑀 = 2𝑚𝑄 + 𝐸𝑁𝑛𝑙 . (27)

Substituting (26) into (27), thus the mass spectra for the
different states are a function of temperature and chemical
potential that takes the following form:𝑀𝑄 = 2𝑚𝑄 + 𝛼𝑠𝑚𝐷 (𝑇, 𝜇)

+ √ 𝜎𝑚𝐷 (𝑇, 𝜇)4𝜇𝑄𝑄 (2𝑛 + 2𝑙 + 𝑁)

− (2𝜎 − 𝛼𝑠𝑚𝐷2 (𝑇, 𝜇))28𝜎𝑚𝐷 (𝑇, 𝜇) ,
(28)

where𝑀𝑄 is quarkonium mass 𝑄 = (𝑏, 𝑐) for bottomonium
and charmonium.

In Figure 8, quarkonium mass is plotted as a function of
temperature for 1S and 1P states, bottomonium in (a) and
charmonium in (b). We see that the mass spectra decrease
with increasing temperature. The values of 1P state are larger
than the values of 1S state. By increasing chemical potential,
the quarkonium mass shifts to larger values.
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Table 1:The dissociation temperature (TD) with Tc = 203 MeV for the quarkonia states (in units of Tc) usingmc = 1.6 GeV andmb = 4.7 GeV
at 𝜇 = 0.

State 𝑁 = 3 𝑁 = 4 𝑁 = 5𝐽/𝜓 1.31997Tc 1.32493Tc 1.32974Tc𝜓󸀠 1.32974Tc 1.33441Tc 1.33897TcΥ 1.31351Tc 1.31656Tc 1.31955TcΥ󸀠 1.31955Tc 1.32247Tc 1.32534Tc
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Figure 8: The mass spectra of heavy quarkonia are plotted as a function of temperature for 1S and 1P states, bottomonium in (a) and
charmonium in (b).

In Figures 9 and 10, we study the behavior of the
quarkoniummass as a function of temperature (in units of𝑇𝑐)
for 1S and 1P states for different values of chemical potential
using two values of quark mass. We noted that the increasing
quark mass leads to increasing quarkonium mass as in [28].
In the 1S state, the charmonium mass increases from 𝑀𝑐 =3.460GeV to𝑀𝑐 = 3.825GeV at zero chemical potential. At
finite chemical potential (𝜇 = 0.6GeV), charmonium mass
increases from𝑀𝑐 = 3.588GeV to𝑀𝑐 = 3.950GeV.
3.2. Dissociation Temperature of Heavy Quarkonia in the 𝑁-
Dimensional Space. There are a lot of earlier studies for
determining the dissociation temperatures for different states
of heavy quarkonia. In [24], the authors have calculated the
dissociation temperature of the heavy quarkonia from the
thermal width Γ(𝑇). In [29], authors have put a conservative
condition for the dissociation Γ(𝑇) > 2𝐸bin. In [30], the

authors have calculated the upper bound and the lower bound
of the dissociation temperature (𝑇𝐷) by the condition for the
dissociation: 𝐸bin = 𝑇𝐷 and 𝐸bin = 3𝑇𝐷, respectively. In
[43], the authors have obtained the dissociation temperature
of quarkonia when the binding energies are of the order of
the baryon chemical potential.

We calculate the dissociation temperature for different
states of heavy quarkonia from the condition 𝐸bin = 0, since
the state is dissociated when its binding energy vanished as in
[27].

In Table 1, we have calculated the dissociation tempera-
ture for the ground state and the first excited states of 𝑐𝑐 and𝑏𝑏 at 𝑁 = 3 and also at higher dimensional space at N =
4 and N = 5 when chemical potential vanishes. It is noted
fromTable 1 that the states dissociate around 1.3𝑇𝑐.The values
of 𝐽/𝜓 and Υ󸀠 quantitatively agree with the values recently
reported by Agotiya et al. [30]. Υ gives smaller value in
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Table 2: The dissociation temperature 𝑇𝐷 (MeV) at 𝜇 = 0.6GeV with 𝑇𝑐 = 185MeV.

State 𝑁 = 3 𝑁 = 4 𝑁 = 5𝐽/𝜓 1.45524𝑇𝑐 1.46167𝑇𝑐 1.46789𝑇𝑐𝜓󸀠 1.46789𝑇𝑐 1.47393𝑇𝑐 1.47982𝑇𝑐Υ 1.44687𝑇𝑐 1.45082𝑇𝑐 1.45469𝑇𝑐Υ󸀠 1.45469𝑇𝑐 1.45848𝑇𝑐 1.46219𝑇𝑐
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Figure 9:The mass spectra of heavy quarkonia are plotted as a function of temperature for 1S state, bottomonium in (a) and charmonium in
(b).

comparison with [30] which equals 1.7𝑇𝑐. Also, the value ofΥ
is in agreement with that in [53] which gives the dissociation
temperature of the 1S bottomonium𝑇𝑑 = 1.4𝑇𝑐. In [30], the dissociation temperature depends
on the chosen Debye screening mass. It is important to dis-
play the effect of dimensionality number on the dissociation
temperature. We note from Table 1 that increasing dimen-
sionality number leads to increasing dissociation temperature
at zero chemical potential.

In Table 2, the dissociation temperatures for different
states of heavy-quarkonium mesons have been obtained at
finite chemical potential (𝜇 = 600MeV) and the critical
temperature (𝑇𝑐 = 185MeV). One notes that increasing
dimensional number leads to a small increase in the dis-
sociation temperatures. In Table 3, by increasing chemical
potential 𝜇 = 900MeV, there is an important observation:
an increase in the value of quark chemical potential increases

the value of dissociation temperatures. Therefore, the finite
chemical and dimensional number play an important role in
changing dissociation temperatures which are not taken into
account in many previous works such as [30, 53].

4. Summary and Conclusion

In this paper, we have employed the analytical exact iteration
method (AEIM) for determining the analytic solution of
the N-dimensional radial Schrödinger equation, in which
the Cornell potential is generalized at finite temperature
and quark chemical potential. The energy eigenvalues have
been calculated in the N-dimensional space for any state,
in which one can obtain the energy eigenvalues in lower
dimensions in agreement with recent works. We noted that
the energy eigenvalues are only valid for nonzero temperature
at any value of chemical potential. The present results are
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Table 3: The dissociation temperature 𝑇𝐷 (MeV) at 𝜇 = 0.9GeV with 𝑇𝑐 = 160MeV.

State 𝑁 = 3 𝑁 = 4 𝑁 = 5𝐽/𝜓 1.69108𝑇𝑐 1.69973𝑇𝑐 1.70811𝑇𝑐𝜓󸀠 1.70811𝑇𝑐 1.71624𝑇𝑐 1.72417𝑇𝑐Υ 1.67982𝑇𝑐 1.68514𝑇𝑐 1.69035𝑇𝑐Υ󸀠 1.69035𝑇𝑐 1.69545𝑇𝑐 1.70045𝑇𝑐
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Figure 10: The mass spectra of heavy quarkonia are plotted as a function of temperature for 1P state, bottomonium in (a) and charmonium
in (b).

applied to studying properties of heavy quarkonia such as
charmonium and bottomonium. The effect of temperature,
chemical potential, and dimensionality number is studied
on the binding energies and the mass spectra of heavy
quarkonia. The present results are in agreement with recent
works [25, 29, 33].The binding energies of 1S and 1P states for
charmonium and bottomonium have been studied in com-
parison with other studies [11, 30]. Additionally, the effect of
the dimensionality number (N) on the values of dissociation
temperatures of heavy quarkonia has been studied at zero
and finite chemical potential. We consider the effect of finite
quark chemical potential on quarkonium properties which
play an important role in QGP and the studied values of
the chemical potential are never reached in the heavy-ion
collision. We conclude that the present potential with using
AEIM is successful in describing the quarkonium properties
at hot and dense mediums from normal dimensional space

to higher dimensional space. We hope to extend this work by
including external magnetic field and hyperfine interactions
which need more investigations as a future work.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley
Publishing, New York, NY, USA, 1967.

[2] A. Sommerfeld,Wave-Mechanics, London, UK, 1930.
[3] D. J. Griffiths, Introduction to Quantum Mechanics, Pearson

Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2005.
[4] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path

Integrals, McGrawHill, New York, NY, USA, 1965.



Advances in High Energy Physics 11

[5] E. Z. Liverts, E. G. Drukarev, R. Krivec, and V. B. Mandelzweig,
“Analytic presentation of a solution of the Schrodinger equa-
tion,” Few-Body Systems, vol. 44, p. 367, 2008.

[6] R. De, R. Dutt, and U. Sukhatme, “Mapping of shape invariant
potentials under point canonical transformations,” Journal of
Physics A: Mathematical and General, vol. 25, p. L843, 1992.

[7] R. N. Choudhury and M. Mondal, “Hill determinant method
with a variational parameter,” Physical Review A, vol. 40, p.
6080, 1989.

[8] R. Kumar and F. Chand, “Series solutions to the N-dimensional
radial Schrödinger equation for the quark-antiquark interaction
potential,”Physica Scripta, vol. 85, no. 5, Article ID 055008, 2012.

[9] A. N. Ikot, O. A. Awoga, andA. D. Antia, “Bound state solutions
of d-dimensional Schrödinger equation with Eckart potential
plus modified deformed Hylleraas potential,” Chinese Physics B,
vol. 22, Article ID 020304, 2013.

[10] D. Agboola, “The Hulthén potential in D-dimensions,” Physica
Scripta, vol. 80, no. 6, Article ID 065304, 2009.

[11] H. Hassanabadi, S. Zarrinkamar, and A. Rajabi, “Exact solu-
tions of D-dimensional schrödinger equation for an energy-
dependent potential by NUmethod,” Communications inTheo-
retical Physics, vol. 55, p. 541, 2011.

[12] M. Abu-Shady, “Heavy quarkonia and Bc-mesons in the
Cornell potential with harmonic oscillator potential in the
N-dimensional Schrödinger Equation,” International Journal
Applied Mathematicsts andTheortical Physics, vol. 2, p. 16, 2016.

[13] R. Kumar and F. Chand, “Asymptotic Study to the N-
Dimensional Radial Schrödinger Equation for the Quark-
Antiquark System,” Communications in Theoretical Physics, vol.
59, pp. 528–532, 2013.

[14] T. Das, “Treatment of N-dimensional Schrödinger equation for
anharmonic potential via Laplace transform,” Electronic Journal
of Theoretical Physics, vol. 13, p. 207, 2016.

[15] G. Chen, “Exact solutions of the N-dimensional radial
Schrodinger equation with the coulomb potential via Laplace
transform,” Zeitschrift für Naturforschung, vol. 59a, p. 875, 2004.

[16] R. N. Chaudhuri and M. Mondal, “Eigenvalues of anhar-
monic oscillators and the perturbed Coulomb problem in N-
dimensional space,” Physical Review A, vol. 52, p. 1850, 1995.

[17] H. Hassanabadi, B. H. Yazarloo, S. Zarrinkamar, and M.
Solaimani, “Approximate analytical versus numerical solutions
of Schrödinger equation under molecular Hua potential,” Inter-
national Journal of Quantum Chemistry, vol. 112, p. 3706, 2012.

[18] H. Rahimov, H. Nikoofard, S. Zarrinkamar, and H. Hassan-
abadi, “Approximate arbitrary-state solutions of Dirac equation
for modified deformed Hylleraas and modified Eckart poten-
tials by the NU method,” Applied Mathematics and Computa-
tion, vol. 219, p. 4710, 2013.

[19] E.M.Khokha,M.Abu-Shady, andT.A.Abdel-Karim, “Quarko-
nium masses in the N-dimensional space using the analytical
exact iterationmethod,” International Journal ofTheoretical and
Applied Mathematics, vol. 2, p. 86, 2016.

[20] K. J. Oyewumi, F. O. Akinpelu, and A. D. Agboola, “Exactly
complete solutions of the pseudoharmonic potential in N-
dimensions,” International Journal ofTheoretical Physics, vol. 47,
p. 1039, 2008.

[21] S. Ikhdair and R. Sever, “Polynomial solutions of the Mie-type
potential in the D-dimensional Schrodinger equation,” Journal
of Molecular Structure, vol. 855, p. 13, 2008.

[22] S. Ikhdair and R. Sever, “Exact solutions of themodified Kratzer
potential plus ring-shaped potential in the D-dimensional

Schrodinger equation by the Nikiforov-Uvarov method,” Inter-
national Journal of Modern Physics C, vol. 19, p. 221, 2008.

[23] S. M. Kuchin and N. V. Maksimenko, “Theoretical estimations
of the spin - averaged mass spectra of heavy quarkonia and Bc
mesons,” Universal Journal of Physics and Application, vol. 7, p.
295, 2013.

[24] D. Kharzeev, L. McLerranand, and H. Satz, “Non-perturbative
quarkonium dissociation in hadronic matter,” Physics Letters B,
vol. 356, p. 349, 1995.

[25] D. Blaschke, O. Kaczmarek, E. Laermann, and V. Yudichev,
“Heavy quark potential and quarkonia dissociation rates,” The
European Physical Journal C, vol. 5, Article ID 02327, 2005.

[26] H. Satz, “Colour deconfinement and quarkonium binding,”
Journal of Physics G: Nuclear and Particle Physics, vol. 32, p. 25,
2006.

[27] H. Satz, “Charm and Beauty in a Hot Environment,” BI-TP
2006/06, 2006, https://arxiv.org/abs/hep-ph/0602245.

[28] W. M. Alberico, A. Beraudo, A. De Pace, and A. Molinari,
“Quarkonia in the deconfined phase: Effective potentials and
lattice correlators,”Physical ReviewD, vol. 75, Article ID 074009,
2007.

[29] A. Mocsy and P. Petreczky, “Color screening melts quarko-
nium,” Physical Review Letter, vol. 99, Article ID 211602, 2007.

[30] V. Agotiya, V. Chandra, and B. K. Patra, “Dissociation of
quarkonium in a hot QCD medium: Modification of the
interquark potential,” Physical Review C, vol. 80, Article ID
025210, 2009.

[31] L. Thakur, N. Haque, U. Kakade, and B. K. Patra, “Dissociation
of quarkonium in an anisotropic hot QCD medium,” Physical
Review D, vol. 88, Article ID 054022, 2013.

[32] S. Chao-Yi, Z. Jia-Qing, M. Zhi-Lei, and L. Yun-De, “Thermal
Width for Heavy Quarkonium in the Static Limit,” Chinese
Physics Letters, vol. 32, no. 12, Article ID 121201, 2015.

[33] L. Thakur and B. K. Patra, “Quarkonium dissociation in an
anisotropic QGP,” Journal of Physics: Conference Series, vol. 668,
Article ID 012085, 2016.

[34] V. Kumar, V. Chandra, M. Y. Jamal, and I. Nilima, “Dissociation
of heavy quarkonium in hot QCD medium in a quasiparticle
model,” Physical Review D, vol. 94, Article ID 094006, 2016.

[35] H. Vija and M. H. Thoma, “Braaten-Pisarski method at finite
chemical potential,” Physics Letters B, vol. 342, no. 1-4, pp. 212–
218, 1995.
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