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1 Introduction

Black hole model in general relativity identifies deep insufficiency in our understanding of

gravity. As explained by Bekenstein [1] and Hawking [2, 3], black holes obey the first law of

thermodynamics [4], with a temperature that arises from the quantum process of Hawking

radiation. From the no-hair theorem [5], one would expect that the Hawking radiation to

be completely independent of the state of matters entering the black hole. Therefore if the

matters were in a pure quantum state, and since the Hawking radiation is described by a

mixed thermal state, the black hole evaporation process would be non-unitary which is in

contradiction with quantum mechanics. See, for example, [6, 7] for a review of the black

hole information problem.

Recently, Strominger initiated a study of the infrared structure of gravity and its

connection with the asymptotic BMS symmetry [8–13]. Furthermore, Hawking, Perry

and Strominger [14, 15] and Strominger [16] advocated a new approach to the black hole

information paradox based on a new kind of black hole soft hair.

BMS symmetry [17, 18] is the symmetry of asymptotically flat spacetime generated

by supertranslation, an angular dependent shift of the time coordinate in the asymptotic

region. With the BMS symmetry, asymptotically flat spacetimes are characterized by,

in addition to the standard ADM charges of mass, electric charge and angular momen-

tum [19], also an infinite number of BMS charges of supertranslation and superrotation

charges [20, 21]. The existence of an infinite number of new charges for asymptotically

flat spacetime is a very interesting observation. When applied to black hole in Minkowski
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spacetime, this means that supertranslated black hole carries an infinite amount of soft hair

characterized by the BMS charges. The existence of soft hair is not a contradiction to the

standard no-hair theorem of black hole since the supertranslated black hole is diffeomor-

phic to the untranslated one, and so they carry the same ADM charges. Nevertheless soft

hair modifies the definition of time at null infinity and it acts non-trivially on the classical

phase space. It is physical and its effects can be observed classically with the gravitational

memory effect [22–25].

Soft hair can be generated via physical process. In the case of Schwarzschild black

hole, [15] showed that one could grow soft hair on it by throwing in a shockwave of radia-

tion. This relation of the soft hair with the collapsed matter suggests that soft hair could

encode information about the black hole creation and evaporation process. It was further

argued [14] that, if viewed as a scattering amplitude in the quantum theory, the process of

the black hole formation and evaporation should be constrained by the infinite symmetries

of BMS and hence the existence of an infinite amount of soft hair could help to resolve the

information paradox. The problem of how the black hole S-matrix could be constrained by

the soft modes has been further analyzed by a number of authors recently. As emphasized

by [26–29], the scattering of the hard modes (like the black hole process) is factorized from

the scattering of the soft modes. The decoupling can be seen in the dressed state approach.

The decoupling has also been argued to be a generic feature of quantum gravity, at least

perturbatively [30].

Although the S-matrix turns out not to be a good observable for studying the evap-

oration process of black hole, it does not exclude soft hair from having physical effects

on the black hole physics. Quantum mechanically, the change of time is translated to a

change of the quantum vacuum, so soft hair is expected to leave quantum effects on the

black hole physics. The main motivation of our work is to find out how and what aspects

of the quantum physics of black hole is affected by its soft hair.

In this regard, we consider the effects of soft hair on the spectrum of the Hawking

radiation. For the soft-hairy Schwarzschild black hole, we find that the Hawking radia-

tion is insensitive to the soft hair. In this process, soft hair is implanted on the eternal

Schwarzschild black hole with an energy flux of shock wave. However this is not entirely

consistent as Hawking radiation carries away energy and should backreact on the metric.

One should allow for the time dependence of the metric and consider a dynamical black

hole. We therefore consider the more realistic process of black hole evaporation due to

Hawking radiation of this dynamical black hole and investigate how the soft hair would

affect the Hawking radiation. The black hole evaporation process can be modeled with

a supertranslated Vaidya spacetime. We employ the tunneling method to compute the

Hawking radiation and find that it has a dependence on the soft hair configuration. Our

result is consistent with the factorization property of the S-matrix: the final state of black

hole evaporation consists of Hawking radiation plus a sea of soft modes. If one use the

dressed states as a basis for the soft modes, then the Hawking radiation would have a

spectrum which is independent of the soft hair configuration. On the other hand, if one

use the undressed states as in our computation, then the Hawking radiation would develop

a dependence on the soft hair.
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The organization of the paper is as follow. In section 2, we introduce the Vaidya

spacetime and its supertranslation. We show that this spacetime can be obtained from the

collapse of a certain energy momentum tensor with soft charges. In section 3, we discuss

some properties of the supertranslated Vaidya black hole. We briefly review the definition

of trapping horizon for dynamical black holes and show that the supertranslated Vaidya

spacetime is a dynamical black hole with a trapping horizon. Next we define the horizon

surface gravity associated with the trapping horizon of the supertranslated Vaidya black

hole by extending the definition of the horizon surface gravity of spherically symmetric

black holes using Kodama vector. In section 4, we apply the Hamilton-Jacobi tunneling

method [31], which has been used as frequently as the null geodesic method developed

by Parikh and Wilczek [32], to compute the Hawking radiation from the supertranslated

Vaidya black hole. The Hawking radiation spectrum takes the standard form and the

dependence on soft hair is encoded in the temperature of the radiation. We discuss the

results with respect to dressing of soft modes in the final state of observation. We conclude

the paper with some further discussion.

2 Supertranslation of Vaidya spacetime

2.1 Supertranslated Vaidya spacetime

Let us start with a brief review on supertranslation for an asymptotically flat metric in

four dimensions. At the infinity, depending on the physical situation one wants to describe,

one may impose different falloff conditions on the metric. In general one wants to choose

the falloff conditions such that interesting solutions such as gravitational radiations are

included, but unphysical solutions (e.g. those with infinite energy) are ruled out. The

choice of falloff conditions of Bondi, van der Burg, Metzner and Sachs (BMS) [17, 18, 44, 45]

considers metric with the asymptotic expansion near the past null infinity I− [15],

ds2 = −dv2 + 2dvdr + r2γABdΘ
AdΘB

+
2m

r
dv2 + rCABdΘ

AdΘB +
1

4
γABCCDC

CDdΘAdΘB

−DBCABdvdΘ
A − 1

r

(

4

3
NA − 4v

3
∂Am− 1

8
∂A(CBDC

BD)

)

dvdΘA

− 1

16r2
CABC

ABdvdr, (2.1)

where γAB is the metric on the unit two sphere and ΘA = (z, z̄) are the angular coordinates.

In (2.1) the Bondi mass aspect m, the traceless tensor CAB and the angular momentum

aspect NA depend on (v,ΘA). BMS supertranslation is the diffeomorphism which preserves

the Bondi gauge and the asymptotic falloff conditions. It is generated by the vector field:

ζf = f∂v −
1

2
D2f∂r +

1

r
DAf∂A, (2.2)

where DA is the covariant derivative with respect to γAB. Supertranslations are charac-

terized by an arbitrary function of the angular variables, f = f(Θ).
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We are interested in dynamical black holes in asymptotically flat spacetime. An exam-

ple is the Vaidya metric. There are two kinds of Vaidya spacetime, one written in terms of

the retarded (outgoing) null coordinates and one in terms of the advanced (ingoing) null

coordinates. The Vaidya metric in the advanced Bondi coordinates (v, r,ΘA) is given by

ds2 = gµνdx
µdxν = −V dv2 + 2dvdr + r2γABdΘ

AdΘB, V ≡ 1− 2M(v)

r
. (2.3)

The Bondi mass aspect M = M(v) is a function of the advanced time v. The ingoing

Vaidya metric satisfies the Einstein equation with the energy flux (for Newton constant

GN = 1)

T̄vv =
M ′(v)

4πr2
, M ′ := ∂vM(v). (2.4)

Null energy condition implies that M ′(v) ≥ 0 which corresponds to ingoing energy flux

being absorbed by the black hole. This geometry naturally describes the formation of a

black hole by the collapse of matter. However with the sign reversed, M ′ < 0, the metric

can also be taken as a model describing the evaporation of black hole by an outgoing energy

flux. In this paper, we will determine the Hawking radiation from the Vaidya black hole

with soft hair using the tunneling method. We note that in order to utilize the tunneling

method, one must employ a metric which is smooth across the location where tunneling

occurs, i.e. the horizon. This is suitable for the ingoing Vaidya metric which covers the

both the interior and exterior of the black hole; but not for the outgoing Vaidya metric

since it covers the exterior region of a black hole and the interior region of a white hole.

Therefore we will employ the ingoing Vaidya metric with M ′ < 0 as a model to discuss the

evaporation of dynamical black hole due to Hawking radiation.1

The supertranslated Vaidya metric gµν is obtained by acting the vector field ζf of (2.2)

on the Vaidya metric (2.3),

gµν = gµν + Lζf gµν . (2.5)

The result is

gµνdx
µdxν = −

(

V − 2fM ′

r
− MD2f

r2

)

dv2 + 2dvdr −DA(2V f +D2f)dvdΘA

+ (r2γAB + 2rDADBf − rγABD
2f)dΘAdΘB. (2.6)

Note that the metric (2.6) can be extended to finite distance and is a solution to the lin-

earized Einstein equations for all r. In this paper, we restrict ourselves to linearized theory

in the metric perturbation, or equivalently in f , which means that the back reaction caused

by the energy momentum tensor of the gravitational waves and the quantization of gravita-

tional fluctuations will not be considered in our analysis. From the form of (2.6), it is clear

that the supertranslated Vaidya spacetime is non-spherical. This may also be seen physi-

cally from the fact that the metric (2.6) can be obtained, as we will show in the next sub-

section, by throwing in a non-spherically symmetric energy momentum flux to the Vaidya

1Most part of our analysis actually holds true for any sign of M ′. For example, with M ′ > 0, the

results, (4.20), (4.21) give the influence of the soft hair on the Hawking radiation during the stage the black

hole was formed. However the identification (4.22) of the energy loss from Hawking radiation with the

change of mass of the black hole holds only in the case of mass loss M ′ < 0.
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spacetime. We also remark that unlike the static case of the supertranslated Schwarzschild

spacetime, the supertranslated Vaidya spacetime does not have an event horizon. In fact

for a dynamical black hole, the concept of event horizon has to be generalized.

In the next section, we will review the definition of dynamical black holes and show

that the supertranslated Vaidya spacetime admits a trapping horizon and describes a non-

spherical dynamical black hole. As far as we are aware of, (2.6) is the first example

of a non-spherical dynamical black hole. Before that, let us first demonstrate that the

supertranslated hair configuration (2.6) can be obtained by throwing in a shockwave-like

energy momentum flux to the Vaidya black hole.

2.2 Implantation of supertranslation hair

The spacetime (2.6) describes a black hole with supertranslation hair implanted on it.

Physically, the configuration of soft hair can be implanted by throwing in an energy flux

of a particular form. Consider an ansatz for the perturbed energy momentum tensor,

T̂vv =
1

4πr2

(

µ̂(v,Θ) + T̂ (Θ)δ(v − v0)
)

+
1

4πr3

(

T̂ (1)(Θ)δ(v − v0) + t̂(1)(Θ)θ(v − v0)
)

,

T̂vA =
1

4πr2

(

T̂A(Θ)δ(v − v0) + t̂A(Θ)θ(v − v0)
)

, (2.7)

where θ(v − v0) is step function. The covariant conservation ∇̄µT̂µν = 0 imposes that

DAT̂A(Θ) = T̂ (1)(Θ), DAt̂A(Θ) = t̂(1)(Θ), (2.8)

where ∇̄µ stands for the covariant derivative with respect to the background Vaidya metric

gµν . In addition, we consider energy momentum tensor satisfying the relation

(D2 + 2)T̂ (1)(Θ) = −6M(v)T̂ (Θ). (2.9)

Now for general asymptotically flat metric (2.1) in the Bondi gauge, the Einstein

equations at I− give the following constraints at order O(r−2):

∂vm =
1

4
DADB∂vCAB + 4π lim

r→∞
(r2Tvv), (2.10)

∂vNA = vDA∂vm+
1

4
DB(DBD

CCAC −DAD
CCBC)− 8π lim

r→∞
(r2TvA), (2.11)

where we neglected quadratic perturbation terms off from flat space. Our claim is that one

can reproduce the supertranslated Vaidya metric with an appropriate choice of the energy

momentum tensor

Tµν = T̄µν + T̂µν . (2.12)

To start, the constraint (2.10) can be solved by taking

1

4
DADB∂vCAB = −T̂ (Θ)δ(v − v0) (2.13)

and

µ̂(v,Θ) = ∂v

(

θ(v − v0)(ĈM ′ + µ)
)

, (2.14)
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where µ is a constant and Ĉ = Ĉ(Θ) is an arbitrary function of angles. Then

m = M + θ(v − v0)(ĈM ′ + µ). (2.15)

As for the equation (2.13), let us consider

T̂ (Θ) = −1

4
D2(D2 + 2)Ĉ, (2.16)

which implies, from (2.8) and (2.9), that

T̂ (1)(Θ) =
3M

2
D2Ĉ, T̂A(Θ) =

3M

2
DAĈ. (2.17)

Then (2.13) can be solved and gives

CAB = θ(v − v0)(2DADBĈ − γABD
2Ĉ). (2.18)

In turn from (2.11), we obtain

NA = θ(v − v0)(vM
′ − 3M)DAĈ, (2.19)

and

t̂A(Θ) = M ′DAĈ, t̂(1)(Θ) = M ′D2Ĉ, (2.20)

where t̂(1) is obtained by solving (2.8).

The energy momentum tensor T̂µν is shockwave-like, with a delta function and a step

function component. And the corresponding spacetime gµν can be written as a perturbation

over the background Vaidya metric of mass M(v):

gµν = gµν + hµν (2.21)

with the perturbations:

hvv = θ(v − v0)

(

2

r
(µ+ ĈM ′) +

1

r2
MD2Ĉ

)

,

hvA = −θ(v − v0)DA

(

V Ĉ +
1

2
D2Ĉ

)

,

hAB = rθ(v − v0)
(

2DADBĈ − γABD
2Ĉ

)

. (2.22)

Like in the static case [15], the perturbation can be written as

hµν = θ(v − v0)

(

Lf=Ĉgµν +
2µ

r
δvµδ

v
ν

)

. (2.23)

Therefore our shockwave-like energy momentum flux creates a supertranslation of the

Vaidya metric with the supertranslation parameter f = Ĉ. Also it shifts the mass pa-

rameter by a constant amount in case µ is nonzero. Physically it means that during the

process of the formation of the dynamical Vaidya black hole, we can also implant a con-

figuration of soft hair on it with the aid of the energy momentum flux T̂µν . Note that the
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metric (2.21) actually satisfies the linearized Einstein equations for all r and thus describes

linear perturbations not only at around I− but also in the interior of spacetime.

The fact that the metric (2.21) holds for all r, especially in the neighborhood of the

black hole trapping horizon, has important physical consequences. Below we will extend

the consideration of Hawking radiation for dynamical black hole and show that Hawking

radiation are created at the dynamical horizon of the soft hair implanted Vaidya black

hole. Naturally the Hawking radiation spectrum can be expected to have dependence on

the soft charges (superrotation charges) of the black hole. We will show that this is indeed

the case.

We end this section by noting that while in this paper we focus on BMS supertrans-

lations as asymptotic symmetries defined at null infinity and its effect on the physics at

the black hole horizon, there is a different sort of supertranslations (and superrotations) as

asymptotic symmetries defined at black hole horizons, also known as horizon supertrans-

lations, which has been studied for example in [14, 33–40]. Recent work on gravitational

memory and quantum mechanical effects associated with the horizon supertranslations on

Rindler horizon can be found in [41–43].

3 Properties of supertranslated Vaidya black hole

In this section we investigate some properties of the supertranslated Vaidya black hole

which will be helpful for interpreting and understanding of the results of Hawking radiation

from the supertranslated Vaidya black hole obtained in the section 4.

3.1 Trapping horizon

The event horizon of a spacetime is a global concept and requires a knowledge of the

entire causal structure of spacetime. This is physically impossible unless the spacetime

is stationary and nothing changes. In this case one can invoke the theorem of Hawking

which says that the event horizon of a stationary asymptotically flat spacetime is a Killing

horizon. In addition, using the null Killing vector, one can associate with the Killing horizon

a surface gravity which plays the role of temperature in the black hole thermodynamics

and Hawking radiation effect.

However the situation becomes much more complicated in the general dynamical case

where Killing horizon generally does not exist. Much efforts have been spent on looking

for appropriate local definitions of horizon for dynamical black hole spacetime [46–49] (see

also [50–54] for reviews). These local horizons are typically defined in terms of trapped

surfaces, which are space-like 2-surfaces for which the expansion of the outgoing null rays

normal to the surface vanishes. Let us review the precise definition here. Consider a

bundle of null geodesics with tangent vector lµ− and satisfies gµν l
µ
−l

ν
− = 0, lµ−∇µl

ν
− = 0.

Let us pick another null vector field lµ+ such that gµν l
µ
+l

ν
+ = 0 and a relative normalization

l−
µl+µ = −1. Then the metric in the two-space S orthogonal to l+ and l− can be written as

qµν = gµν + l−µl+ν + l−ν l+µ. (3.1)

– 7 –
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By construction, l± is orthogonal to S: qµν l
ν
± = 0. In general given a null flow character-

ized by the tangent vector lµ, one can characterize the flow with a shear, rotation and an

expansion part. Of particular interests to general relativity is the expansion scalar which

is defined by the divergence of the flow:

θ := qµν∇µlν . (3.2)

Physically, θ measures the expansion rate of the infinitesimally nearby surrounding radial

null geodesics [55]: the bundle of null geodesics is expanding if θ > 0 (gravity is not so

strong) and contracting if θ < 0. Now a space-like closed and orientable two surface in

four-dimensions has two independent normal directions, corresponding to the ingoing and

outgoing null rays. It is thus natural to take lµ− and lµ+ to be the tangent vectors of the

bundles of ingoing and outgoing null geodesics, and use their behaviour to characterize the

gravitational field surrounding S. A normal surface would have θ− < 0 and θ+ > 0. A

trapped surface is one with θ− < 0 and θ+ < 0, i.e. the outgoing null rays are contracting

at S instead of expanding. The surface is marginally trapped if θ− < 0 and θ+ = 0, i.e.

the outgoing null rays momentarily stop expanding. Trapped surfaces are interesting since

under certain physically reasonable assumptions, they lead to the presence of singularities.

The cosmic censorship hypothesis then suggests that there must be an event horizon, with

the trapped surface located inside of certain black hole horizon. This is a highly non-trivial

problem in the dynamical case since when embedded in a dynamical spacetime, the horizon

is not expected to be a null hypersurface although it should still exhibit infinite redshift.

Various definitions of black hole horizon have been proposed and considered. Among them

of particular importance is the future outer trapping horizon (FOTH) introduced by Hay-

ward [46], where later refinements and generalizations are based on. In this paper, we find

that the superstranslated Vaidya spacetime is a dynamical black hole with a future outer

trapping horizon of Hayward.

A future outer (marginally) trapping horizon is a smooth three-dimensional submani-

fold of spacetime which is foliated by closed space-like surfaces St, t ∈ R, with null normals

l± constructed by ingoing and outgoing rays such that:

θ+ = 0 (marginally trapped), θ− < 0 (future type), lµ−∂µθ+ < 0 (outer type).

(3.3)

The first condition in (3.3) specifies the location of marginally trapped surfaces where

nearby surrounding radial outgoing null geodesics are parallel. The second condition says

that the trapping horizon is of future type, i.e. a black hole rather than a white hole. The

third condition says a motion of St along l− makes it trapped, hence it is outer rather than

inner kind.

Now let us apply these concepts to the supertranslated Vaidya spacetime. Let us

consider radial ingoing and outgoing null geodesics. The corresponding tangent vectors are

lµ− = (0,−1, 0, 0), lµ+ =

(

1,
1

2

(

V − 2fM ′

r
− MD2f

r2

)

, 0, 0

)

. (3.4)
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Using (2.6), (3.1) and (3.4), we get

θ− = −2

r
, θ+ =

1

r

(

V − 2fM ′

r
− MD2f

r2

)

, (3.5)

where we have discarded terms of O(f2). For the supertranslated Vaidya black hole, the

first condition in (3.3) yields2

r = rh = 2M + 2fM ′ +
1

2
D2f. (3.6)

In our calculation, f is taken as a small perturbation and the f dependent terms give

correction to the Schwarzschild radius. For consistency, we will consider the case where

the corrections are small such that the first term dominates, M ≫ |M ′f |, |D2f |, and so

rh > 0. The second condition in (3.3) is trivially satisfied. The third condition yields

− 1

2rhM

(

1− f
M ′

M

)

< 0, (3.7)

which is satisfied for the same assumption as above. The condition (3.7) is actually equiv-

alent to a positive horizon surface gravity which we will discuss in the next section. There-

fore, a trapping horizon foliated by marginally trapped surfaces (3.6) is of future and outer

type and is a FOTH of the supertranslated Vadiya black hole. A FOTH is in general not

null but it still has infinite red shift. In fact, substituting (3.6) into (2.6) and fixing angular

coordinates dΘA = 0 gives

ds2 = 4

(

M ′ + fM ′′ +
1

4
M ′D2f

)

dv2. (3.8)

Hence the FOTH of supertranslated Vaidya black hole at a fixed angular coordinates is

time-like if M ′ < −fM ′′ − 1
4M

′D2f for which the null energy condition will be violated

and space-like if M ′ > −fM ′′− 1
4M

′D2f . For the stage of evaporation the black hole mass

will be decreasing M ′ < 0 due to ingoing negative energy flux and the FOTH would be

time-like.

3.2 Surface gravity

Next we discuss the horizon surface gravity associated with the trapping horizon of the

supertranslated Vaidya black hole.

For stationary black hole, surface gravity is defined in terms of the null Killing vector

of the Killing horizon. In a time-dependent spacetime, there is generally no asymptotically

time-like Killing vector to define a preferred time coordinate. As a result, quantities such as

four-acceleration and surface gravity cannot be defined unambiguously. Instead, depending

on the local definition of horizons that is adopted, one may define a notion of surface gravity

2Actually θ+ = 0 has two solutions. One is given by (3.6) and corresponds to a marginally trapped

surface of outer type as discussed above. The other solution r = − 1

2
D2f corresponds to a marginally

trapped surface of inner type with lµ∂µθ+ > 0, whose foliation gives a future inner trapping horizon if

r = − 1

2
D2f > 0.

– 9 –
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correspondingly, see e.g. [54, 56, 57]. For the FOTH of Hayward, there is a quite explicit

and satisfactory definition of surface gravity for the spherically symmetric case. In fact,

for any spherically symmetric metric, one can show the existence of a unique vector field

Kµ, called the Kodama vector, which satisfies [58]

∇ν(GµνK
µ) = 0, ∇µK

µ = 0. (3.9)

Here Gµν is the Einstein tensor. Kodama vector gives a preferred time direction for dy-

namical spacetimes in spherical symmetry. In an asymptotically flat spacetime, with an

appropriate normalization, the Kodama vector coincides with the time translation Killing

vector at spatial infinity. Hayward has shown that the following relation holds for Kodama

vector [59],

Kµ∇[νKµ] = −κKν (3.10)

where the equality holds when it is evaluated on a trapping horizon. The coefficient κ

defines the horizon surface gravity of the FOTH of Hayward. Kodama vector coincides

with the time translation Killing vector field for stationary solutions, and the defining

equation for surface gravity (3.10) reduces to that of Killing surface gravity in static limit

by virtue of Killing equation and thus can be used to define surface gravity κ for dynamical

black holes with spherical symmetry. For non-spherical dynamical black holes, it is not

known in general whether the Kodama vector exists. However if it exists, we can use (3.10)

to define the surface gravity.

For a spherically symmetric Vaidya spacetime, the Kodama vector is K̄µ = δµv and the

horizon surface gravity of Vaidya black hole defined by (3.10) is κ̄ = 1
4M(v) . We would like

to extend the definition of surface gravity to the supertranslated Vaidya black hole case

using the Kodama vector. For the supertranslated Vaidya metric gµν (2.6), although it is

not spherically symmetric, we find that

Kµ = δµv , Kµ = gµνK
ν , (3.11)

solves the equation (3.9) up to O(f2) term. Evaluated on the FOTH, the surface gravity

in (3.10) is found to be

κ =
1

4M

(

1− f
M ′

M

)

, (3.12)

at the linear order in f . Note that the Kodama-like vector (3.11) coincides with the time-

translation Killing vector for the supertranslated Schwarzschild in static limit. In the su-

pertranslated case, the horizon surface gravity of the supertranslated Vaidya black hole has

a dependence on the supertranslation hair and is not a constant on the FOTH. Physically

this means that the black hole does not correspond to a system in thermal equilibrium. In

general one cannot define a specific temperature for a nonequilibrium system. Nevertheless

one may still define a temperature locally provided that the system is in equilibrium locally.

We propose to interpret κ as a local measure of the temperature of the superstranslated

Vaidya black hole. As we mentioned above, the outer trapping horizon corresponds to the

positive surface gravity κ given by (3.12). The inner trapping horizon would correspond

to κ < 0 and the degenerate (extremal) one corresponds to κ = 0. It is interesting to think

about what these thermodynamical notions mean in terms of spacetime physics.
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4 Hawking radiation from supertranslated Vaidya black hole

4.1 Hamilton-Jacobi method

Now let us consider Hawking radiation from the supertranslated Vaidya black hole. As

argued by Parikh and Wilczek [32], the Hawking radiation can be computed as a tunneling

process based on null geodesic motion of particle in the black hole geometry. That this

is possible without using the full-fledged quantum field theory is because of the huge red

shift factor at the horizon of the black hole. As a result, Hawking radiation observed at

asymptotic infinity arises from emitted wave with vanishing wavelength near the horizon,

and therefore, as far as the tunneling process is of concern, a point particle approximation

near the horizon is good. We refer the readers to [57] for a review on the tunneling methods

and Hawking radiation. In addition to the original method of null geodesic, the Hamilton-

Jacobi method has also been developed to compute the Hawking radiation of black hole.

It has been shown for stationary black hole spacetimes that the two methods provide

the same result for the semi-classical emission rate at the leading order of the energy of

the emitted particles [60]. While the null geodesic method is based on the self-gravitation

(backreaction) of emitted particles and the energy conservation of the whole spacetime, the

Hamilton-Jacobi method would be simple to compute the imaginary part of the particle

action without reference to the self-gravitation of emitted particles. Also covariance of

the method is well understood in the Hamilton-Jacobi equation. Moreover, the Hamilton-

Jacobi method can be applied to either stationary or dynamical black holes [61–63] so that

it is suitable for our purpose. We will therefore adopt the Hamilton-Jacobi method to

compute the Hawking radiation spectrum for the supertranslated Vaidya black hole.

Consider now, for example, a minimally coupled massless scalar particles, �φ(x) = 0.

We look for a solution to this equation by a WKB ansatz φ = A(x)eiS/~ + O(~). At the

leading non-trivial order of ~, the Klein-Gordon (KG) equation reduces to the Hamilton-

Jacobi equation

gµν∂µS∂νS = 0. (4.1)

Generally there are two solutions to this equation and they correspond to the two different

solutions of the KG equation. Physically, they describe motion of a particle getting out

(outgoing solution) and falling in to the black hole (ingoing solution). The motion of

particle is given by a null geodesic in the black hole background. One can then reconstruct

the particle action by a line integral

S =

∫

P
dxµ∂µS, (4.2)

where P is the null geodesic. S is real in general, but can become complex if the trajectory

is a classically forbidden one. Since particles can fall into a black hole along a classically

permitted path, we expect S to possibly become imaginary only for the outgoing solution.

In the case of static black holes, this occurs for the outgoing solution along a trajectory

crossing the event horizon which we call a tunneling path, and the imaginary contribution

arises from the residue of the pole in ∂µS at the location of horizon. To leading order in
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~, the semiclassical emission rate Γem is given by the WKB formula

Γem ∝ exp
(

− 2 ImSout

)

, (4.3)

where Sout denotes the particle action for the outgoing solution and we have set ~ = 1. For

static black hole spacetimes, it is easy to show that the semiclassical emission rate satisfies

the detailed balance relation [31, 64] Γem = e−βωΓab where Γab is the semiclassical absorp-

tion rate and ω is the energy of the emitted particles. This allows one to have a thermal

interpretation of the result with β−1 being the (Hawking) temperature of the system.

Let us consider the semiclassical emission rate for supertranslated Schwarzschild black

hole. In the advanced Bondi coordinates, the metric reads [15]

ds2 = −
(

V − MD2f

r2

)

dv2 + 2dvdr − dvdΘADA(2V f +D2f)

+
(

r2γAB + 2rDADBf − rγABD
2f

)

dΘAdΘB, (4.4)

where V = 1 − 2M
r . This coordinate system has a nice feature for tunneling computation

since it is non-singular at the event horizon r = 2M + 1
2D

2f . As shown by [15], the metric

can be extended to the interior and is still a solution of the Einstein equations. We can see

that this coordinate system covers both interior and exterior regions of a black hole and

hence it is an appropriate coordinate system to compute the semiclassical emission rate

for black holes. On the other hand, retarded Bondi coordinates would be suitable for the

computation of the semiclassical absorption rate for white holes. We consider radial null

geodesics in (v − r) plane for which the Hamilton-Jacobi equation is

(

V − MD2f

r2

)

(∂rS)
2 − 2ω∂rS = 0, (4.5)

where

ω = −ξµpµ = −ξµ∂µS = −∂vS. (4.6)

ξ is the time-translation Killing vector field ξ = ∂v and pµ is the 4-momentum of particle.

ω is the energy of particle and is a constant in motion. The solutions to (4.5) are

∂rSout =
2ω

V − MD2f
r2

, ∂rSin = 0, (4.7)

where Sout corresponds to the outgoing solution (∂rS > 0) for r > 2M , and Sin to the

ingoing solution. Using (4.2), the corresponding action is

Sout = −
∫

ωdv +

∫

2ωdr

V − MD2f
r2

, Sin = −
∫

ωdv. (4.8)

As mentioned above, the ingoing action does not have an imaginary part since absorption

is complete for black holes in the classical limit [65]. The integrand for Sout has poles at,

up to order f terms, r = rh := 2M + 1
2D

2f which is the location of the (shifted) event

horizon, and at r = rf := −1
2D

2f .
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a

b

c

Figure 1. A trajectory from inside to outside of the black hole. The dashed line represents the

event horizon.

To obtain Sout, we need to perform the integration for along a trajectory of motion.

As we consider s-wave motion, there are two types of path:

dv = 0, (type-I)

dr

dv
= −1

2

(

V − MD2f

r2

)

, (type-II) (4.9)

In figure 1, we show a trajectory
−→
abc which contains a path

−→
ab moving backward in time

and crossing the horizon. This part is described by a type-I path. After tunneling out

from the horizon, the emitted particle escapes to infinity on a type-II path and would be

observed as Hawking radiation.3 It is easy to see that Sout vanishes on a type-II path. For

a type-I path, we have

Sout =

∫

I

2ωr2dr

(r − rh)(r − rf )
. (4.10)

As our path crosses the horizon r = rh, the integral is divergent. Adopting a Feynman’s iǫ

prescription to deform the integral,4 the imaginary part of Sout is

Im Sout = Im

∫

a→b

2ωr2dr

(r − rh − iǫ)(r − rf )
= 4πωM, (4.11)

dropping terms of order f2 or higher. The semiclassical emission rate is thus obtained as

Γem ∝ exp(−2ImSout) = exp(−8πωM). (4.12)

3This tunneling process can also be interpreted in a different way. A pair of virtual particles is created

near b. One with negative energy falls into the black hole and the other with positive energy escapes to

infinity [64].
4Here iǫ is introduced in such a way that the positive energy exponential function decays and the relation

Γem = e−8πωMΓab for black hole semiclassical emission rate is obtained [31]. If iǫ is introduced with the op-

posite sign, one obtains a result which would be regarded as that for the time reversed one Γab = e−8πωMΓem

for white hole semiclassical absorption rate. In [57], it is discussed that the iǫ prescription is consistent with

the analytic continuation when spacetime allows the Kruskal extension as in [64]. iǫ prescription should cor-

respond to boundary conditions on the wave function and choice of vacuum while in the tunneling method

with the WKB approximation identification of the positive frequency solutions is usually implicit in the

coordination and in making ansatz for the solution to the Hamilton-Jacobi equation [66].

– 13 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
6

Identifying Γem with the Boltzmann factor, exp(−ω/T ), we can read off the Hawking

temperature as T = κs

2π with κs = 1
4M the surface gravity of Schwarzschild black hole.

Note that in this computation, only the infinitesimal region across the trapping horizon

contributes to the result. Note also that the Hawking radiation in this case is independent

of the soft hair features of the black hole.

4.2 Supertranslated Vaidya black hole

In the above, we find that the Hawking radiation is insensitive to the features of soft hair

of a stationary Schwarzschild black hole. Next, we would like to consider the process of

black hole evaporation and compute the Hawking radiation of this dynamical black hole;

and investigate how the soft hair would affect the Hawking radiation. The black hole

evolution process can be modeled with a supertranslated Vaidya spacetime with a time-

dependent mass M(v) where v is the advanced null coordinate. The decrease of the black

hole mass due to the ingoing negative energy flux can be interpreted in the tunneling

method as one having the negative energy particle of a virtual particle pair created near

the FOTH falls into the black hole. Here we effectively incorporate this back reaction effect

of ingoing Hawking radiation by the diminishing behaviour of the black hole mass M(v) of

the background geometry with M ′ < 0 during the evaporation process.

For the supertranslated Vaidya metric, the Hamilton-Jacobi method can be applied

in a similar way to the previous example of Schwarzschild black hole. However there are

important differences. We start with the Hamilton-Jacobi equation (4.1) with the metric

given by (2.6).

2∂rS∂vS+

(

V − 2fM ′

r
−MD2f

r2

)

(∂rS)
2

+
1

r2
DA(2V f+D2f)∂rS∂AS+

1

r4
(

r2γAB−2rDADBf+rγABD2f
)

∂AS∂BS=0. (4.13)

Here we define the invariant energy of particle ω in favor of the Kodama-like vector which

generalizes the particle energy in the static case.

ω ≡ −Kµpµ = −Kµ∂µS = −∂vS. (4.14)

(4.13) is rather complicated to solve in general. The simplest possibility is to consider

radial null geodesics with ΘA = const. along the geodesics. In this case, the Hamilton-

Jacobi equation has simple solutions

∂rSout = 2ω

(

V − 2fM ′

r
− MD2f

r2

)−1

, ∂rSin = 0. (4.15)

And the particle action is reconstructed as

Sout = −
∫

ωdv +

∫

2ωr2dr

V r2 − 2fM ′r −MD2f
, Sin = −

∫

ωdv. (4.16)

As before, Sin has no imaginary contribution since the energy is real. As for Sout, the

line integral contribution (4.16) to Sout is real for most part of the path except possibly
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Figure 2. Typical Penrose diagram of the supertranslated Vaidya black hole at a fixed value of

ΘA. The dashed line represents the FOTH r = rh, the wavy line represents the singularity r = 0

and the thick curve represents a collapsing matter.

at around the location where the integrand diverges, which occurs at the location of the

trapping horizon. However since now the trapping horizon is dynamical, it is no longer

null. This leads to two types of tunneling paths, depending on how the path crosses the

trapping horizon. See figure 2. On the segment of the geodesic which crosses the trapping

horizon, they are described by the type-I and type-II paths respectively:

v = const., (type-I), (4.17)

dr

dv
=

1

2

(

V − 2fM ′

r
− MD2f

r2

)

, (type-II). (4.18)

The two types of tunneling paths correspond to whether the virtual pair is created inside

or outside of the trapping horizon. The crossing with type-I path corresponds to a pair

forming outside and describes a backward radial null ray which comes out from the future

singularity at r = 0, crosses the trapping horizon and escapes to infinity. The crossing

with type-II path corresponds to a pair forming inside and describes a backward null ray

which comes out from the future singularity, and reaches some interior point in the trapped

region, and then crosses the trapping horizon and eventually escapes to infinity. The main

difference between the two types of tunneling paths is that type-I tunneling path crosses the

FOTH along a classically forbidden trajectory backward in time, while type-II tunneling

path crosses the FOTH along a classically allowed trajectory forward in time. Note that

the crossing with type-II path is absent for a static black hole.

Let us now compute ImSout. It is clear that Sout vanishes and no tunneling occurs for

type-II paths. For type-I paths, we have (4.10) with rh given by (3.6) and it is clear that

the integrand has a pole on the FOTH r = rh. The imaginary contribution due to the pole

is evaluated by an iǫ prescription as before and yields

ImSout =
2πωr2h
rh − rf

=
πω

κ
, (4.19)
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where ω is evaluated on the FOTH for a fixed v and ΘA. In the last equality of (4.19), we

have used (3.12) to write the result in terms of the horizon surface gravity κ,

κ =
rh − rf

r2h
=

1

4M

(

1− f
M ′

M

)

. (4.20)

The semiclassical emission rate Γem is thus formally written in the same form as that in

the static case.

Γem ∝ e−2ImSout = exp

(

−2πω

κ

)

. (4.21)

We find that the supertranslation f(Θ) dependence comes into the spectrum of Hawking

radiation through the surface gravity κ of the FOTH.

Note that our result (4.21) of the emission rate is consistent with the factorization

property of the black hole S-matrix [26–29]. The non-trivial dependence on the soft hair

in (4.21) is due to the fact that we are performing an observation of the undressed hard

Hawking radiation quanta. If one is to dress the hard modes with soft gravitons, then the

soft hair dependence would disappear. This is similar to the discussion of gravitational

memory where one may also remove the memory with dressing [29]. It should be clear

that the factorization of soft modes and hard modes in the S-matrix does not imply that

the soft hair has no physical implication at all. The effects of soft hair on gravitational

memory and Hawking radiation spectrum is physical and is observable.

So far we have left M ′ free and determined the Hawking radiation in terms of it. In a

consistent model of evaporation, the mass loss [3, 67] is caused by the Hawking radiation.

The leading contribution to the mass loss of the supertranslated Vaidya black hole can be

estimated from the Hawking radiation spectrum as:

−M ′ =
1

2π2

∫
(
∫

∞

0

ω3

eβω − 1
dω

)

r2h
√
γd2Θ =

π2

30

∫

r2h
β4

√
γd2Θ

=

(

1− a00√
π

M ′

M

)

P0, (4.22)

where β := 2π/κ and P0 := (7680πM2)−1 is the standard power loss due to Hawking

radiation in the leading order approximation of a constant M . Note that non-trivial angle-

dependent supertranslations corresponding to l ≥ 1 do not contribute to the mass loss in

the case of supertranslated Vadiya black hole with M = M(v). Solving (4.22) for M ′ we get

M ′ = −P0

(

1− a00P0√
πM

)−1

. (4.23)

With this value of M ′, we obtain a consistent model of dynamical black hole whose evap-

oration is driven by the power loss due to Hawking radiation.

Let us discuss the entropy of the supertranslated Vaidya black hole. A proposal for

dynamical black hole entropy is presented by Iyer and Wald [68]. For Einstein gravity with

matter minimally coupled to gravity, the entropy of dynamical black hole is given by the
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same formula Sdyn = Ah/4 as for stationary black holes. We find

Sdyn =
1

4

∫

r2h
√
γd2Θ

= 4πM2 + 4
√
πa00MM ′. (4.24)

The entropy (4.24) can be expressed as Sdyn = 4πM2(v+a00/
√
4π) and it is consistent with

the fact that only the zero mode part of the shift of time can appear in the mass function.

When the black hole emits a massless Hawking radiation, the black hole mass changes

by amount of ω, M → M − ω due to the energy conservation, and the entropy changes

accordingly Sdyn → Sdyn +∆S with

∆S = −ω(8πM + 4
√
πa00M

′) +O(ω2). (4.25)

This can be related to the semiclassical emission rate (4.21) as

∆S =

∫

dΩ

4π
ln Γem. (4.26)

This generalizes the standard relation for spherical black holes [32, 57]. Furthermore, one

may define a differential entropy change:

d∆S

dΩ
= lnΓem (4.27)

and interpret the relation (4.26) as saying that the Hawking radiation carries away from

the black hole different amount of entropy (4.27) at different angles. As Hawking radiation

originates locally at the surface of the trapping horizon, it is consistent that a local change

of entropy of the black hole occurs.

5 Conclusion and discussion

Supertranslation of black hole adds soft hair to it. These soft hairs are physical and can be

observed through the classical memory effect. In this paper, we show that soft hairs also

have non-trivial effects on the quantum physics of black hole. In particular we computed the

Hawking radiation for a dynamical black hole modeled by the Vaidya spacetime with soft

hair. We find that tunneling occurs at the trapping horizon and the semiclassical emission

rate of Hawking radiation is characterized by the horizon surface gravity κ defined by

the Kodama-like vector of the supertranslated Vaidya black hole. The Hawking radiation

spectrum has a dependence on the soft hair distribution over the black hole. Our results

make it clear that soft hair of black hole is physical and it has clear observable effects on

the Hawking radiation spectrum. Of course this depends on what is being observed. If one

wishes, one may also choose to make detection of the dressed Hawking quanta, then the

observed spectrum would become the canonical one without any sight of the soft hair.

Recently Strominger [16] has emphasized the presence of soft modes in the final state

of the black hole evaporation and proposed that the final state of the black hole evaporation

process to be a pure state of the form

|Ψ〉 =
∑

α

cα|Hα〉|Sα〉, (5.1)
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where |Hα〉 describes the state of radiation in the thermal ensemble of Hawking radiation

and |Sα〉 describes the cloud of soft modes that is required by charge conservation. In other

words, the purity of the quantum state is restored by the soft graviton modes. However

if only the hard modes of the Hawking radiation are to be observed, the resulting reduced

density matrix ρr = trsoft|Ψ〉〈Ψ| = ρthermal gives the thermal density matrix of Hawking ra-

diation. Our result is consistent with this. The loss of coherence when “environmental vari-

ables” are traced out is not special and can be expected generically. Indeed, similar deco-

herence effect of hard particles as a result of the tracing out of unobservable soft modes has

been demonstrated for certain kind of events in QED [69, 70]. It is important to understand

deeper how (5.1) is related to the BMS symmetry and the infrared structure of gravity.
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