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In this work, thermodynamics and phase transition of some new dilaton black hole solutions have been 
explored in the presence of the rainbow functions. By introducing an energy dependent space time, 
the dilaton potential has been obtained as the linear combination of two Liouville-type potentials and 
three new classes of black hole solutions have been constructed. The conserved and thermodynamic 
quantities of the new dilaton black holes have been calculated in the energy dependent space times. 
It has been shown that, even if some of the thermodynamic quantities are affected by the rainbow 
functions, the thermodynamical first law still remains valid. Also, the impacts of rainbow functions on the 
stability or phase transition of the new black hole solutions have been investigated. Finally, the quantum 
gravitational effects on the thermodynamics and phase transition of the solutions have been studied 
through consideration of the thermal fluctuations.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Promoting of the usual energy-momentum dispersion relation 
to the modified dispersion relation is one of the findings of loop 
quantum gravity and the quantum models based on the non-
commutative geometry [1–6]. This modification which is realized 
at the Planck-scale regime leads to the violation of the Lorentz 
symmetry as one of the most important symmetries in the uni-
verse. The deformed or doubly special relativity, as a modified for-
malism of special relativity, has been proposed to preserve Lorentz 
symmetry in the modified dispersion relation [6–8]. In the high 
energy formalism of the special relativity, known as the doubly 
special relativity, in addition to the speed of light the Planck en-
ergy is considered as a universal constant. In this theory, it is 
impossible for a particle to attain an energy and a velocity greater 
than the Planck energy and light velocity, respectively. It is ac-
complished by utilizing a nonlinear Lorentz transformation in the 
momentum space in a way that the energy-momentum relation 
appears with the corrections in the order of the Planck length. Also 
the Planck-scale corrected dispersion relation preserves a deformed 
Lorentz symmetry [9–11]. It seems that the violation of Lorentz 
symmetry plays an essential rule in constructing the quantum the-
ory of gravity. It is notable that, due to the existence of an unstable 
perturbative string vacuum, violation of the Lorentz symmetry can 
also occur in the string theory [12].
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Recently, Magueijo and Smolin have extended the doubly spe-
cial relativity to the curved space times. This doubly general theory 
of relativity is called rainbow gravity (or gravity’s rainbow) [13]. 
The name rainbow gravity comes from the fact that in this theory 
the space time geometry depends on the energy of a test parti-
cle E . Therefore, instead of a single metric, there is a family of 
metrics (rainbow metrics) which are parameterized by the ratio 
ε = E/E p , where E P denotes the Planck energy [14]. Therefore, 
gravity’s rainbow, just like the Horava–Lifshitz gravity theory, can 
be considered as the ultraviolet completion of the Einstein’s gen-
eral relativity. There is a close relation between the rainbow and 
Horava–Lifshitz gravity theories. Both of them are based on pro-
moting of the usual dispersion relation to the modified dispersion 
relation [15–17]. As pointed out by many authors, a general modi-
fied dispersion relation may be written as [18–23]

E2 f 2(ε) − p2 g2(ε) = m2, (1.1)

where, the functions f (ε) and g(ε) are known as the rainbow 
functions, which are required to satisfy the following conditions

lim
ε→0

f (ε) = 1, and lim
ε→0

g(ε) = 1. (1.2)

By these requirements the standard dispersion relation can be re-
covered in the infrared limit of the theory. It must be noted that 
different functional forms of the rainbow functions are proposed 
which are based on different phenomenological motivations. Some 
of the proposed models for the temporal and spatial rainbow func-
tions can be found in Refs. [24–28].
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In this work, motivated by the new and interesting findings of 
gravity’s rainbow such as black hole remnant [29,30] and nonsin-
gular universe [31], we are interested in investigating of thermo-
dynamic properties of dilatonic black hole solutions in gravity’s 
rainbow. After the discoveries of Hawking et al., the black holes 
are considered as thermodynamic systems with well-defined ther-
modynamic properties such as entropy and temperature [32–36]. 
Although, the black hole thermodynamics is an important issue 
and has been studied extensively, it still has many interesting parts 
to be studied [37–42]. Study of the quantum gravitational effects 
on the black hole thermodynamics is a more attractive subject (see 
Refs. [43–47] for example). In addition, it is commonly believed 
that black holes are examples of extreme quantum gravity regimes 
and for a complete description the quantum gravitational effects 
cannot be forgotten. Also, through consideration of the black hole 
thermal fluctuations, we tend to investigate the quantum gravita-
tional effects on the thermodynamic properties and thermal stabil-
ity of dilaton black holes in the presence of rainbow functions. It 
has been demonstrated that the black hole thermal fluctuations are 
corresponded to the quantum fluctuations on the space time ge-
ometry [48]. The impacts of quantum gravity theory, via consider-
ation of the thermal fluctuations, have been studied by Pourhassan 
et al. for a variety of black holes [49–53]. Also, this issue has been 
studied by Hendi et al. for the Einstein–Born–Infeld black holes in 
rainbow gravity [18].

The paper is outlined as follows: In section 2, by introducing 
a spherically symmetric and energy dependent geometry, the cou-
pled field equations of the scalar and gravitational field equations 
have been solved. The dilatonic potential has been calculated and it 
has been written as the linear combination of two exponential po-
tentials known as the Liouville-type potentials. Three new classes 
of dilatonic black hole solutions have been obtained as the exact 
solutions to the gravitational field equations. It has been shown 
that the asymptotic behavior of the solutions is neither flat nor 
A(dS). Section 3 is devoted to the study of thermodynamic proper-
ties of the dilaton black holes, obtained here. The temperature and 
entropy of the black holes have been calculated based on the con-
cept of the surface gravity and the entropy-area law, respectively. 
Through a Smarr-type mass formula, the black hole mass has been 
written as a function of the black hole entropy. It has been found 
that, even in the presence of the rainbow functions, the first law 
of black hole thermodynamics remains valid. A black hole thermal 
stability or phase transition analysis has been performed based on 
the canonical ensemble method and regarding the signature of the 
black hole heat capacity. The points of type-1 and type-2 phase 
transitions as well as the ranges at which the physical black holes 
remain stable are determined, exactly. In section 4, in order to in-
vestigate the quantum gravitational effects on the thermodynamic 
phase transition of the black holes, the thermal fluctuations of 
the solutions have been studied. The quantum corrected thermo-
dynamic quantities have been calculated and validity of the first 
law of black hole thermodynamics has been confirmed. By calcu-
lating the quantum corrected black hole heat capacity the impacts 
of thermal fluctuations on the black hole stability have been stud-
ied. Some concluding remarks and discussions are summarized in 
section 5.

2. The black hole solutions in the energy dependent space times

The suitable Lagrangian of the four-dimensional Einstein-dilaton 
gravity theory can be written in the following general form [40,41], 
[54–56]

L = R− V (φ) − 2(∇φ)2. (2.1)
Here, R is the Ricci scalar, φ is a scalar field coupled to itself via 
the functional form V (φ). By varying the action (2.1) with respect 
to the gravitational and scalar fields, we get the following field 
equations

Rμν − 1

2
gμν V (φ) − 2∇μφ∇νφ = 0, (2.2)

4�φ = dV (φ)

dφ
, φ = φ(r). (2.3)

We would like to solve these field equations in a four-dimensional 
spherically symmetric geometry with the following line element 
[18–20]

ds2 = − N(r)

f 2(ε)
dt2 + 1

g2(ε)N(r)
dr2 + r2 R2(r)

g2(ε)
(dθ2 + sin2 θdϕ2).

(2.4)

In order to obtain the metric function N(r), we use Eq. (2.4) in the 
gravitational field equations (2.2). It leads to the following differ-
ential equations

ett = N ′′(r) + 2

(
1

r
+ R ′(r)

R(r)

)
N ′(r) + V (φ)

g2(ε)
= 0, (2.5)

err = ett + 4g2(ε)

(
R ′′(r)
R(r)

+ 2R ′(r)
rR(r)

+ (φ′(r))2
)

N(r) = 0, (2.6)

eθθ = eϕϕ =
(

1

r2
+ R ′′(r)

R(r)
+ 4R ′(r)

rR(r)
+ R ′ 2(r)

R2(r)

)
N(r)

+
(

1

r
+ R ′(r)

R(r)

)
N ′(r) − 1

r2 R2(r)
+ V (φ)

2g2(ε)
= 0, (2.7)

for the tt , rr and θθ (ϕϕ) components, respectively. Regarding 
Eqs. (2.5) and (2.6) we have

R ′′(r)
R(r)

+ 2

r

R ′(r)
R(r)

+ φ′ 2(r) = 0, (2.8)

which can be rewritten in the following form

2

r

d

dr
ln R(r) + d2

dr2
ln R(r) +

(
d

dr
ln R(r)

)2

+ 2(φ′(r))2 = 0.

(2.9)

It is understood from Eq. (2.9) that R(r) can be written as an ex-
ponential function of φ(r). Thus, we can use exponential solutions 
of the form R(r) = eαφ in Eq. (2.8). One can show that φ = φ(r)
satisfies the following differential equation

αφ′′ + (1 + 2α2)φ′ 2 + 2α

r
φ′ = 0. (2.10)

The solution to the differential equation (2.10), in terms of a posi-
tive constant b, can be written as

φ(r) = γ ln

(
b

r

)
, with γ = α(1 + α2)−1. (2.11)

It must be mentioned that, a similar solution has been used previ-
ously for charged and uncharged dilaton black hole solutions [40,
41,54].

Now, making use of these solutions in Eqs. (2.3) and (2.7), after 
some algebraic calculations, we have

1 − αγ
(

N ′ + 1 − 2αγ
N

)
− 1

2 2
+ V (φ)

2
= 0, (2.12)
r r r R 2g (ε)
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dV (φ)

dφ
− 2γ

1 − αγ
V (φ) + 4g2(ε)γ

1 − αγ

1

r2 R2
= 0. (2.13)

In terms of an integration constant C , the solution of Eq. (2.13), 
can be obtained as

V (φ) = −2α2 g2(ε)

b2(1 − α2)
e

2
(

1
γ −α

)
φ + Ce

2γ
1−αγ φ

. (2.14)

Noting the fact that, in the absence of the dilaton field (i.e.
φ = 0 or equivalently α = 0 = γ ) the Lagrangian (2.1) reduces to 
that of Einstein gravity with cosmological constant, one can ob-
tain the constant C by imposing the condition V (φ = 0) = 2	. It 
results in C = 2	 = −6
−2.

Now, the complete solution to Eq. (2.13) can be written in the 
following form

V (φ) =
{

2	e2θφ + 2	1e2θ1φ, α �= 1,

2	e2φ + 2λ1φe2φ, α = 1,
(2.15)

where

	1 = −α2 g2(ε)

b2(1 − α2)
, θ = γ

1 − αγ
= 1

θ1
, λ1 = −2g2(ε)

b2
.

Eq. (2.15) shows that the dilatonic potential can be written as the 
linear combination of two Liouville-type potentials.

Making use of Eqs. (2.12) and (2.15), after some manipulations, 
we obtained the metric function N(r) as

N(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−m
r1−2αγ + 1+α2

1−α2

[(
b
r

)−2αγ

+ 3b2(1−α4)

g2(ε)
2(3−α2)

(
b
r

)2(αγ −1)
]

, α �= 1,
√

3, (a)

−mr
1
2 − 2

(
b
r

)− 3
2
[

1 − 6b2

g2(ε)
2

(
b
r

)
ln

( r
b

)]
,

α = √
3, (b)

−m + 2
[

2 − 	b2

g2(ε)

+ ln
(

b
r

)] ( r
b

)
, α = 1, (c)

(2.16)

where, m is an integration constant related to the black hole mass. 
It is notable that in the absence of the dilatonic field (i.e. α =
0 = γ ), if we set g2(ε) = 1 the metric function N(r) reduces to the 
metric function of Schwarzschild-A(dS) black holes.

In order to investigate the existence and the number of real 
roots of the metric function N(r), it is better to use the plots of 
N(r) versus r. Thus we need to have the numerical values of f (ε)

and g(ε). The explicit forms of these functions can be written as 
[24–28]

f (ε) = 1, and g(ε) = √
1 − ηεn, (2.17)

f (ε) = eζε − 1

ζε
, and g(ε) = 1, (2.18)

f (ε) = g(ε) = 1

1 − βε
. (2.19)

The coefficients η, ζ and β , known as the rainbow parameters, 
are of the order of unity, ε ≤ 1 and the power n is a positive in-
teger [23,29,31]. Therefore, the numerical values of the temporal 
and spatial rainbow functions can be approximated as equal to or 
slightly less or more than unity. We choose the numerical values 
of f (ε) and g(ε) similar to those have been used in Refs. [18,19]. 
This covers almost all of the proposed functional forms of the rain-
bow functions.

The plots of N(r) versus r are shown in Figs. 1–3 for the cases 
α �= 1, 

√
3, α = √

3 and α = 1, respectively. The impacts of dilaton 
parameter α and the rainbow functions f (ε) and g(ε) have been 
considered in the Figs. 1–3. A notable point is that, they can show 
the two horizon, extreme and naked singularity dilaton black holes 
for the properly fixed parameters.

The curvature singularities of the black hole solutions can be 
considered through the Ricci and Kretschmann scalars. It is a mat-
ter of calculation to show that the Ricci and Kretschmann scalars 
are finite for finite values of the radial component r. Also, we have

lim
r−→∞R = 0, and lim

r−→0
R = ∞, (2.20)

lim
r−→∞RμνρλRμνρλ = 0, and

lim
r−→0

RμνρλRμνρλ = ∞. (2.21)

Therefore, there is an essential (not coordinate) singularity located 
at the origin which can be interpreted as the existence of the black 
hole solutions. Also, in the presence of dilaton fields, the asymp-
totic behavior of the solutions are neither flat nor A(dS).

3. Thermodynamics

This section is devoted to calculation of the conserved and ther-
modynamic quantities related to the new dilaton black hole solu-
tions obtained here. For this purpose we use the geometrical and 
the thermodynamical approaches. Then, with the help of the ob-
tained thermodynamic quantities, we investigate the validity of the 
first law of black hole thermodynamics. At first, making use of the 
concept of the black hole surface gravity κ , we calculate the Hawk-
ing temperature associated to the black hole horizon. That is

T = κ

2π
= 1

4πr+
g(ε)

f (ε)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1+α2

1−α2

(
b

r+

)−2αγ
[

1 + 3b2(1−α2)

g2(ε)
2

(
b

r+

)2(2αγ −1)
]

,

α �= √
3, 1, (a)

2
( r+

b

) 1
2
(

6b2

g2(ε)
2 − r+
b

)
, α = √

3, (b)

2r+
b

[
1 − 	b2

g2(ε)
+ ln

(
b

r+

)]
, α = 1. (c)

(3.1)

It must be noted that we have used the relation N(r+) = 0 for 
eliminating the mass parameter, m, from the above relations. The 
temperature of the black holes corresponding to α �= √

3, 1 is pos-
itive valued for α2 < 1 (Fig. 4). Also, the extreme black holes (i.e. 
the black holes with zero temperature) may occur for α2 > 1 pro-
vided that the black hole horizon radius, r+ = rext , satisfies the 
following relation

rext = b

(
3b2(α2 − 1)

g2(ε)
2

) α2+1
2(α2−1)

, α �= √
3, 1, (3.2)

and the physical black holes, having positive temperature, occur 
if r+ < rext . The un-physical black holes (i.e. the black holes with 
negative temperature) are those with the horizon radius greater 
than rext .

In the case α = √
3, the extreme black holes have a horizon 

radius given by the following equation

r3ext = 6b3

2 2
, α = √

3, (3.3)

g (ε)
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Fig. 1. N(r) versus r for b = 0.5, M = 0.2, 
 = 1 and α �= 1, 
√

3, Eq. (2.16-a). Left: f (ε) = 0.38, g(ε) = 0.85 and α = 1.215, 1.2247, 1.233, 1.24 for black, blue, red and 
brown curves, respectively. Middle: α = 1.2, g(ε) = 0.8 and f (ε) = 0.18, 0.25, 0.32, 0.4 for black, blue, red and brown curves, respectively. Right: α = 1.2, f (ε) = 0.3 and 
g(ε) = 0.76, 0.78, 0.808, 0.84 for black, blue, red and brown curves, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 2. N(r) versus r for 
 = 1, M = 0.4, b = 1 and α = √
3, Eq. (2.16-b). Left: g(ε) = 1.3 and f (ε) = 0.22, 0.34, 0.46, 0.6 for black, blue, red and brown curves, respectively. 

Right: f (ε) = 0.25 and g(ε) = 1.3, 1.33, 1.66, 1.4 for black, blue, red and brown curves, respectively.

Fig. 3. N(r) versus r for 	 = −3, M = 0.5, b = 0.2 and α = 1, Eq. (2.16-c). Left: g(ε) = 0.8 and f (ε) = 0.58, 0.7, 0.82, 0.95 for black, blue, red and brown curves, respectively. 
Right: f (ε) = 0.58 and g(ε) = 0.8, 0.92, 1.05, 1.2 for black, blue, red and brown curves, respectively.
and the physical and un-physical black holes occur for r+ < r3ext

and r+ > r3ext , respectively.
It is easily shown that the horizon radius for the extreme black 

holes in the case α = 1 is located at

r1ext = be
1− 	b2

g2(ε) , α = 1. (3.4)

They are physically reasonable if r+ < r1ext , otherwise they are not 
physically acceptable because of their negative temperatures.

Next, the black hole entropy, as a pure geometrical quantity, can 
be obtained making use of the Hawking–Bekenstein entropy-area 
law. According to the Hawking–Bekenstein entropy-area law, black 
hole entropy is equal to one-fourth of the black hole horizon area. 
Thus, making use of this nearly universal law, we can write

S = A = πr2+ (R(r+))2 = πr2+
(

b
)2αγ

, (3.5)

4 r+
which reduces to that of Schwarzschild-A(dS) black holes when the 
dilatonic field disappears.

The conserved mass of the black hole can be obtained in terms 
of the mass parameter m. It is a matter of calculation to show that 
the total mass of the new dilatonic black holes in rainbow gravity 
can be obtained as [18,19,54]

m = 2M f (ε)g(ε)(1 + α2)b−2αγ . (3.6)

Note that in the infrared limit (i.e. f (ε) = 1 and f (ε) = 1), Eq. (3.6)
is compatible with the mass of dilaton black holes [55] and by 
setting α = 0 = γ it coincides with the mass of the Schwarzschild-
A(dS) black holes.

Making use of the fact that the black hole horizon radiuses are 
the real roots of the relation N(r+) = 0 and by combining the re-
sult with Eqs. (3.5) and (3.6), one can obtain the black hole mass 
as a function of the black hole entropy (the only thermodynamical 
extensive parameter). After some simple calculations, we arrived at 
the following Smarr-type mass formula
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M(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
2 f (ε)g(ε)(1−α2)

[
r+(S)

b

+ 3b2(1−α4)

g2(ε)
2(3−α2)

(
b

r+(S)

)4αγ −3
]

, α �= 1,
√

3,

b
4 f (ε)g(ε)

[
6b2

g2(ε)
2 ln
(

r+(S)
b

)
− r+(S)

b

]
, α = √

3,

b
2 f (ε)g(ε)

[
2 − 	b2

g2(ε)

+ ln
(

b
r+(S)

)](
r+(S)

b

)
, α = 1.

(3.7)

Now, making use of Eqs. (3.5) and (3.7), it is easily shown that(
∂M

∂ S

)
Q

=
(

∂M

∂r+

)
Q

(
∂ S

∂r+

)−1

Q
= T . (3.8)

Therefore, we proved that the first law of black hole thermody-
namics is valid, for all of the three new dilatonic black hole solu-
tions, in the following form

dM = T dS. (3.9)

Now, we are in the position to investigate the thermal stability 
or phase transition of the new dilaton black hole solutions, ob-
tained here. In order to perform a thermal stability analysis we 
need to calculate the black hole heat capacity. It is given by the 
relation [56,57]

C = T
∂ S

∂T
. (3.10)

From the view point of the canonical ensemble method, the pos-
itivity of the black hole heat capacity is sufficient to ensure the 
thermal stability of the physical black holes. Unstable black holes 
undergo phase transition to be stabilized. The points at which the 
black hole heat capacity vanishes are known as the points of type-
1 phase transition. The divergent points of the black hole heat ca-
pacity are the points where the type-2 phase transition takes place 
[58–60]. With these issues in mind and making use of Eq. (3.10), 
we proceed to perform a stability analysis regarding the signature 
of the black hole heat capacity. It is a matter of calculation to show 
that the black hole heat capacity can be written in the following 
form

C =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2πb(ϒ−1)

g2(ε)(1−α2)(ϒ+1)

(
b

r+

)2αγ
, α �= 1,

√
3, (a)

πb2(1+ϒ3)

g2(ε)(1−ϒ3)

( r+
b

) 1
2 , α = √

3, (b)

− b	r+
g2(ε)

[
1 − 	b2

g2(ε)
+ ln

(
b

r+

)]
, α = 1, (c)

(3.11)

where

ϒ = 	b2

g2(ε)
(1 − α2)

(
b

r+

)2(2αγ −1)

, and ϒ3 = 2	b3

g2(ε)r+
. (3.12)

In order to find the points of type-1 and type-2 phase transi-
tions as well as the ranges at which the black holes are locally 
stable, we have plotted the black hole heat capacity versus r+ in 
Figs. 4 and 5.

It is clear from Fig. 4 that, for the properly chosen parame-
ters, the black holes with a positive valued temperature do not 
undergo type-1 phase transition. There is point of type-2 phase 
transition located at r+ = r0, where the black hole heat capacity 
diverges. The heat capacity is positive for r+ > r0 and the physical 
black holes with the horizon radius in this range are locally stable. 
The left and right panels of Fig. 5 show the temperature and heat 
capacity of the black holes with α = √

3 and α = 1, respectively. 
There is a point of type-1 phase transition located at r+ = r3ext

and r+ = r1ext in order for α = √
3 and α = 1 cases. No type-2 

phase transition occurs for these kinds of black hole solutions. The 
physical black holes (i.e. black holes with positive temperature) are 
unstable. A notable point is that the points of type-1 phase transi-
tion coincide with the horizon radius of the extreme black holes.

4. The corrections from thermal fluctuations

Now, we investigate the impacts of thermal fluctuations on the 
thermodynamic stability of our new dilaton black holes. Thus, we 
need to calculate the modified thermodynamic quantities in the 
presence of thermal fluctuations. Regarding the concept of surface 
Fig. 4. T and C versus r+ for 	 = −3, f (ε) = 0.5 and b = 2.5, Eqs. (3.1-a) and (3.11-a). Left: g(ε) = 0.25, [10 T : α = 0.25, 0.4, for red and brown curves, respectively]
and [0.2C : α = 0.25, 0.4, for black and blue curves, respectively]. Right: α = 0.3, [10 T : g(ε) = 0.25, 0.45, for red and brown curves, respectively] and [0.2C : g(ε) =
0.25, 0.45, for black and blue curves, respectively].

Fig. 5. T and C versus r+ for 	 = −3, f = 0.5 and b = 1, Eqs. (3.1-b,c) and (3.11-b,c). Left: α = √
3 [2T : g(ε) = 1.25, 1.4 for red and brown curves, respectively] and 

[2C : g(ε) = 1.25, 1.4 for black and blue curves, respectively]. Right: α = 1 [5T : g(ε) = 1.3, 1.4 for red and brown curves, respectively] and [0.5C : g(ε) = 1.3, 1.4 for black 
and blue curves, respectively].
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gravity one can show that the black hole temperature is not af-
fected by the first order corrections [18]. Therefore, the black hole 
temperature, up to the leading order corrections, is just the same 
as that given by Eq. (3.1). By considering the leading order correc-
tions, the black hole entropy gets logarithmic correction which can 
be written as [18,43,45]

S(T F ) = S − ξ

2
ln

(
ST 2

)
, (4.1)

where, S is the uncorrected black hole entropy given in Eq. (3.5), 
T being the black hole temperature (Eq. (3.1)) and ξ is the param-
eter of thermal fluctuations or correction parameter.

Now, making use of the corrected entropy (4.1) and tempera-
ture (3.1), one is able to calculate the Helmholtz free energy [18]. 
It can be obtained as

F (T F ) = −
∫

S(T F ) dT

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(ε)

4πb2 f (ε)

∫
S(T F ) (1 + ϒ)

(
b

r+

)2(1−αγ )

dr+,

α �= 1,
√

3, (a)

g(ε)

4πb2 f (ε)

∫
S(T F ) (1 − ϒ3)

(
b

r+

)1/2
dr+,

α = √
3, (b)

g(ε)
2πbf (ε)

∫
S(T F ) dr+

r+ , α = 1. (c)

(4.2)

By use of the obtained Helmholtz free energy, the black hole 
mass M(T F ) = F (T F ) + T S(T F ) , is obtained as

M(T F ) = F (T F ) + ST − T ξ

2
ln

(
ST 2

)
, (4.3)

where, F (T F ) is given by Eq. (4.2), S and T are the uncorrected 
entropy and temperature, respectively.

As a matter of calculation it is easily shown that, although some 
of the thermodynamic quantities are affected by the thermal fluc-
tuations, the first law of black hole thermodynamics is valid in the 
following form

dM(T F ) = T dS(T F ). (4.4)
In order to investigate the effects of thermal fluctuations on 
the stability of the black holes, starting from the relation C (T F ) =
T ∂ S(T F )

∂T , we obtained

C (T F ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2πb(ϒ−1)

g2(ε)(1−α2)(ϒ+1)

(
b

r+

)2αγ

−ξ
[

1 + ϒ−1
(1−α2)(ϒ+1)

]
, α �= 1,

√
3, (a)

πb2(1+ϒ3)

g2(ε)(1−ϒ3)

( r+
b

) 1
2

− ξ
2

(
2 + 1+ϒ3

1−ϒ3

)
, α = √

3, (b)

− b	r+
g2(ε)

[
1 − 	b2

g2(ε)
+ ln

(
b

r+

)]
− ξ

2

{
2 +

[
1 − 	b2

g2(ε)
+ ln

(
b

r+

)]}
, α = 1. (c)

(4.5)

Eq. (4.5) indicates the heat capacity of dilaton black holes in which 
the quantum fluctuations are taken into account through consider-
ation of the thermal fluctuations.

In order to examine the impacts of thermal fluctuations on the 
type-1 and type-2 phase transitions or stability of the new dila-
ton black holes, we have shown the plots of C (T F ) in Figs. 6–8, 
for the cases α �= 1, 

√
3, α = √

3 and α = 1, respectively. Fig. 6
shows that even if the black hole temperature is positive there is 
a point of type-1 phase transition we label by r+ = r2. Also, the 
point r+ = r1 is a point of type-2 phase transition. These are due 
to the thermal fluctuation consideration. This kind of dilaton black 
holes are stable for r+ < r1 and r+ > r2. As it is shown in Figs. 7
and 8, similar to the previous (uncorrected) case, no type-2 phase 
transition takes place and the physical black holes are unstable. 
There is a point of type-1 phase transition which in contrary to 
the uncorrected cases no longer coincides with the zero points of 
the black hole temperature.

5. Concluding remarks

The physical and thermodynamical properties of dilaton black 
holes have been investigated in an energy dependent space time 
with and without thermal fluctuations. The coupled equations of 
scalar and gravitational fields have been solved in the presence 
Fig. 6. T and C (T F ) versus r+ for 	 = −3, f (ε) = 0.5 and b = 2.5, Eqs. (3.1-a) and (4.5-a). Left: g(ε) = 0.25, ξ = 2 [4 T : α = 0.25, 0.35, for red and brown curves, respec-
tively] and [0.2C (T F ) : α = 0.25, 0.35, for black and blue curves, respectively]. Middle: α = 0.25, ξ = 2 [4 T : g(ε) = 0.25, 0.35, for red and brown curves, respectively] and 
[0.2C (T F ) : α = 0.25, 0.35, for black and blue curves, respectively]. Right: α = 0.25, g(ε) = 0.3[10 T : ξ = 2, 3, for red and brown curves, respectively] and [0.2C (T F ) : ξ =
2, 3, for black and blue curves, respectively].

Fig. 7. T and C (T F ) versus r+ for 	 = −3, f (ε) = 0.75 and b = 1.25, Eqs. (3.1-b) and (4.5-b). Left: ξ = 2, [2 T : g(ε) = 1.25, 1.45, for red and brown curves, respectively] and 
[C (T F ) : g(ε) = 1.25, 1.45, for black and blue curves, respectively]. Right: g(ε) = 1.25 [2 T : red curve] and [C (T F ) : ξ = 2, 3, for black and blue curves, respectively].
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Fig. 8. T and C (T F ) versus r+ for 	 = −3, f (ε) = 0.5 and b = 1, Eqs. (3.1-c) and (4.5-c). Left: ξ = 2, [4 T : g(ε) = 1.3, 1.4, for red and brown curves, respectively] and 
[0.1C (T F ) : g(ε) = 1.3, 1.4, for black and blue curves, respectively]. Right: g(ε) = 1.3, [4 T : red curve] and [0.1C (T F ) : ξ = 2, 6 for black and blue curves, respectively].
of rainbow functions. We found that the dilaton potential can be 
written as a form of the linear combination of two Liouville-type 
potentials. According to alternative choices of dilaton parameters 
three different classes of dilaton black hole solutions have been in-
troduced in gravity’s rainbow. Through physical and mathematical 
interpretation of the solutions we found that: i) For the suitably 
fixed dilaton parameters, two horizon, extreme and naked singu-
larity black holes can occur (Figs. 1–3). ii) The Ricci scalar of the 
solutions contains an essential singularity located at r = 0. iii) Due 
to the presence of dilaton scalar field, the asymptotic behavior of 
the solutions is neither flat nor A(dS). Existence of the horizons, as 
the real roots of the metric functions, and appearance of the sin-
gularities in the Ricci scalars are sufficient for the solutions to be 
considered as black holes.

The entropy and temperature associated to the horizon and 
the conserved mass of the black holes have been calculated. It 
has been shown that the temperature of the black holes with 
α �= 1, 

√
3 can be positive valued for the properly fixed param-

eters (see Fig. 4). In the cases α = √
3 and α = 1 the extreme 

black holes may occur at the points r+ = r3ext and r+ = r1ext , re-
spectively. Also, the physical and un-physical black holes can occur 
if the radiuses of their horizons are less or greater than those of 
extreme black holes, respectively (see Fig. 5). We obtained a Smarr-
type formula for the mass as a function of the black hole entropy. 
We showed that the thermodynamic quantities satisfy the first law 
of black hole thermodynamics. It means that, even if some of the 
thermodynamic quantities are affected by the rainbow functions, 
the thermodynamical first law is still valid for either of the solu-
tions obtained here. Next, making use of the canonical ensemble 
method and regarding the black hole heat capacity, we analyzed 
the black hole remnant or phase transitions for either of our new 
dilaton black holes. As it is shown in Fig. 4, for the black holes 
corresponding to α �= 1, 

√
3, there is no point of type-1 phase tran-

sition. There is only one point of type-2 phase transition at the 
point r+ = r0, where the black hole heat capacity diverges. These 
black holes are stable for r+ > r0. The black holes with α = √

3
and α = 1 undergo type-1 phase transition located at r+ = r3ext
and r+ = r1ext , respectively. Note that the points of type-1 phase 
transition are exactly the vanishing points of the temperatures. No 
type-2 phase transition takes place for these kinds of black holes 
and the physical black holes are unstable (see Fig. 5).

At the final stage, by considering the black hole thermal fluc-
tuations, we calculated the corrected thermodynamic quantities. 
Although, some of them contain correction terms when the ther-
mal fluctuations are taken into account, the first law of black hole 
thermodynamics remains valid. We found that, in the presence of 
black hole fluctuations, the black hole heat capacity receives some 
corrections. As the results: a) In the case α �= 1, 

√
3, with the pos-

itive valued temperature, there is again one point of type-2 phase 
transition located at r+ = r1 but, in spite of the uncorrected case, 
there is a point of type-1 phase transition at the point r+ = r2. 
The black holes with r+ < r1 and r+ > r2 are locally stable. b) The 
black holes corresponding to α = √

3 and α = 1 cases, just like 
the uncorrected case do not undergo type-2 phase transition and 
show only one point of type-1 phase transition. But this time, in 
spite of the uncorrected case, the points of type-1 phase transi-
tion no longer coincide with the vanishing points of the black hole 
temperatures (see Figs. 6–8).
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