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1 Introduction

In recent years there has been increasing interest in understanding the emergence of hydro-

dynamic behaviour in relativistic theories. In addition to many new theoretical advances,

the strong multi-particle correlations observed in heavy ion collisions both at RHIC [1–3]

and the LHC [4–6] and its successful description via hydrodynamical modelling [7–12] has

provided a testing ground to explore how this collective behaviour arises from a micro-

scopic theory. One of the most surprising empirical insights that this type of modelling

of subnuclear dynamics has revealed is the fact that hydrodynamics can describe the bulk

properties of the system even for extreme pressure gradients, which at face value, question

the applicability of this long distance effective theory to those collisions. The recent obser-

vation of collective phenomena also in even smaller systems, such as p-p collisions [13–15]

together with the success of the same hydrodynamic modelling in describing them [16–18]

poses new challenges to our understanding of the applicability of this theory.

In conjunction with the above phenomenological observations, in recent years several

numerical experiments have been performed to test the validity of hydrodynamics in dif-

ferent ultra-reltavisitic scenarios. Both in the infinitely strongly coupled limit of N = 4

SYM, described via holography, [19–22] and in the weakly coupled (perturbative) limit of

gauge theories, described via kinetic theory [23], the direct comparison of the full stress

tensor in different out of equilibrium processes with the hydrodynamic expectation showed

that hydrodynamics can provide an accurate description of the evolution of the system

even where the gradient terms are as large as the leading order terms. These experiments

demonstrate that hydrodynamics can be applied even if the system under consideration is

very far away from local thermal equilibrium and with strong deviations from the equation

of state, as explicitly demonstrated in the analysis of non-conformal theories [24].
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Complementary to these numerical studies, the convergence of the hydrodynamic se-

ries has been recently analysed. In a seminal paper [25], the late time behaviour of boost

invariant expansion of N = 4 SYM was analysed in a power series of the inverse proper

time up to very high order. This series may be viewed as an expansion in the Knud-

sen number, and the coefficients of the series are controlled by increasing orders in the

hydrodynamic expansion. The analysis of these large order perturbations showed that

the hydrodynamic expansion is an asymptotic series, exhibiting a factorial growth of the

series coefficients. Similar behaviour was found in different ultraviolet completions of sec-

ond order hydrodynamics [26–28] and kinetic theory in the relaxation time approximation

(RTA) [29] (see also [30] for a complementary analysis of the convergence of the hydrody-

namic series). Interestingly, the analysis of these series via Borel-Padé techniques showed

that these large order gradient expansions are sensitive to non-hydrodynamic modes, which

play an equivalent role to non-perturbative corrections in perturbation theory.

Numerical analyses of these same boost invariant flows led Heller and Spaliński to

suggest the existence of a hydrodynamic attractor [26] which may be thought as an ex-

tension of hydrodynamics beyond local thermal equilibrium [31]. These are special time

dependent configurations to which all other boost invariant evolutions of the system con-

verge at different times. These solutions have been found in different theories, such as

Israel-Stewart (IS) [32] and Baier-Romatschke-Son-Starinets-Stephanov (BRSSS) [33] hy-

drodynamics [26, 34], N = 4 SYM, kinetic theory [31] or anisotropic hydrodynamics [35]. It

has been further argued that these special solutions may be found, or at least well approx-

imated, via a trans-series solution of the system evolution [26, 36], that non-perturbatively

completes the gradient expansion. These types of solutions have also been recently anal-

ysed in less symmetric situations, including non-conformal theories and less symmetric

flows [37, 38]. Quite remarkably in all those cases the hydrodynamic attractor is very well

approximated up to unexpectedly large values of the gradient by first order hydrodynamics,

providing a dynamical understanding to the unexpected success of this theory.

The emergence of these solutions has only been studied in the two extreme cases

of infinitely strong and perturbatively weak coupling. However, to better connect these

theoretical advances with phenomenological applications it is important to understand how

these special types of solutions behave at intermediate coupling. Starting from the infinite

coupling limit, finite coupling corrections are studied via the gauge/gravity duality by

introducing higher curvature terms in the dual gravitational theory [39, 40]. For the gravity

dual of N = 4 SYM, the relevant correction that affects the dynamics of the field theory

stress tensor are expressed in terms of the Weyl tensor and are quartic in the curvature.

This implies that those higher derivative terms can only be studied perturbatively, to avoid

the emergence of instabilities, ghosts and other pathologies. Within this limit, these types

of corrections have been vigorously studied in the past, exploring the correction of many

different quantities (see [41] for a recent compilation of results). Recently, the relaxation of

small stress tensor fluctuations in the thermal ensemble of N = 4 SYM has been studied in

detail [42, 43], (see also [44, 45] for previous studies). In these studies, a new set of purely

dissipative modes have been found, which are an intrinsic consequence of finite coupling.
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Another higher-derivative theory which has also received significant attention in the

holographic context is Gauss-Bonnet gravity. The action of this theory includes both

quadratic and quartic curvature terms, governed by a single parameter λGB; neverthe-

less, as a Lovelock theory, its classical equations of motion contain only up to quadratic

derivatives of the metric, which in principle allows the non-perturbative treatment of the

high-derivative terms. Unfortunately, the dual field theory to Gauss-Bonnet gravity is

unknown. Nevertheless, in this holographic construction it is possible to extract static

(thermodynamic) and transport properties of the putative dual field theory, as well as the

relaxation of small non-thermal perturbations [42, 43], its off-equilibrium dynamics [46, 47]

and corrections to its hydrodynamic expansion [48]. The comparison of those analysis

and the results obtained from finite coupling corrections of N = 4 SYM show that for

negative λGB these two theories share many common qualitative aspects, which makes

Gauss-Bonnet holography an interesting laboratory with which to explore finite coupling

effects to holographic theories. Note however that causality, positivity of energy and hyper-

bolicity considerations constrain the range of values of λGB [49–56] (see [43] for a detailed

discussion on these limitations).

As a first step towards intermediate coupling, in this paper we analyse the convergence

of the hydrodynamic series in the gradient expansion of matter dual to Gauss-Bonnet holog-

raphy. As in the previously mentioned examples, we find that the series is asymptotic as a

consequence of non-perturbative (in gradient strength) contributions, given by the quasi-

normal modes of the dual black-hole. Remarkably, these characteristic modes dictate that

the structure of singularities of the Borel transform associated to the hydrodynamic ex-

pansion interpolate between the known examples of infinitely strongly and weakly coupled

theories. After characterising the analytic properties of the Borel transform, we resum

the hydrodynamic series and constrain the dynamics of the hydrodynamic attractor. For

all values of λGB considered, the resummation approaches first order hydrodynamics even

when gradient corrections to the stress tensor are large and at comparable values of the

pressure anisotropy. Therefore, even though as the viscosity increases the approach to

hydrodynamics occurs at a decreasing value of the gradient, this hydrodynamization pro-

cesses takes place at comparable values of a viscosity-rescaled gradient, as suggested in [57].

Analysing the leading contributions in the trans-series, we estimate how close the resum-

mation is to the attractor solution. By varying the amplitude of those non-perturbative

corrections we observe that the convergence of different initial configurations towards the

attractor occurs at values of the viscosity-rescaled gradient for which the resummation has

hydrodynamized. We also perform an identical analysis of the hydrodynamic series of RTA

kinetic theory [29] and find that in this model both hydrodynamization and convergence

to the attractor solution occurs at smaller viscosity-rescaled gradients than in the strong

coupling computations.

This paper is organised as follows: in section 2 we review the main properties of boost

invariant flow and holographic Gauss-Bonnet to set up the notation, define the main quan-

tities and outline the strategy to compute large order gradient corrections in this higher-

curvature theory. In section 3 we perform a Borel transformation of the hydro expansion

and analyse the phenomenon of resurgence, i.e. the emergence of non-perturbative infor-
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mation in the perturbative series, in this context. After analytically continuing the Borel

series, in section 4 we resum the hydrodynamic expansion and constrain the dynamics of

the attractor by analysing the leading order terms in the trans-series. Finally, in section 5

we put our results into context and conclude.

2 Boost invariant flow in holographic Gauss-Bonnet gravity

2.1 Boost invariant hydrodynamics

Boost invariant flow, also known as Bjorken flow, is a particular class of solutions of ultra-

relativistic hydrodynamics obtained by assuming that the dynamics of the fluid in 3+1

dimensions is independent of boost transformation in one of the space directions, z. This

solution was first described by Bjorken [58] as a model for particle production in high-energy

hadronic collisions. This solution was motivated by the observation that particle produc-

tions in this type of collision exhibits relatively flat momentum-rapidity distributions; while

deviations of this independence are observed, boost invariant solutions of hydrodynamics

are routinely used in the phenomenology of heavy ion collisions (see [59] for recent review).

Hydrodynamics may be viewed as an approximation of the stress tensor in a gradient

expansion around the local thermal equilibrium at each point, characterised by the local

energy density ε, and the fluid velocity Uµ ,

Tµν = (ε+ p(ε))UµUν + ηµνp(ε) + Πµν , (2.1)

where p(ε) is the equation of state. For conformal theories, such as the ones we will describe

in this paper, this is given by p(ε) = 1
3ε. The tensor Πµν encodes all the deviations of the

stress tensor in a given state from local thermal equilibrium. In hydrodynamics, this tensor

is expanded in space gradients1 of the hydrodynamic fields as

Πµν = −ησµν − ζ∇µUνηµν + . . . , (2.2)

where η and ζ are the first order transport coefficients, known as shear and bulk viscosities,

and σµν is the shear tensor, constructed from the symmetrised and traceless space gradient

of the velocity field. In this expression the ellipses indicate additional gradient corrections

which, as at first order, can be expressed as a set of (independent) derivatives of the

hydrodynamic fields multiplied by a set of transport coefficients which depend only on the

local energy density. The complete set of second order coefficients and their operators can

be found in [33, 60] and [61] for conformal and non-conformal theories respectively.

Following Bjorken, a solution to leading order hydrodynamics equation (Πµν = 0)

can be easily found assuming that the hydrodynamic fields depend only on one spatial

direction, z, and that the fluid is boost invariant. Under this assumption, independently

of the microscopic symmetries of the theory, entropy conservation of ideal hydrodynamics

imposes that the entropy density behaves as s0(τ) ∝ 1/τ , with τ =
√
t2 − z2 the proper

time. Focusing on conformal theories further simplifications can be made; in particular,

1Space gradients are defined as the projection of the space-time gradient into the space components in

the fluid rest fame, ∇µ = ∆µν∂ν , where ∆µν = ηµν − UµUν .
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dimensional analysis dictates that the local temperature and energy density are given

respectively by T (τ) ∝ τ−1/3, ε ∝ τ−4/3. Similarly the size of the gradients can be expressed

in terms the temperature T (τ), the only scale that characterises the state at a given proper

time τ . Therefore, the hydro expansion can be expressed as series of negative fractional

powers of the proper time as

ε(τ) = u2Λ4g∗
(
1 + ε1u+ ε2u

2 + . . .
)
, (2.3)

with u = (Λτ)−2/3, Λ is a characteristic scale of mass dimension one, which in the hy-

drodynamic limit encodes all the information on the initial conditions of the flow and εi
are dimensionless constants which are solely dependent on the degrees of freedom and

transport coefficients, and are therefore a property of the theory, as opposed to the state.

In particular, the constant we may choose g∗ = εeq/T
4 with εeq the equilibrium energy

density; the leading gradient correction is controlled by the shear viscosity and similarly

all additional coefficients are a combination of the transport coefficients up to the corre-

sponding order. In the absence of transverse dynamics, boost invariance further imposes

that the velocity field of the fluid Uµ is given by U τ = 1. Another remarkable aspect of

this effectively 1-Dimensional flow is that once the functional form of the energy density is

determined, stress tensor conservation and conformal symmetry completely fix the stress

tensor of the theory. Defining the longitudinal (PL) and transverse (PT ) pressures as the

diagonal components of the stress tensor in the fluid rest frame in the direction of expansion

and perpendicular to it respectively, these are given by

PL = −ε(τ)− τ ε̇(τ) , PT = ε(τ) +
1

2
τ ε̇(τ) . (2.4)

Note that these expressions are valid independently of whether the system is far from

local thermal equilibrium, and that in thermal equilibrium both pressures must be the

same. Therefore, we may gauge how far the system is from local thermal equilibrium by

monitoring how anisotropic the system becomes with respect to the average pressure, which

we can determine by computing the anisotropy parameter

R ≡ 3
PT − PL

ε
, (2.5)

where the equilibrium pressure has been used to normalise the pressure anisotropy.

The anisotropy parameter R can be used to monitor the approach of a system to

hydrodynamics [19]. Following the hydrodynamic expansion eq. (2.3), for a conformal

theory the anisotropic parameter R becomes a function of the dimensionless gradient,

w = τT , (2.6)

where out of equilibrium we can identify the effective temperature as

T (τ) ≡
(
ε(τ)

g∗

)1/4

(2.7)
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where we have defined g∗ below eq. (2.3). In the hydrodynamic limit, R admits an expansion

in inverse powers of w as

R =
∑
n=1

rn
wn

, (2.8)

where, once again, the leading order term is controlled by the viscosity to entropy ratio

r1 = 8ηs and, to first order in hydrodynamics, the anisotropy function is given by

R1st
hyd = 8

η

s

1

w
. (2.9)

Finally, for later reference, another dimensionless quantity which has been used in the

literature for identifying attractor solution is the logarithmic proper time derivative of w

f ≡ τ

w

d

dτ
w = 1 +

1

4
τ
d

dτ
log ε . (2.10)

The two function f and R are not independent of each other, since R(w) = −12 + 18f(w).

2.2 Gauss-Bonnet holography and boost invariant flow

The Gauss-Bonnet gravity action is given by

S =
1

2κ2
5

∫
d5x
√
−g
(
R+

12

L2
+
λGBL

2

2

(
RµνρσR

µνρσ − 4RµνR
µν +R2

))
, (2.11)

where κ2
5 is proportional to the five dimensional Newton constant, L is the AdS radius of

the λGB = 0 theory, and λGB is a dimensionless coupling which controls the magnitude of

the higher derivative corrections. Without loss of generality, in the rest of this work we

will set L = 1. An important feature of this theory is that in spite of incorporating higher

derivatives terms, black-brane solutions, dual to thermal ensembles of the associated gauge

theories, can be found for non-perturbarive values of the Gauss-Bonnet parameter. From

these the equation of state of the dual field theory can be extracted [39, 40]

ε =
3

8

π2N2
c

L3
c

T 4 , L2
c =

1 +
√

1− 4λGB

2
. (2.12)

As expected the λGB → 0 limit of eq. (2.12) agrees with the equation of state of N =

4 SYM. This expression indicates that not all values of λGB are physical, since only

λGB ∈ (−∞, 1/4] yield real energy densities. As already mentioned in the introduction,

for arbitrary values of λGB this theory posseses causality problems associated with the

superluminal propagation of high-momentum modes as well as negativity of the energy

flux. [52, 62]. These considerations impose further constraints in the allowed values2 of

−7/36 < λGB ≤ 9/100. Nevertheless, since these constraints concern the ultraviolet be-

haviour of the theory, we may still consider values of λGB beyond this region to explore its

infrared dynamics, such as the approach towards hydrodynamics of the theory, as already

2The analysis of three point functions of gravitons in high-derivatives theories has led the authors of [53]

to suggest that these theories are pathological for any strength of the higher derivative couplings unless a

complete tower of stringy states is also considered. See however [54].
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done in [42, 43]. Note also that as in a strongly expanding system as boost invariant flows,

the early time dynamics, w � 1 are sensitive to these high-momentum pathological modes.

For this reason in this work we will not explore the Bjorken flow dynamics at arbitrariy

early times.

In addition to the equation of state, the transport coefficients of the holographic dual

have also been analysed. In particular, the ratio of shear viscosity to entropy density is

given by [62]
η

s
=

1− 4λGB

4π
. (2.13)

Second order transport coefficients of this theory have also been analysed in [43]. From this

expression we can observe that positive values of λGB yield smaller values of η
s than N = 4

SYM [49]. However, negative values of λGB yield larger viscosity to entropy density ratios,

as expected from finite t’Hooft coupling corrections of the infinite coupling limit in N = 4

SYM [63]. The analysis of the relaxation of small fluctuations of the thermal state via the

computations of the quasi-normal mode spectrum of the dual black-branes indicates that

many qualitative features of finite coupling corrections to N = 4 SYM are captured by

Gauss-Bonnet holography with negative λGB [42]. For this reason, in this paper we will

only consider negative values of this parameter.

Holographic duals of Bjorken-like flows in N = 4 have been explored by finding boost

invariant solutions of the dual gravity theory [19, 64–67]. This is achieved by imposing an

Eddington-Finkelstein type ansatz for the metric of the 5D space as [66]

ds2 = −r2A(τ, r)dτ2 + 2drdτ + (rτ + 1)2eb(τ,r)dy2 + r2ec(τ,r)dx2
⊥ (2.14)

where τ =
√
t2 − z2 and y = arctanh (z/t) are the standard proper time and rapidity

coordinates and the asymptotically AdS boundary is located at r →∞.

Numerical solutions of the Einstein equations (with no higher derivative corrections,

λGB = 0) with boost invariant symmetry from initial data at τ = 0 have been found in [19].

These solutions first showed the success of viscous hydrodynamics to describe the evolution

of strongly coupled N = 4 SYM even when gradient corrections are large, later confirmed

in less symmetric solutions. Boost invariant solutions of the Gauss-Bonnet equations of

motion can also be found starting with this same ansatz. Imposing AdS asymptotics

(with radius Lc) leads to the following near boundary (r →∞) expansion of the different

metric functions

A(τ, r) =
1

L2
c

+
A(4)(τ)

r4
+ . . . (2.15)

b(τ, r) = −2 log (Lc)−
2
(
1− L2

c

)
rτ

+
1− L4

c

r2τ2
−

2
(
1− L6

c

)
3r3τ3

+
b(4)(τ)

r4
+ . . . (2.16)

c(τ, r) = −2 log (Lc) +
c(4)(τ)

r4
+ . . . (2.17)

where the boundary value of the functions b and c are chosen such that the metric has AdS

asymptotics with radius Lc. The functions A(4)(τ), b(4)(τ) c(4)(τ) cannot be determined

from the near boundary expansion and additional infrared conditions, such as regularity,
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must be imposed. However, these are not all independent, since the power series expansion

imposes

b(4)(τ) =
1− L8

c

2τ4
− 2c(4)(τ) . (2.18)

Energy-momentum conservation, which emerges from the boundary expansion as well,

relates these functions to A(4)(τ) which must be extracted from the numerical computation.

From these solutions the dual field theory stress tensor can be extracted after holo-

graphic renormalisation, which has been performed for Gauss-Bonnet gravity in [68, 69].

In terms of those functions, the stress tensor is diagonal and with the conventions Tab =

diag (Tττ , Tyy, Tx⊥x⊥) is given by

Tab =
N2
c

2π2

(2L2
c − 1)

L3
c

diag

(
−3A(4)

4
; τ2

(
−2c(4)

L2
c

− A(4)

4

)
;
c(4)

L2
c

− A(4)

4
;
c(4)

L2
c

− A(4)

4

)
.

(2.19)

This same ansatz has been used to obtain the holographic equivalent of a gradient ex-

pansion [25]. Motivated by the expansion of the energy densities in powers of u = τ−2/3,

eq. (2.3), the different metric functions can be expanded in a power series in this variable.

After introducing the new holographic coordinate s = 1/(rτ1/3), a series solution of the

Einstein equation can be found by expanding

A(τ, r) =
∑
i=0

uiAi(s), (2.20)

b(τ, r) =
∑
i=0

uibi(s), (2.21)

c(τ, r) =
∑
i=0

uici(s). (2.22)

With this assumption, the solutions of Einstein’s equations become a set of ordinary dif-

ferential equations (ODE’s) in s that can be solved by imposing AdS asymptotics at s→ 0

and regularity at the horizon, which using reparametrisation invariance, can be set3 at

s = 1. The equations of motions for Gauss-Bonnet gravity can also be solved by using the

same expansion, which has been recently used to determined the first few (three) orders

of the expansion in [48]. Imposing that AdS asymptotics and the metric has a horizon at

s = 1 the leading order solution is given by

A0 =
1

2λGB

(
1−

√
1− 4λGB(1− s4)

)
, (2.23)

b0 = −2 log (Lc) , (2.24)

c0 = −2 log (Lc) , (2.25)

3In the holographic calculation a value of Λ is chosen by setting the zero of the metric function A (the

approximate apparent horizon) to occur at s = 1. Similarly, τ in this section should be understood as the

dimensionless combination Λτ .
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which coincides with the black-brane metric in Gauss-Bonnet gravity expressed in the

Eddington-Finkelstein gauge.4 Recalling the definition of s, this leading order solution

may be interpreted as a black-brane falling in the holographic direction at a rate given by

the temporal change of the temperature scale, as defined in eq. (2.7). Starting from this

solution, all higher orders can be computed by solving a set of subsequent linear ordinary

differential equations; in appendix A we describe a formal solution to all orders which can

be used to organise the perturbative solution.

From this set of differential equations, the energy density can be computed by analysing

the s → 0 limit of the functions Ai. Given the boundary expansion eq. (2.15) and using

that A0(s = 0) = 1/L2
c , all metric coefficients Ai for i ≥ 1 must vanish at the origin.

Comparing the expression of the holographic stress tensor, eq. (2.19) with the gradient

expansion eq. (2.20), the energy density of the dual field theory is given by

ε = −N
2
c

2π2

(2L2
c − 1)

L3
c

3

4
u2
∑
n=0

un
1

4!

d4

ds4
An(s)

∣∣∣∣
s=0

. (2.26)

Comparing this with the expression for the equation of state eq. (2.12), we can determine

the late proper time expansion of the effective temperature. Combining this expansion with

the definition of the anisotropy function R, eq. (2.5), we can use the series to determine

the coefficients ri, as defined in eq. (2.8).

Following the procedure outlined above, 240 orders in the gradient expansion of the

energy density eq. (2.3) for strongly coupled N = 4 SYM, were determined in [25]. In this

work we have extended this computation up to 380 orders and extended it to fixed negative

values of λGB. Since the Gauss-Bonnet equations of motion contain many more terms,

the computation of higher order expansion coefficients becomes much more numerically

demanding than for N = 4 SYM. Similarly, the presence of a singularity, increasingly close

to the horizon as λGB becomes more negative also makes the numerical computation more

challenging. The analysis in this paper is based on the determination of Ncoefficients = 94,

86, 80, 66 coefficients for λGB = −0.1, −0.2, −0.5, −1 respectively. These coefficients, as

defined in eq. (2.3) and eq. (2.26) can be found in the arXiv submission on this paper.

3 Resurgence

One of the main conclusions of the analysis of boost invariant flows is that the hydrody-

namic expansion does not converge and behaves instead as an asymptotic series [25]. This

conclusion is based on the factorial growth of the coefficients in the large order hydrody-

namic series. As a consequence, for any fixed gradient strength, increasing orders in the

gradient expansion lead to larger contributions to the hydrodynamic functions. This be-

haviour has been observed both in N = 4 strongly coupled SYM [25] and in kinetic theory

in the RTA approximation [29], as well as in phenomenological completions of hydrody-

namics [26]. As expected, this same behaviour is also observed in Gauss-Bonnet gravity.

4The expansion of the non-trivial prefactor of the gyy component in eq. (2.14) to leading order in u must

also be performed to obtain the black-brane metric.
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Figure 1. Behaviour of the series coefficients for the anisotropy function eq. (2.5) as a function of

the expansion order n for λGB = 0 (grey solid circles), λGB = −0.1 (green open circles), λGB = −0.2

(blue squares), λGB = −0.5 (red triangles) and λGB = −1 (orange stars).

In figure 1 we show the growth of the magnitude of the series coefficients for the anisotropy

function eq. (2.8).

The factorial growth of the series coefficients indicates that the hydrodynamic series

may be Borel summable. As is standard (see [70, 71] for recent reviews in resurgence), we

may define the series expansion of the Borel transform of the anisotropy function R, as

RB(ξ) =

Ncoefficients∑
n=1

rn
n!
ξn . (3.1)

Unlike the hydrodynamic series, since the leading n! growth has been removed, the Borel

transform defined above has a finite radius of convergence, which is controlled by the

asymptotic large n slope of the growth of the coefficients shown in figure 1. The slopes of

these curves grow as λGB becomes more negative, which in turns means that the radius

of convergence of each series decreases with decreasing λGB. From the point of view of

finite coupling corrections this may be a natural expectation, since at finite coupling we

expect the magnitude of the gradient corrections to grow. In the rest of this section we

will explore the precise dynamics behind this observation.

The finite radius of convergence indicates that the Borel transform of the anisotropic

function possesses singularities in the complex-ξ plane. The Borel transform and the origi-

nal series are related via a Laplace transform. In order to be able to perform this integral,

we will need to first analytically continue the Borel transform beyond its radius of conver-

gence. A standard method to do this is to approximate the Borel transform via a Padé
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approximant as

RB(ξ) ≈ PN,M (ξ) =

∑N
j=0 niξ

j

1 +
∑M

i=1 diξ
i
, (3.2)

where all N + M + 1 coefficients are fixed by demanding that the power series of the

Padé agrees with eq. (3.1). The choice of N and M are arbitrary, with the constraint

that N + M = Ncoefficients. All the analysis of this work is based on symmetric Padé

approximants, with N = M = Ncoefficients/2, where we check the stability of our results by

varying N .

One of the advantages of the Padé approximant is the fact that, by construction, it

allows for the emergence of poles in the complex ξ plane, which can be related to the finite

radius of convergence of the Borel transform. In figure 2 we show the positions of the

poles of the Padé approximant for different values of λGB. In the upper left panel we show

the pole structure for N = 4 SYM as previously computed in [25, 72], but including an

additional 140 coefficients of the gradient series. The rest of the panels show our results

for different negative values of λGB = −0.1, −0.2, −0.5, −1. For comparison, in the lower

right panel we show the Borel plane for the same analysis5 in kinetic theory within the

RTA, using the coefficients tabulated in [29]. For all these cases additional poles exist for

very large values of |ξ|; however these have a strong dependence on the Padé order, which

indicates that they are numerical artefacts.

The singularity structure of the Borel plane is particularly interesting. As a first

observation, the locations of the poles control the convergence of the Borel series, since

the distance of the closest pole to the origin is proportional to the inverse of the slope of

coefficients shown in figure 1. Furthermore, in all cases, the Padé approximant exhibits an

accumulation of alternating poles and zeroes, starting at a well defined point in the borel

plane. This concentrated sum of simple poles indicates the emergence of a branch cut [73].

Nevertheless, the structure of poles at finite λGB is qualitatively different to that of N = 4

SYM at infinite coupling. While in the latter case all poles are complex, for all finite λGB

new branch cuts emerge along the real axis. For small negative λGB these new branch

cuts are far from the origin, but as λGB becomes more negative these poles move closer to

ξ = 0, and eventually dominate the radius of convergence for the Borel transform. This

behaviour qualitatively interpolates the structure of the infinitely coupled limit of N = 4

SYM with the expectation from perturbation theory as obtained via kinetic theory in the

RTA approximation.

We can note from figure 1 that for λGB = 0 and λGB = −0.1 the leading behaviour

of the coefficients at large n follows the form of an oscillating factorial function (rn ∼
n! cos(an)), in a similar fashion to scenarios noted in [28, 36]. As we vary λGB to decreasing

values we find that the oscillating behaviour becomes suppressed and the coefficients tend

to follow rn ∼ n! as in [29]. This is consistent with the dominant contribution to the

large n coefficients for the hydrodynamic series transitioning from two dispersive non-

hydrodynamic modes, to a single dissipative non-hydrodynamic mode.

5Note that in [29] the definition of the Borel transform was slightly different to ours, which implies that

our results are not identical.
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Figure 2. The lower right panel is the Borel plane of kinetic theory in the RTA approximation

using the coefficients computed in [29]. For this plot we have chosen the product of the relaxation

time times temperature, γ ≡ τRT = π/15, so that shear viscosity of the RTA coincides with

the λGB = −1 value. The straight dashed lines in the upper left channel shows the contours of

integration used in section. (4), Cc, C+ and C− in decreasing slope order. Similar contours are

used for all other cases. The solid grey circles indicate poles of the Padé approximant of RB(ξ),

the Borel transform associated with the anisotropy function R(w) for different values of λGB. The

expected positions of singularities predicted from the quasi-normal mode frequencies closest to the

origin, both for complex (red) and purely dissipative modes (orange), are marked by solid circles.

All integer multiples of these frequencies are given by squares of the same colour. The subsequent

2nd and 3rd QNM frequencies are marked by blue and green squares. The modes that correspond

to the sum of the 1st and 2nd QNM frequencies (in the N = 4 case) or the sum of the first two

leading modes (in the RTA case) are given by a yellow triangle.
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Having analytically continued the Borel transform beyond the power expansion, we can

determine the anisotropy function beyond the power series via the inverse Borel transform

R(w) = w

∫
C
dξ e−wξRB(ξ) , (3.3)

where C is a contour in complex plane which connects ξ = 0 and ξ = ∞. The presence of

singularities in RB shows that different choices of contour C yield different answers. Since

we require this to be an analytic continuation for every complex value of ω or ξ, this implies

that all choices of C must yield identical results. The theory of resurgence indicates that

the anisotropy function cannot be simply approximated by a gradient expansion, but must

also incorporate non-perturbative contributions in the gradient strength. Denoting by ξ
(α)
0

the origin of each independent branch cut in RB (each of which lead to an independent

trans monomial) this trans-series is given by [25, 28, 72],

R(ω) =

N∏
α=1

( ∞∑
nα=0

Ωnα
α

)
Φ(n1...,nN )(ω), (3.4)

where N denotes the number of independent non-perturbative modes, and the functions

Φ(n1 n2 ...,nN )(w) admit power series in inverse powers of w at large w. The non-perturbative

behaviour in the gradient strength is encoded in the functions Ωα, given by

Ωα = Cαw
γ(α)

e−ξ
(α)
0 w , (3.5)

where γ(α) is constant for each branch cut which may be determined from the analysis

of residues along the branch cut and Cα are Stokes parameters, which must be chosen

such that the non-perturbative ambiguity obtained in the Borel-summation of Φ0(w), is

exactly cancelled by the next terms in the trans-series, yielding a real final result [28, 70].

These parameters will jump discontinuously every time the contour C crosses a singularity

in the Borel plane. However, this reality condition does not completely fix these complex

numbers [28]. While in the hydrodynamic limit all the information about initial conditions

reduces to an overall scale, the different values of these constants correspond to additional

information on the initial state of the evolution, which controls the magnitude of the non-

perturbative modes.

As noted in [25] the form of this trans-series coincides with the expected contribu-

tion of the evolution from non-hydrodynamic perturbations of the system away from local

equilibrium in a boost invariant expanding medium of the equilibrium state. As it is well

known, at strong coupling these non-hydrodynamic excitations are characterised by a set

of characteristic complex frequencies, which in the dual theory coincided with the quasi-

normal modes of the associated black-branes. In the adiabatic approximation, each of these

excitations relax according to the local relaxation

δR(α) ∼ exp

{
i

∫
ω(α)(τ)dτ

}
, (3.6)

where ω(α) is the characteristic frequency of each mode. Since the system under consid-

eration is conformal, the τ -dependence of those frequencies is controlled by the effective
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local temperature. From the late time T-dependence, the position of the branch cut can be

related to the frequencies of the quasi-normal modes as ξ
(α)
0 = 2 i ω

(α)
QNM/3. The emergence

of these characteristic frequencies in the expanding case can be found explicitly by search-

ing for power series solutions of the form eq. (2.20) supplemented by non-perturbative

pre-factors

δA(α)(τ, r) = Ωα

∑
i=0

uiδA
(α)
i (s), (3.7)

δb(α)(τ, r) = Ωα

∑
i=0

uiδb
(α)
i (s), (3.8)

δc(α)(τ, r) = Ωα

∑
i=0

uiδc
(α)
i (s). (3.9)

We have checked that even at finite λGB, at leading order in gradients, the resulting ODEs

become independent of γ(α) and coincide with the QNM equations of the static black-brane

in [42], after the appropriate relation of ξ
(α)
0 with the quasi-normal mode frequency.6

From the above result, the observed qualitative differences between the Borel planes of

N = 4 SYM and Gauss-Bonnet gravity can be traced back to the structure of quasi-normal

modes. As noted in [42], this higher-derivative theory possesses a new set of dissipative

(imaginary) quasi-normal modes in addition to the characteristic discrete complex modes

of N = 4 SYM. These purely imaginary poles are not an artifact of this particular higher-

derivative theory. As explicitly shown in [42], the higher-derivative term responsible for

finite coupling corrections to N = 4 SYM also lead to this new type of relaxation mode;

and the t’Hooft coupling dependence of these poles is qualitatively similar to the λGB

dependence as long as λGB is negative. We can therefore infer that the structure of the

Borel plane singularities for N = 4 will also be qualititatively similar to the one observed

in our analysis. It is rewarding to realise that these corrections seem to interpolate between

the perturbatively weak and infinitely strong coupling limits.

To explicitly show the relation between the quasi-normal mode spectrum and the

Borel plane singularities we show the positions of these characteristic frequencies, after an

appropriate rescaling, in figure 2. In this figure the positions of the singularities associated

with the first purely imaginary and complex QNM’s (with smallest imaginary part, i.e. the

smallest damping rate) are shown by the orange and red solid circles respectively. Note

that from the relation above between the QNM frequency and the parameter ξ
(α)
0 that

these correspond to poles in the Borel plane with the smallest real part. In all panels, such

poles coincide with the start of an accumulation of singularities in the Padé approximant,

which may be interpreted as the origin of the branch cut. The singularities associated

with higher QNM’s must also be present in the Borel plane; in figure 2 we have shown the

positions of these singularities associated with the second and third complex QNM’s (with

the next two smallest imaginary parts) by blue and green squares. Integer mutliples of all

QNM frequencies above are given in squares of the same associated colour.

In all our finite coupling computations we do not identify poles coinciding with higher

order modes. This however is likely an artefact of the limited number of coefficients we

6We thank M. Spaliński for useful discussion on this point.
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have been able to extract from our computations. For N = 4, where we are able to

determine many more coefficients, these singularities indeed emerge, as already pointed

out in [72]. Note that resonant singularities, associated to the product of trans-monomials

in eq. (3.4) are also visible; in figure 2, yellow triangles are used to identify the sum of the

lowest two complex QNM frequencies (in the case of N = 4). We conclude this description

by noting that these resonant singularities are also visible in the Borel plane of the RTA

kinetic theory; this observation strengthens the significance of these structures, which have

only been observed in the non-linear analysis of [29], but do not correspond to poles of the

retarded correlator of stress tensor in the linear response analysis of RTA kinetic theory

performed in [74].

4 Resummations and the hydrodynamic attractor

We now study the extension of the anisotropy function for small values of w by analysing the

result of the inverse Borel transform, eq. (3.3). As we stressed in the previous section the

presence of poles in the Padé approximant, RB(ξ), will lead to an ambiguity of the inverse

Borel transform, since depending on the choice of contour we will obtain different answers.

This ambiguity can be fixed by demanding that the coefficients Cα (Stokes parameters) will

be discontinuous across each branch cut, as is known as Stokes phenomenon. However, as

already mentioned, this procedure does not completely fix the value of these coefficients on

a given contour, only its change across Stokes lines. The remaining ambiguity can only be

determined from additional knowledge of the far-from-equilibrium early time dynamics of

the system’s evolution, since specifying different values is equivalent to selecting different

choices of initial configurations for the evolution.

Among all the different possible time evolutions of the system, it has been recently

proposed that there is a particular configuration which behaves as an attractor in the space

of initial conditions [26]. While currently there is not a precise definition of the attractor

(see [38] for a recent attempt to provide such a definition based on the theory of non-

autonomous dynamical systems), numerical analysis of different theories have identified

well defined attractor solutions at all w, at which all time evolutions of the system converge.

Given the previously mentioned difficulties in studying the very early time dynamics of this

high-derivative gravity, in this section we will constraint the properties of the attractor

solution in holographic Gauss-Bonnet by resumming the hydrodynamic series.

An obvious physical requirement for the choice of contour is that R must be real. In

the case of N = 4 SYM this requirement is easily fulfilled by choosing, for example, the

real axis as an integration contour, while setting all the coefficients Cα to zero. This choice

was recently analysed in [36], motivated by the results obtained in a hydrodynamic theory

with a similar singularity structure in the Borel plane as that of N = 4 [28]. In that

theory, the direct integration of the inverse Borel transform in the real axis coincided with

the numerically computed attractor for of w > 0.3. We have tested that the additional

coefficients computed in this work do not change the result of this resummation in this case.

Recent analysis of exact solutions of IS hydrodynamics has shown [34] that in that model

the attractor coincides with the direct resummation of the hydrodynamic series explicitly

setting to zero all non-perturbative tails.
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For finite λGB, the presence of poles in the real axis complicates the extraction of

the anisotropy function, since any contour that avoids those poles generically leads to a

complex R. This feature is a clear manifestation of the need to include non-perturbative

corrections in the form of a trans-series to determine the anisotropy function beyond the

power expansion. Trans-series corrections were indeed studied in [26] in the context of

BRSSS hydrodynamics, which also exhibits real poles in the Borel plane. While the ex-

pansion eq. (3.7) provides a clear starting point to complete this program in holographic

theories, computing these corrections are numerically more challenging and goes beyond

the scope of this work. Nevertheless, since these corrections are exponentially suppressed

at large w we will use the leading term in the trans-series to constraint the dynamics of

the resummation.

In this work we focus on the real part of the anisotropy function computed by per-

forming the inverse Borel transform, eq. (3.3) of the Padé approximant determined in the

previous section. We choose a contour of integration given by a straight line in the complex

plane z = ξeθ, with θ > 0 such that all the poles with positive imaginary part lie above

the contour. For latter reference, we will refer to this contour as C+ and it is shown in

the upper right panel of figure 2. As already mentioned this choice leads to a complex

R-value; however, as expected, at large w this imaginary part becomes increasingly small.

Note that by choosing the real part we are making the computed R value independent of

whether the integration is performed along C+ or along an analogous contour C− obtained

by reflexion along the real axis (see figure 2), since the discontinuity across the real axis

is purely imaginary. In essence, by this prescription we are effectively incorporating part

of the first trans-series corrections. In fact, a procedure to determine these coefficients is

precisely to choose the Cα to cancel all imaginary contributions. However, this is not the

full answer, since the functions Φ(n1...,nN ) in eq. (3.4) may contain additional imaginary

parts which are cancelled only by higher order terms in the trans-series either associated

to independent real poles further away from the origin (absent in Gauss-Bonnet) or by in-

teger multiples of the leading real pole. Nevertheless, these contributions possess stronger

exponential suppression factors, which make them only relevant at sufficiently small time.

Note that this prescription implies, in particular, that all the trans-series coefficients Cα
associated to complex singularies are set to zero along this integration contour.

The results of this integration for all the different values of λGB = 0, −0.1.−0.2, −0.5, −1

are given by the grey, green, blue, red and orange curves displayed in the left panel of fig-

ure 3. For all non-zero values of λGB we have supplemented each curve with a band

generated by adding and subtracting to the real part the imaginary part of the integral

eq. (3.3). When the band is narrow, this is a conservative estimate of the deviation of

the trans-series from our prescription, since, as already argued, additional contributions

are exponentially suppressed. As the width of the band increases, the sensitivity to the

Padé order and the number of coefficients also increases. In the right panel of figure 3

we compare the results from our holographic computation to the resummation of the RTA

kinetic theory coefficients from [29]. Following [57], to better compare the different theories

we have rescaled the values of w by the viscosity to entropy density ratio, such that the

first order hydrodynamic prediction R1st
hyd, shown by the dashed line, agrees in all theories
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Figure 3. Anisotropy function for different values of λGB (left) and RTA (right) as a function

of rescaled gradient ws/4πη. The grey, green, blue, red and orange curves correspond to the real

parts of the inverse Borel transform of the leading order in the trans-series while the yellow curve

in the left panel corresponds to RTA (for different choices of the Padé order N). The bands are

determined by adding and subtracting the imaginary part of the inverse Borel transform, as a

gauge of the importance of additional trans-series contributions. In both panels, the dashed line

corresponds to the first order hydrodynamic prediction R1st
hyd. The grey, red and orange curves show

no noticable deviation for the entire range plotted above. The green and blue curves are stable

with respect to the choice of N for w
4π ηs

> 0.25, with deviations remaining within the same order

of magnitude as the curves plotted above. The sensitivity of the RTA bands to different choices of

N is no greater than 6% for w
4π ηs

> 1.

by construction. Even though the RTA computation is performed with 200 coefficients of

the hydrodynamics series, we find that the inverse Borel transform is much more sensitive

to the Padé order, which prevents us from studying the very small ws/η regime.

The inspection of this figure shows that, after w is properly rescaled, the evolution

of the anisotropy function is very similar, but not identical, for all cases considered, at

least at sufficiently large values of w. All the resummations at fixed λGB exhibit small

imaginary parts for w <∼ 4πη/s, a region where viscous corrections are large. Note also

that the magnitude of the non-perturbaive corrections does not scale with the ratio of

η/s, since the width of the different bands at similar values of the re-scaled variable is

different. From the point of view of the gravitational dual, this is a consequence of the

fact that the imaginary part of the non-hydrodynamic QNM’s does not scale with the

transport coefficients, at least for the values of λGB considered. Similarly, the effect of

non-perturbative modes is bigger for the RTA calculation, and significant deviations from

the leading order term in the trans-series persist at w >∼ 4πη/s.

When the width of the bands is small, we can use the resummation to explore the

process of hydrodynamization of the system. As already observed in [36] for N = 4, the

result of these resummations quickly approaches the first order hydrodynamic predictions

for all the values of λGB. To better quantify this process, we will assume that the system

has hydrodynamized at whyd if for any larger value of w the anisotropy function satisfies

|R−Rhyd|
Rhyd

< 0.1 , (4.1)
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λGB 0 −0.1 −0.2 −0.5 −1 RTA

whyd 0.43 0.46 0.56 0.93 1.85 2.5–2.8

whyds
4πη 0.43 0.33 0.31 0.31 0.37 1.0–1.1

R|whyd
1.33 1.74 1.87 1.85 1.57 0.55–0.57

Table 1. Inverse gradient size and anisotropy function at hydrodynamization for different theories.

Note that for RTA the quoted range reflects the sensitivity of the resummation to Padé order and

does not include the uncertainty associated with the imaginary part of the inverse Borel transform.

where Rhyd is the first order hydrodynamic expression eq. (2.8). The values of whyd and

the corresponding anisotropy for the different theories are tabulated in table (1). As λGB

becomes more negative, the value of the temperature-normalised gradient w at which hydro-

dynamization occurs increases, as expected by the fact that the dual fluid is more viscous.

Nevertheless, as in other theories where the resummation has been performed [26, 36],

Rhyd approximates the resummed result even when the value of this normalised gradient

is comparable to the microscopic scale. At these small values of the inverse gradient, the

anisotropy function is larger than 1, which means that the viscous contribution to the pres-

sures is as large as the equilibrium pressure, demonstrating that the contribution of higher

order terms is potentially large. This is once again a manifestation of hydrodynamization

without isotropization as discussed in [19]. In fact, since the series is only asymptotic, it

is easy to test that the corrections given by the truncated hydrodynamic series at orders

greater than 10 give divergent and sign alternating contributions at those values of w.

These corrections are, nevertheless, tamed by the resummation.

In this table we have also quoted the values obtained for RTA. As already mentioned,

these results are much more sensitive to the Padé order and the extracted values reflect

this sensitivity. This sensitivity hints towards a larger contribution of the non-perturbative

corrections, which we will explore below in detail, making the hydrodynamization inter-

pretation harder. Nevertheless, it is worth noting that all the computations performed via

the gauge/gravity duality hydrodynamize at comparable values of the viscosity re-scaled

gradient ws/η, and significantly earlier than in RTA kinetic theory. Since both RTA and

λGB may be viewed as oversimplified treatments of finite coupling effects in gauge theo-

ries, it would be interesting to investigate more realistic higher derivative corrections and

collision kernels to explore whether the size of the re-scaled gradient at hydrodynamiza-

tion shows consistent trends in these complementary approaches towards gauge theories at

intermediate coupling.

We now turn to the relation between the resummation of the hydrodynamic series and

the attractor. As we have stressed, in performing our resummations we have implicitly

selected some particular values of the initial conditions, which tantamount to a specific

selection of the constants Cα in eq. (3.4). It is therefore unclear whether this choice leads

to the hydrodynamic attractor. In the simpler example of [26], where the trans-series

program has been performed, non-trivial values for this constant, beyond the cancellation

of imaginary parts, must be introduced (fitted) to describe the numerically computed
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attractor. Therefore, to fully determine the attractor numerical computations from an

early initial time are needed. For N = 4, an attractor has been identified by studying

the behaviour of different initial conditions at a very early initial proper time in [31].

As already stressed, performing these types of computations in Gauss-Bonnet holography

introduced practical and conceptual difficulties which make them a challenge beyond the

scope of this paper. For this reason, in this paper we will use information extracted from

the resummation to constrain the position of the attractor.

To estimate the relaxation of different sets of initial conditions, we will focus on the

dynamics of the leading non-perturbative corrections. From the point of view of holography,

these may be interpreted as the effect of the least damped quasi-normal modes. As we have

already mentioned, the w-dependence of these contributions could be obtained via the

computation of a series expansion in gradients, analogous to eq. (2.20), but supplemented

with the non-perturbative prefactor Ωα for each mode. However, we can also determine

the late time behaviour of this contribution by examining the discontinuities of the inverse

Borel transform for different choices of the contour integration. By inspection of the Borel

planes at finite λGB, figure 2, we identify three representative contours of integration, which

yield different answers for the inverse Borel transform. We have already used one of those

contours, C+, to define the inverse Borel transform above. The second contour C−, is the

reflection of the previous to the lower half plane. Finally, the third contour is a straight

line in the upper half plane at angle above the argument of the start of the complex branch

cut, Cc. All these contours are shown in figure 2. Denoting by R+, R− and Rc the results

of integrating eq. (3.3) over each of these contours, we define the discontinuities

iD±(w) = R+ −R−, Dc(w) = Rc −R+. (4.2)

D± is real and coincides with the imaginary part of R+ while Dc is complex. Note that we

could have defined an equivalent discontinuity by reflecting both Cc and C+ to the lower

half; however, this discontinuity is simply the complex conjugate of Dc(w).

Independence of the inverse Borel transform on the integration contour imposes that

the constants Cα must differ for each integration. Therefore, if the trans-series would

contain only the contribution of the independent singularities ξα with smallest damping

rate, this contribution would be proportional to the discontinuity, so that the ambiguity

could be cancelled. In more general cases the presence of additional non-perturbative

modes as well as resonant contributions among poles imply that the cancellation is more

subtle and the whole trans-series is necessary. For this reason, the discontinuities we have

computed are not solely dependent on the leading singularity. But since those additional

contributions occur at larger values of the conjugate variable ξ, the exponential suppression

of these contributions at sufficiently large values of w, w > 1/ξ, is larger than those of the

leading singularity, as inferred from the exponential contribution Ωα in eq. (3.4).

Within the above approximation, the late time behaviour of the different initial con-

ditions is given by

RIC = R+ a1D± + a2Re [Dc] + a3Im [Dc] , (4.3)

where R is the result of the resummation described above and the coefficients ai contain

information from the early proper time evolution of the system beyond the hydrodynamic
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approximation. The functional form of each of these discontinuities is shown in appendix B.

Note that the edges of the band displayed in figure 3 corresponds to setting a2 = a3 = 0

and a1 = ±1. Varying the values of this constant, we can estimate how different initial

configurations deviate from our resummed result.

In figure 4 we explore the effect of different initial conditions on the time evolution

of boost invariant expansion of different theories. The discontinuities discussed before

yield a characteristic magnitude of the size of the non-perturbative corrections needed to

appropriately define the trans-series. We will vary the coefficients ai ∈ (−1, 1) to gauge the

spread of typical initial conditions of such time evolution.7 Following different extractions

of attractor solutions in the literature, [26, 31, 37], the attractor may be identified by the

so called “slow roll” condition, which demands that the time derivative f ′, with f defined

in eq. (2.10), is small all along the evolution of the system. For this reason, in figure 4 we

show the logarithmic derivative of the energy density, τ∂τ lnε, from which such a derivative

may be inferred. In these plots, the solid thick line corresponds to the resummation, while

the colourful thin lines correspond to different time evolutions obtained by varying ai. In

all panels, the dashed line corresponds to the first order hydrodynamic prediction for this

quantity. Finally, the vertical dotted line marks the hydrodynamization time extracted in

table (1) and the horizontal dotted lines indicate the values of τ∂τ lnε which correspond to

varying R by 10% around the resummation.

The inspection of this figure shows that in all holographic calculations the result of the

resummation provides a good proxy to the attractor at hydrodynamization time. For all

values of λGB, the variation within typical initial conditions of the evolution of the energy

density is approximately within the hydrodynamization criterium used to determine the

whyd. This shows that our extraction of whyd is trustable; in addition, assuming that the

attractor is captured by this set of typical initial conditions, the attractor should also be

approximated to better than 10% after this time. Furthermore, the spread of the different

initial conditions also shows that, while specific initial conditions may converge faster, for

typical configurations, we only expect convergence towards the attractor when this special

solution is well described by first order hydrodynamics. Note also that increasing the

range of ai only make this conclusion stronger; for generic initial conditions the properties

of the attractor prior to hydrodynamization do not strongly affect the time evolution of

the system.

We close this section by noticing that the RTA computation exhibits a much stronger

dependence on initial conditions that the holographic computations.8 For RTA not only

our estimated hydrodynamization time occurs much later than for the holographic compu-

tations, but also at this larger value of the re-scaled gradient the spread of initial conditions

is large and many of the individual initial conditions are not well approximated by first

7We have checked that this procedure leads to a spread in anisotropy paramater comparable to that

induced by the different initial conditions in N = 4 SYM reported in [36].
8We thank M. Heller, M. Spaliński and V. Svensson for private communication on recent analysis of RTA

kinetic theory with a non-conformal relaxation time [75] which exhibits a trans-series structure with multiple

independent contributions with identical exponential suppressions. This indicates that for conformal RTA

the trans-series may be more complicated than what we have assumed in this paper.
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Figure 4. Logarithmic derivative of the energy density as a function of the viscosity-rescaled

inverse gradients for different values of λGB. In all panels, the thick solid lines are the result of

the resummation of the hydrodynamic series, while the dashed line correspond to the first order

hydrodynamic prediction. The thin coloured lines correspond to adding to the resummation the

discontinuities defined in eq. (4.2) with arbitrary coefficients. The vertical dotted line indicates

the rescaled hydrodynamization time
whyds
4πη , the horizontal lines give the corresponding R = (1 ±

0.1) R|whyd
as displayed in table (1) (including its uncertainties for RTA). Every curve corresponding

to evolution in a Holographic theory is insensitive up to 2% to the choice of the Padé order N used

for w > 0.3. For the case of N = 4 there is no visible change for the entire region plotted. All RTA

curves plotted were insensitive to N at the level of 1%.
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order hydrodynamics. This implies that the relevance of the attractor for individual initial

conditions becomes important at values of the gradient when the attractor is better ap-

proximated by hydrodynamics. As explicitly shown in appendix B, the origin of this large

spread is the ambiguity associated to the complex poles in the Borel plane, since these

posses much larger residues than the real poles. Remarkably, the origin of these poles is

unclear, since they do not appear in a linear analysis [29].

5 Discussion

Understanding the unexpected success of hydrodynamics to describe the off-equilibrium

dynamics of interacting systems is an important challenge, not only theoretically but also

with important practical applications to heavy ion physics and beyond. To address the

success of this low energy effective theory much beyond its expected regime of validity, the

emergence of special time-dependent configurations of the interacting theory, which act as

attractors for all possible system evolutions and which generalise the hydrodynamic ex-

pansion beyond the limit of small gradients, has been suggested as a possible explanation.

Motivated by this suggestion, in this paper we have applied the extension of hydrodynam-

ics beyond the gradient expansion to the boost invariant flow of the field theory dual of

Gauss-Bonnet gravity in 5D, which may be viewed as a laboratory to study finite coupling

corrections to infinitely strongly coupled theories.

As we have already stressed, we have chosen to analyse Gauss-Bonnet holography since,

at least in principle, it allows us to explore non-perturbative values of λGB the parameter

that controls higher-derivative corrections to Einstein gravity. We would like to remark

once again that the holographic dual to this theory is unknown; and it is not even clear

whether in that putative dual theory the terms included via non-vanishing λGB correspond

solely to t’Hooft coupling corrections or if they also include finite corrections in the rank

of the gauge group Nc. Nevertheless, the relaxation dynamics of non-hydrodynamic modes

at finite (and negative) λGB exhibits qualitative similarities to the effect of finite t’Hooft

coupling corrections for those dynamics in N = 4 SYM. In particular, both theories exhibit

purely dissipative relaxation channels which, from the point of view of holography, are due

to higher curvature terms. Note also that our analysis has been performed for values of

λGB beyond the causality bounds of [52, 62]. For this reason, we are not able to explore the

boost invariant expansion in the τ → 0 limit. Nevertheless, since the unphysical behaviour

of Gauss-Bonnet gravity occurs in the ultra-violate, we have concentrated our analysis

around how different field configurations approach the hydrodynamic regime.

One of our main results is the analysis of singularities of the Borel transform of the

hydrodynamic series in this theory. In accordance with the general theory of resurgence,

and as already observed in N = 4 SYM, these singularities reflect the characteristic QNM

frequencies that control the relaxation of small non-hydrodynamical excitations. A direct

consequence of the new purely dissipative modes is the presence of singularities on the real

ξ axes, the variable conjugate to the inverse gradient. These, together with the complex

singularities associated to other QNM’s of the dual theory make the analytical structure

of the fixed coupling calculation richer than in the infinite coupling limit. But even more
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importantly, the structure of singularities qualitatively interpolates between the infinite

coupling limit obtained via holography and the weakly coupled limit, obtained by kinetic

theory in the RTA. This may be viewed as an additional motivation to study the large

order gradient expansion in this higher-derivative theory.

To explore the effect of this analytic structure on the early time dynamics of the sys-

tem, we have resummed the hydrodynamic series via Borel-Padé techniques. This allows us

to extend the information in the large order gradient expansion to the large gradient region,

for values of w such that the contribution of increasing orders in the gradient expansion

lead to large, alternating contributions. Remarkably, as in all other examples studied in

the literature, the resummation of the gradient expansion of the field theory dual to this

high-derivative gravity is approximated by first order hydrodynamics at an unexpectedly

early time, in a region where viscous effects are large. At this hydrodynamization time,

the pressure anisotropy in the expansion is comparable in all strongly coupled computa-

tions, independent of λGB, which implies that the hydrodynamization occurs at comparable

viscosity-scaled gradients, ws/η. By comparison, our analysis of the RTA kinetic theory

gradient expansion computed in [29] indicates that hydrodynamization occurs later, even

in the viscosity-scaled gradient, at smaller values of the anisotropy parameter, although

these are still large. Our results are consistent with the numerical solutions of RTA de-

scribed in [29].

This resummation allows us to explore the dynamics of the hydrodynamic attractor

in this holographic model. Certainly, resummation techniques cannot solely determine

the behaviour of the attractor. To fully determine this configuration, analysis able to ex-

plore the w → 0 limit must be performed. However, at sufficiently late times, when all

non-perturbative contributions have relaxed, the resummation must coincide with the at-

tractor. To gauge how close the resummation is from the attractor, we have estimated the

relaxation of transient behaviour by studying the discontinuities of the inverse Borel trans-

form over different contours of integration. Since those discontinuities must be cancelled

by non-perturbative contributions, these provide a natural scale for the magnitude of these

corrections. By varying the magnitude of these modes we can gauge the deviation from

the resummation of generic initial conditions. This procedure may be also understood as

varying the contribution of the leading QNM over the evolving system. From this anal-

ysis we conclude that in all holographic computations, the expected deviation of generic

initial conditions from the resummation at hydrodynamization time is comparable to the

difference between the resummation and first order hydrodynamics. As a consequence, our

resummation will be a good approximation to the attractor at hydrodynamization time;

however, at earlier times this not may be the case.9 We may therefore conclude that while

individual configurations may converge to the attractor earlier, in all these strongly coupled

computations the relaxation of generic initial conditions occurs whenever the system has

hydrodynamized. Our analysis also suggests that the sensitivity of kinetic theory to initial

conditions persists up to significantly smaller viscosity-rescaled gradients.

9In fact, our resummation for N = 4 SYM differs from the attractor found in [31] at w < 0.4, as also

found by Spaliński [36].

– 23 –



J
H
E
P
0
4
(
2
0
1
8
)
0
4
2

Finally, we would like to conclude with an intriguing observation. By analysing the

magnitude of the discontinuities in different directions in the complex plane we can esti-

mate the dominant source of initial data dependence in the late time transient behaviour.

Surprisingly, for all the values of λGB studied the dominant contribution is always associ-

ated with the complex QNM, which leads to complex singularities in the Borel plane. The

pure dissipative mode is always subleading, even for large negative values of λGB, when the

associated singularity is close to the origin and therefore does not possess an obvious sup-

pression (see eq. (3.4)). The numerically extracted discontinuities are shown in appendix B.

What is even more remakable is that an identical behaviour is observed in kinetic theory,

where the dissipative poles are much closer to the origin that the complex ones. This is

even more surprising after realising that in RTA it is only the pure dissipative mode that

can be obtained from linear response, while the origin of the complex singularities is not

yet understood. It would be interesting to explore the effects of this behaviour in other

observables.
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A Power series solution to all orders

While constructing solutions for our bulk geometry we found that specific redefinitions of

the metric coefficients allowed us to express our equations of motion as λGB-independent

linear operators sourced by λGB-dependent functions. It is easy to see that these linear

operators are in fact those of the λGB = 0 case which have exact solutions in terms of

Greens functions. We could not however find a closed form expression for each source for

arbitrary order, and each solution generically has explicit dependence on solutions at all

orders below it.

Starting from the ansatz given in eq. (2.14)

ds2 = −r2A(τ, r)dτ2 + 2drdτ + (rτ + 1)2eb(τ,r)dy2 + r2ec(τ,r)dx2
⊥ (A.1)

we make a further redefinition d(τ, r) = c(τ, r)+ 1
2b(τ, r) and expand the unknown functions

as power series’ in u = τ−2/3,

A(τ, r) =
∑
i=0

uiAi(s), (A.2)

b(τ, r) =
∑
i=0

uibi(s), (A.3)

d(τ, r) =
∑
i=0

uidi(s), (A.4)
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where s = 1/(rτ1/3). We can solve the Field equations of Gauss-Bonnet perturbatively at

each order in u, for which we will find 3 e.o.m for Ai(s), di(s) and bi(s), and 2 constraint

equations that we will evaluate at s = 1. The i = 0 solutions are given by a standard black-

brane metric solution stated in eq.’s (2.23) to (2.25). For each order i ≥ 1 the functions

Ai(s), di(s) and bi(s) must satisfy linear second order ODE’s of the form

Ldλ(di) = jdi , (A.5)

LAλ (Ai) = jAi , (A.6)

Lbλ(bi) = jbi , (A.7)

where Lfλ is a linear operator depending on λGB which will act on function fi to give the

source jfi . For all i ≥ 1 we impose that Ai(s), bi(s) and di(s) all vanish at the boundary

(s = 0) and are regular at the horizon which we fix (through co-ordinate reparameterization

invariance) to be at s = 1. A consequence of this choice of co-ordinates is that Ai(1) = 0

for i ≥ 1 so that the constrain equations take the simple forms

di(1) = Ji, (A.8)

A
′
i(1) = −2(1− 4λGB)Ki, (A.9)

where Ji and Ki are functions of λGB, and primes denote derivatives with respect to s.

Under the redefinitions10

di = d̃i, (A.10)

Ai =
1− 4λGB√

1− 4λGB(1− s4)
Ãi, (A.11)

b
′
i =

(
2λGB

√
1− 4λGB(1− s4)

s(1− 4λGB)(1−
√

1− 4λGB(1− s4))

)
b̃
′
i, (A.12)

the equations of motion become

Ld0(d̃i) = j̃di , (A.13)

LA0 (Ãi) = j̃Ai , (A.14)

Lb0(b̃
′
i) = j̃bi , (A.15)

where the linear operators LC0 no longer have a dependence on λGB and the source terms

jCi are scaled as

j̃di =
1√

1− 4λGB(1− s4)
jdi , (A.16)

j̃Ai =
1

1− 4λGB
jAi , (A.17)

j̃bi = jbi . (A.18)

10The linear operator Lbλ contains only derivatives in s so for convenience we will treat b
′
i as the function

we are solving for.
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The λGB-independent linear operators are

Ld0 = ∂2
s (A.19)

LA0 = s2∂2
s − 5s∂s + 8 (A.20)

Lb0 =
1

4
s∂s − 1. (A.21)

Equations (A.13) to (A.15) have solutions in terms of Greens functions.

d̃i(s) = Jis+

(∫ s

0
dx − s

∫ 1

0
dx

)∫ x

1
dy j̃di (y) (A.22)

Ãi(s) = Kis
2(1− s2) +

1

2
s2

∫ s

1
dx

(
s2 − x2

x5

)
j̃Ai (x) (A.23)

b̃
′
i(s) = s4

∫ s

1
dx

4

x5
j̃bi (x) (A.24)

Here integration constant associated with b̃′i has necessarily been fixed to 0 to ensure

regularity of b′i at the horizon.

One can retrieve all perturbative solutions iteratively by finding d̃i, Ãi then b̃
′
i and

substituting the results to find di, Ai and b
′
i.

11

The first few sources are given by

j̃d1(x) = 0, (A.25)

j̃A1 (x) = −2x, (A.26)

j̃b1(x) =
1

4
x

(
−14 +

3

λGB
+ 8λGB

)
+
x(1− 4λGB)(1− 2λGB)(−3 + 4λGB(3− 5x4))

4λGB(1− 4λGB(1− x4))3/2
,

(A.27)

with

J1 = −(1− 2λGB), (A.28)

K1 = −1. (A.29)

Solving eq.’s (A.22) to (A.24) at order i = 1 and then rescaling the results using

eq.’s (A.10) to (A.12) we can recover

d1(s) = −(1− 2λGB)s,

A1(s) = −2

3

s(1− s3)(1− 4λGB)√
1− 4λGB(1− s4)

,

b
′
1(s) =

(
−2(1− 2λGB) +

2

3

4λGB(1− s3)
√

1− 4λGB(1− s4)

1−
√

1− 4λGB(1− s4)

)
.
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Figure 5. Non-hydrodynamic modes Re[Dc] (blue), Im[Dc] (yellow) and D± (red) as described in

Equation (4.2) for different couplings. Each curve in figure 5 has been made by varying the Padé

order N over the four previous values, with the exception of the λGB = 0 case where N is chosen

to take values of 80, 90, 120 and 190. The visible deviations are intended to give a sense of the

convergence of the Padé Approximant and so the convergence of these non-hydrodynamic modes.
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B Non-perturbative modes

The discontinuity Re[Dc], Im[Dc] and D± defined in Equation (4.2) are shown in figure 5

in blue, yellow and red respectively for all the models considered. For every case, we use

several values of the Padé order to estimate the uncertainty of this integration. To avoid

ambiguities associated with the oscillatory character of these functions, we estimate the

error of each curve by computing the maximum value for different choices of the Padé order

N ′ = N −∆ with N = Ncoefficients/2 and ∆ = 1, 2, 3 of the function

Err(w) =

∫∞
w dx |fN (x)− fN ′(x)|∫∞

w dx |fN (x)|
. (B.1)

Using this procedure, we find that dispersive modes, Re[Dc] (blue) and Im[Dc] (yellow),

deviate for no more than 5% for w
4π η

s
> 0.2, 0.3, 0.25, 0.25, 0.2, 1.05 for λGB = 0, −0.1, −0.2,

−0.5, −1 and RTA kinetic theory respectively. For the dissipative mode D± the curves

are accurate to 5% for w
4π η

s
> 0.3, 0.25, 0.2 for λGB = −0.2, −0.5 and −1 respectively.

For λGB = −0.1 and for RTA, convergence at 5% level is only achieved at w
4π η

s
> 0.85

and 2 respectively. Even though these uncertainties are large, since the dissipative mode

is much smaller than the dispersive contribution, these errors do not alter the spread of

initial conditions displayed in figure 4.

Remarkably, we find that in all cases the dissipative mode is suppressed by at least an

order of magnitude relative to the dispersive modes, even when the poles along the real

axis in the Borel plane are closer to the origin than the leading complex mode. This is

surprising since inspection of the trans-series eq. (3.4) suggests that the contribution of

each of the non-perturbative modes to this discontinuity is controlled by the exponential

suppression associated to the position of the corresponding singularity in the complex Borel

Plane eq. (3.5). This observation is even more striking for RTA, since the dissipative branch

cut in this case is much closer to ξ = 0 than the complex one, and hence one would expect

a larger suppression of those non-linear modes. This suggests that it will be necessity to

understand the role of the complex modes in RTA kinetic theory to properly describe the

evolution of the system at intermediate to late times.
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