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Abstract

We study what we call the all-loop anisotropic bosonized Thirring σ -model. This interpolates between 
the WZW model and the non-Abelian T-dual of the principal chiral model for a simple group. It has an 
invariance involving the inversion of the matrix parameterizing the coupling constants. We compute the 
general renormalization group flow equations which assume a remarkably simple form and derive its prop-
erties. For symmetric couplings, they consistently truncate to previous results in the literature. One of the 
examples we provide gives rise to a first order system of differential equations interpolating between the 
Lagrange and the Darboux–Halphen integrable systems.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The change in the behavior of a field theoretical system is encoded in the way the coupling 
constants of the theory alter with the energy scale. This is studied mathematically under the gen-
eral frame of the renormalization group (RG), a systematization started in the early seventies [1]. 
These investigations typically give rise to a system of first order coupled non-linear differential 
equations, the RG flow or β-function equations, for the couplings of the theory (for a thorough 
introduction and a review of the subject see [2]). Typically one starts from an asymptotically free 
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theory in the UV or from a conformal field theory (CFT) and then flows away by perturbing with 
relevant operators. In traditional approaches the RG flow equations are determined order by order 
in perturbation theory. It is a natural question to ask if it is possible to compute these equations 
exactly in the coupling constants or at least for some of them. This is important from a physics 
view point since one could discover new fixed point theories towards the IR. Mathematically it 
is a very difficult task since in doing so one has to take into account irrelevant operators as well.

Given the above comments it is always exciting if we can obtain the exact RG flow equations 
for (at least some of) the couplings of a theory. Intuitively we expect that this could be feasible 
if the perturbed theory is highly symmetric. Such cases arise when the starting point is a two-
dimensional CFT with infinitely dimensional current algebra symmetries for the left and the right 
movers.

A model where this is possible to a certain extend is the bosonized version [3,4] (and refer-
ences therein) of the non-Abelian Thirring model [5]. We will call in short this the non-Abelian 
Thirring model which has an action of the form

S = S0 + kλ

π

∫
J a+J a−, (1.1)

where S0 describes a CFT containing right and left affine Lie algebras both at level k with cur-
rents J a+ and J a−, respectively. The β-function for this theory was computed in [6] to all orders in 
λ and to leading order in 1

k
. The generalization of this computation to the anisotropic non-Abelian 

Thirring model in which the current–current interaction in (1.1) is replaced by an arbitrary sym-
metric coupling matrix was performed in [7]. In these cases the computations were performed 
using current-algebra techniques without much reference to the geometrical details of the back-
ground in (1.1). It is very interesting to obtain an effective action in which all effects of the 
parameter λ have been incorporated exactly and where the only perturbative expansion is with 
respect to 1/k.

In a recent development a large family of σ -models was constructed in [8] by a gauging pro-
cedure. It interpolates between the Wess–Zumino–Witten (WZW) model and the non-Abelian 
T-dual of the principal chiral model (PCM) model for a simple group G. In the simplest case this 
σ -model action was shown to be integrable [8] by demonstrating that certain algebraic constraints 
for integrability [9] were satisfied. It incorporates non-trivially a single parameter, for small val-
ues of which it coincides with (1.1). Remarkably, the RG flow equation to leading order in the 
1/k expansion was computed in [10] and coincides with the one in [6]. Based on that, it was 
proposed that this action is the all loop effective of the non-Abelian Thirring model (1.1). In fur-
ther support, both actions share the same global symmetries and roughly speaking both possess 
an additional symmetry under the inversion of the deformation parameter λ. This is manifest for 
the action of [8] but also arises implicitly from path integral considerations involving (1.1) and 
symmetry arguments, in [11].

The initial aim of this work was to compute the RG flows for the anisotropic G = SU(2) case, 
with diagonal coupling matrix λab and then to compare the results with the analogue ones in [12]
which were found using [7]. Nevertheless, we managed to compute the RG flow equations for the 
most general class of the σ -models of [8] containing a general deformation matrix λab and for 
general simple group G, and present the result in a remarkably simple and compact form. In the 
above SU(2) case the derived RG-flow interpolate, between the Lagrange and Darboux–Halphen 
integrable systems, naturally explained by the interpolating nature of our σ -models.

We believe, but we do not have a proof, that our general RG-flow equations coincide with 
those of [7,13] when such a comparison can be made, i.e. when λab = λba . However, we provide
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three non-trivial examples, and found agreement with results following by using the expressions 
of [7,13]. In that sense the general σ -model of [8] can be thought of as the effective action for 
the most general anisotropic non-Abelian Thirring model where all effects related to the coupling 
matrix λab (which may have an antisymmetric part) have been taken into account. As a byproduct 
of our work we obtain the RG flow equations of the non-Abelian T-dual of the general PCM and 
we prove that they match those of the general PCM.

The organization of this paper is as follows: In Section 2 we set up the general class of inter-
polating σ -models as suited for our purposes. In Section 3 we study various of its symmetries 
and limits as well as the resulting constraints for the RG flow equations for the coupling matrix 
λab . In Section 4 we compute the generalized spin-connection and Ricci tensor corresponding 
to the metric and antisymmetric tensor of our σ -models. In Section 5 we derive and study the 
β-function for the couplings λab. In Section 6 we present two examples based on the anisotropic 
SU(2) and on the symmetric coset G/H space. In Section 7 we compare with existing literature 
results. We end up our work with a wrap up and a discussion on future directions in Section 8.

2. Setting the frame

In this section we present the two-dimensional σ -models of interest to us, in a way suitable 
for studying their behavior under RG flow in subsequent sections.

We will study the σ -models of [8] which we first briefly review for the reader’s convenience. 
Consider a general compact simple group G and a corresponding group element g parametrized 
by Xμ, μ = 1, 2, . . . , dim(G). The right and left invariant Maurer–Cartan forms, as well as the 
orthogonal matrix relating them, are defined as

J a+ = −i Tr
(
ta∂+gg−1) = Ra

μ∂+Xμ, J a− = −i Tr
(
tag−1∂−g

) = La
μ∂−Xμ,

Ra = DabL
b, Dab = Tr

(
tagtbg

−1), (2.1)

which obey

dLa = 1

2
fabcL

b ∧ Lc, dRa = −1

2
fabcR

b ∧ Rc. (2.2)

The matrices ta obey the commutation relations [ta, tb] = ifabctc and are normalized as 
Tr(tatb) = δab . Then the form of the general σ -model action is given by [8]

Sk,E(g) = SWZW,k(g) + k2

π

∫
J a+

(
E − k

(
DT − I

))−1
ab

J b−, (2.3)

where E is a real matrix parameterizing the coupling constants of the theory. The first term is the 
WZW action for a group G which can be explicitly written as1

SWZW,k(g) = k

2π

∫
La

μLa
ν∂+Xμ∂−Xν + k

12π

∫
B

fabcL
a ∧ Lb ∧ Lc. (2.4)

The J a± are the chirally and antichirally conserved currents of the WZW model.

1 The relative coefficient of the quadratic and cubic terms is completely dictated by the Polyakov–Wiegmann (PW) 
formula [14]

SWZW,k(g1g2) = SWZW,k(g1) + SWZW,k(g2) − k

π

∫
Tr

(
g−1

1 ∂−g1∂+g2g−1
2

)
,

which is also very practical in evaluating the action for specific parameterizations of g ∈ G.
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It is better for our purposes to reparametrize the couplings by introducing the matrix

λ = k(kI+ E)−1. (2.5)

Then the action (2.3) becomes

Sk,λ(g) = SWZW,k(g) + k

π

∫
J a+

(
λ−1 − DT

)−1
ab

J b−. (2.6)

If the matrix λ is proportional to the identity, then the corresponding σ -model is of special interest 
since it is actually integrable. This was proven in [8] by showing that the corresponding metric 
and antisymmetric tensor fields satisfy the algebraic constraints for integrability of [9] and [15]. 
In addition, in [15] an S-matrix for the SU(2) case was put forward and checked successfully 
against perturbation theory. A form of the action similar to (2.6) has appeared before in [16], 
along with related to this action discussion.

3. Symmetries and limits of the RG flow

In this section we study various symmetries, properties and limits of (2.6) as well as the 
emerging constraints on the RG flow.

The action (2.6) has a remarkable symmetry under the inversion of the matrix λ, of the group 
element g and a simultaneous flip of the sign of the overall scaling k. This is encoded mathemat-
ically in the relation

S−k,λ−1

(
g−1) = Sk,λ(g). (3.1)

We note that both terms in (2.6) with the precise coefficients are necessary for the proof, which 
is otherwise quite straightforward.

Consider the limit where all the entries of the coupling matrix λ are small and go to zero 
at the same rate, i.e. the ratio of any two entries is finite. In this limit the action (2.6) can be 
approximated by

Sk,λ(g) = SWZW,k(g) + k

π

∫
λabJ

a+J b− +O
(
λ2), (3.2)

corresponding to the WZW theory perturbed by the current bilinear J a+J b− with arbitrary coupling 
matrix λab. The first two terms define what we will call the anisotropic non-Abelian Thirring 
model in analogy with the non-Abelian Thirring model [5,4]. It becomes already apparent in this 
limit that the left–right current algebra symmetry of the WZW model breaks down completely 
for a generic matrix λ implying that the σ -model (2.6) has no isometries whatsoever. However, 
if we allow for a simultaneous transformation of the coupling matrix λ then the σ -model action 
(2.6) (and of course its limit (3.2)) is invariant under

g → g−1
0 gg0, λ → DT

0 λD0, (3.3)

where g0 ∈ G is a constant group element and D0 is defined in (2.1) using g0. If λ is invariant 
under the above transformation for all constant group elements g0 then, from Schur’s lemma, λ is 
necessarily proportional to the unit matrix, i.e. λab = λδab . In that case the action (2.6) becomes

Sk,λ(g) = SWZW,k(g) + kλ

π

∫
J a+

(
I− λDT

)−1
ab

J b− (3.4)

and has a true isometry associated with the transformation g → g−1
0 gg0.

We believe that this action can be uniquely determined under certain assumptions and by sym-
metry considerations. The argument goes as follows: assuming that such an action contains the 
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WZW action term and that any additional term preserves two-dimensional Lorentz invariance 
and contains two world-sheet derivatives, implies a term of the form F(D)abJ

a+J b−. The matrix 
F(D) has to transform covariantly under the global symmetry g → g−1

0 gg0 (perhaps accom-
panied by a transformation of the coupling constants that F(D) contains). If we subsequently 
demand that F(D) contains a single coupling parameter λ and invariance under the symmetry 
(3.1) then we find no other possibility but the action (3.4). Generalizing to a general coupling 
matrix λ leads rather straightforwardly to the more general action (3.4).

The symmetry (3.1) is very powerful and restricts the form of the RG flow equations for the 
λab’s. The corresponding β-function at one-loop in the 1/k expansion is clearly of the form

βλ = dλ

dt
= −f (λ)

k
, (3.5)

where t = lnμ, with μ being the energy scale and where f (λ) is a matrix to be determined as 
we will explicitly do so in Section 4. Here we note that due to the symmetry (3.1) we have the 
relation

λf
(
λ−1)λ = f (λ), (3.6)

which severely constrains the matrix f (λ).
In fact when λab = λδab this symmetry together with CFT arguments allowed for the al-

most complete determination of βλ. In this case, the β-function computed in [10] coincides with 
the all-loop (and leading order in 1/k) result for the non-Abelian Thirring model found in [6]. 
The map λ → 1/λ and k → −k (for large values of k) was also noted in [11] without however 
an explicit realization for the action such as the one in (3.4). It was rather deduced though path 
integral and symmetry considerations.

In addition, invariance under the symmetry (3.3) implies that

f
(
DT

0 λD0
) = DT

0 f (λ)D0. (3.7)

Finally, we note that for k � 1 we may show that the action (2.6) becomes the non-Abelian 
T-dual of the σ -model action

SPCM = 1

π

∫
EabL

a+Lb− = 1

π

∫
EabL

a
μLb

ν∂+Xμ∂−Xν, (3.8)

which is the PCM action with general coupling matrix Eab, a fact proven in [8]. We reproduce 
the proof here for the reader’s convenient. Expanding the matrix elements of λ in (2.5) near the 
identity we have that

λab = δab − 1

k
Eab +O

(
1

k2

)
. (3.9)

To get a finite result in the limit k → ∞ in the action (2.6), one is forced to also expand the group 
element near the identity as

g = I+ i
v

k
+O

(
1

k2

)
, v = vat

a. (3.10)

This effectively introduces a non-compact set of variables va in place of the original ones Xμ. 
In that limit we have that

J a± = ∂±v +O
(

1
2

)
, Dab = δab + fab +O

(
1
2

)
, fab = fabcvc. (3.11)
k k k k
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Then in the limit k → ∞ the action (2.6) becomes

Snon-Abel(v) = 1

π

∫
∂+va(E + f )−1

ab ∂−vb, (3.12)

which is indeed the non-Abelian T-dual of the PCM action (3.8) [17] (for the case with Eab = δab

this was shown before for SU(2) in [18] and for a general group in [19]).

4. The generalized spin connection and Ricci tensor

In this section we compute the generalized spin connection that includes the torsion and the 
associated Ricci tensor for the background corresponding to the σ -model (2.6). These are neces-
sary in order to determine the β-function equations for the couplings λab. Our computation will 
parallel, in a sense, the one in [10] for the case with λab = λδab .

From the metric corresponding to the action (2.6) we extract the frame fields

ds2 =
{

gabe
aeb, gab = (I− λT λ)ab, ea = (D − λ)−1

ab Rb,

g̃abẽ
aẽb, g̃ab = (I− λλT )ab, ẽa = (DT − λT )−1

ab Lb.
(4.1)

Hence, depending on the frame we will use, we will bear in mind the use of the metric in rais-
ing and lowering indices. This will be done with the metrics gab and g̃ab and their inverses which 
will be denoted by gab = g−1

ab and g̃ab = g̃−1
ab . It turns out that the corresponding background is 

non-singular if and only if these metrics are positive-definite. We also note that the frame fields 
transform under (3.1) as (e, ẽ) �→ (λe, λT ẽ) and that the metric picks up an overall minus sign 
since we have not included k

2π
in its definition.

The matrix relating the above frames reads

ẽa = Λabe
b, Λ = (

I− DλT
)−1

(D − λ) = (
DT − λT

)−1(
I− DT λ

)
. (4.2)

It transforms under (3.1) as Λ �→ λT Λλ−1 and satisfies the condition2

ΛT
(
I− λλT

)
Λ = I− λT λ. (4.3)

We note that Λ is an orthogonal matrix only when λ is proportional to the identity.
From the action (2.6) we also read off the antisymmetric two-form

B = k

π

(
B0 + RT λ ∧ e

) = k

π

(
B0 − LT λT ∧ ẽ

)
, (4.4)

where B0 is the antisymmetric two-tensor corresponding to the WZW model action. The three-
form field strength associated to B0 is

H0 = −1

6
fabcL

a ∧ Lb ∧ Lc = −1

6
fabcR

a ∧ Rb ∧ Rc. (4.5)

In the following we will use the ẽa frame and we will notationally supply the geometric 
quantities associated with it with a tilde. The spin-connection ω̃ab is equal to

ω̃ab = ω̃ab|cẽc, ω̃ab = −ω̃ba, ω̃ab|c = 1

2
(C̃abc − C̃cab + C̃bca),

dẽa = 1

2
C̃a

bcẽ
b ∧ ẽc, C̃a

bc := −C̃a
cb, C̃abc := g̃ad C̃d

bc. (4.6)

2 To prove this we found useful to make use of the identity

I− λλT = (
I− λDT

)(
I− DλT

) + (D − λ)λT + λ
(
DT − λT

)
.
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A simple computation shows that

dẽa = −1

2

(
DT − λT

)−1
ab

fbcd

(
DT − λT

)
ce

(
DT + λT

)
df

ẽe ∧ ẽf . (4.7)

Using fabcDiaDjbDkc = fijk and the first of the identities(
DT − λT

)−1 = (
1 − λλT

)−1(
Λ−T + λ

)
,(

DT − λT
)−1 = (Λ + λ)

(
I− λT λ

)−1
, (4.8)

with notation Λ−T = (Λ−1)T , we may further write that

dẽa = −1

2
fabcẽ

b ∧ ẽc − 1

2

((
1 − λλT

)−1(
Λ−T + λ

))
ad

× (λedfebc − λbeλcf fdef )ẽb ∧ ẽc. (4.9)

After some further manipulations we arrive at

dẽa = −1

2
g̃am

(
fmbc − λmeλbnλc�fen� + Λ−T

mf (λef febc − λbnλc�ff n�)
)
ẽb ∧ ẽc, (4.10)

from which we compute ω̃ab|c.
Next we turn to the computation of the field strength of the two-form (4.4). Using the identities(

I− λλT
)
(Λ + λ)

(
I− λT λ

)−1 = Λ−T + λ,

(D − λ)λT Λ(D − λ)−1 = Λ−T λT , (4.11)

this is found to be

H = −1

6

[
fabc − λadλbeλcf fdef + 3Λ−T

cf (λmf fabm − λadλbefdef )
]
ẽa ∧ ẽb ∧ ẽc. (4.12)

Then the generalized spin connection ω̃−
ab that includes the torsion

ω̃−
ab = ω̃−

ab|cẽ
c, ω̃−

ab|c = ω̃ab|c − 1

2
H̃abc, (4.13)

is found to be

ω̃−
ab|c = Λ−T

cd (λmdfmab − λamλbnfdmn). (4.14)

To proceed with the computation of the Ricci tensor we require the exterior derivative of the 
matrix Λ−T . We found that

dΛ−T
ab = (

I− λT λ
)−1
mb

(
(λdmfadf − λacλf efcme) − Λdm(fdaf − λdnλacλf efnce)

+ Λ−T
ac (λf efmce − λdmλncfdnf ) − Λ−T

ac Λdm(λncfdnf − λdnλf efnce)
)
ẽf .

(4.15)

Finally we compute the generalized Ricci tensor by employing the general formula for an anti-
symmetric spin-connection

R±
ab = ∂cω

±c
a|b − ω±

ac|dω∓
b

d|c − ∇±
b ω±c

a|c, ω±
ab|c − ω∓

ac|b = Cabc, (4.16)

where ∂a = ea
μ∂μ. We have used this particular form since, as will see, it will make manifest the 

appearance of diffeomorphism terms in the RG flow of the coupling matrix elements λab. Using 
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(4.16) and (4.10), (4.14) and (4.15) after some manipulations we find that the generalized Ricci 
tensor is

R̃−
ab = −(λ�ifa�p − λaqλp�fqi�)(λcefrme − λnrλdmfndc)g

img̃pcΛ−1
rb − ∇̃bω̃

−c
a|c. (4.17)

Note that in computing the relevant part of the generalized Ricci tensor for the RG flow it was 
not necessary to know the precise form of R̃−

ab, let alone to know first the exact expression of 
the generalized Riemann tensor. These would have required a much more involved computation. 
The reader will appreciate this remark if he or she gives a glance at Eqs. (A.11) and (A.12) of 
[10] for the simplest case with λab = λδab.

4.1. Single coupling

We specialize to the case with λab = λδab. Then the previous expressions simplify drastically 
and we find that

dẽa = −1

2
(c1 + c2Λ)abfbcd ẽc ∧ ẽd ,

H = −(
1 − λ2)(c1

6
fabcẽ

a ∧ ẽb ∧ ẽc + c2

3
fabdΛcd ẽa ∧ ẽb ∧ ẽc

)
,

ω̃−
ab|c = (

1 − λ2)c2Λcdfdab,

dΛab = c1fadcΛdbẽ
c + c2(fabc − Λaefebc + ΛaeΛdbfedc)ẽ

c,

R̃−
ab = −cGc2

2Λ
−1
ab − ∇̃−

b ω−c
ac, ω̃−c

ac = −c2fabcΛbc, (4.18)

where we note that in this case Λ−1 = ΛT and that

c1 = 1 + λ + λ2

1 + λ
, c2 = λ

1 + λ
. (4.19)

The above equal the corresponding expressions in [8] and [10] (up to an appropriate rescaling of 
the vielbein and a rewriting of dΛab).

5. Computation of the RG flow equations

In this section we derive the RG flow equations for (2.6) and then study various properties 
and limits.

The one-loop β-function equations for a general σ -model are given by [20–22]

dGμν

dt
+ dBμν

dt
= R−

μν + ∇−
ν ξμ, (5.1)

where the second term corresponds to diffeomorphisms along ξμ. Passing to the tangent space 
indices with the frame ẽa = ẽa

μdXμ and using the definitions

dGμν

dt
= β̃

g
abẽ

a
μẽb

ν ,
dBμν

dt
= β̃B

abẽ
a
μẽb

ν , (5.2)

we have that

β̃
g
ab + β̃B

ab = R̃−
ab + ∇̃−

b ξ̃a. (5.3)

Associate to the matrix g̃ab we also define a two-form b̃ab from Bμν = b̃abẽ
a
μẽb

ν .
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We next compute the left hand side of (5.3). In this computation we reinsert the parameter k
into the definitions of Gμν and Bμν . Since the WZW model term in (2.6) does not depend on the 
matrix λ we immediately obtain that

dGμν

dt
+ dBμν

dt
= 2k

d

dt

(
Ra

μ

(
λ−1 − DT

)−1
ab

Lb
ν

)
= 2kRa

μ

[(
1 − λDT

)−1 dλ

dt

(
1 − λDT

)−1
]

ab

Lb
ν,

= 2kea
μ

(
ΛT dλ

dt

)
ab

eb
ν = 2kẽa

μ

(
dλ

dt
Λ−1

)
ab

ẽb
ν , (5.4)

where in the last steps we used (4.1) and (4.2). For completeness we note that if we had not 
assumed that k is fixed, we would have obtained the expression

β̃G
ab + β̃B

ab = 2k

(
dλ

dt
Λ−1

)
ab

+ 1

k

dk

dt
(g̃ + b̃)ab. (5.5)

Using the latter, (4.17) and (5.3) we conclude that

dλab

dt
= − 1

2k
(λ�ifa�p − λaqλp�fqi�)(λcefbme − λnbλdmfndc)g

img̃pc, (5.6)

where ξ̃a = ω̃−c
a|c and that k does not flow. Thus the topological nature of its quantization, due to 

the WZW limit (achieved when λ → 0) [3], persists at one-loop.
We can write the above system in terms of matrices Na(λ) with elements(

Na(λ)
)
p

m = (λacλpdfcdi − fapcλci)g
im =: N (λ)ap

m. (5.7)

Then3

dλab

dt
= 1

2k
Tr

(
Na(λ)Nb

(
λT

)) = 1

2k
N (λ)ap

mN
(
λT

)
bm

p . (5.8)

Comparing with (3.5) we find that the matrix f (λ) has elements

fab(λ) = −1

2
Tr

(
Na(λ)Nb

(
λT

))
. (5.9)

5.1. Properties of the RG flow equations

There are several properties of the RG flow equations (5.8) which we list below:

1. The system (5.8) satisfies the condition (3.6) due to the transformation

N (λ)ap
m → λ−1

ac λ−1
pd λmnN (λ)cd

n. (5.10)

2. In addition it respects the symmetry (3.3) due to the transformation

N (λ)ap
m → (D0)ca(D0)qp(D0)nmN (λ)cq

n. (5.11)

3. It holds its form under λ → λT .

3 In this rewriting of β-equations, it becomes apparent that N (λ)ab
c play the rôle of deformed, by the matrix λ, 

structure constants.
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4. A symmetric coupling constant matrix λ remains symmetric under the RG flow. This is 
readily seen from (5.8) if we use that λT = λ. Hence it is consistent to restrict to symmetric 
couplings as in [7] which we examine closer in Sections 6 and 7 below.

5. A purely antisymmetric coupling matrix is not consistent with the RG flow equations. Hence, 
if at some energy scale the matrix λab is antisymmetric this will not persist along the flow.

6. In the special case of λab = λδab or λab = λ(D0)ab (for constant group elements), we find 
that

dλ

dt
= − cGλ2

2k(1 + λ)2
, (5.12)

where cG is the quadratic Casimir in the adjoint representation, defined from the relation 
facdfbcd = cGδab .

7. The system (5.8) is in agreement with general CFT considerations

dλab

dt
= − 1

2k
facefbdf λcdλef +O

(
λ3), (5.13)

where a CFT is perturbed with operators of mass dimension equal to two as in our case.
8. Finally, we note that (5.8) encodes the RG flow equations for the non-Abelian T-dual of the 

PCM given in (3.12). We provide some details below.

5.2. RG flows in the general PCM and its non-Abelian T-dual

In the limit (3.9) the system (5.8) becomes

dEab

dt
= 1

8
GpcGmi(Eplfail + Eaqfqip − Elifalp)(Enbfnmc + Edmfbdc − Ecefbme),

(5.14)

where Gab = 1
2 (Eab + Eba) and Gab = G−1

ab . These are the RG flow equations corresponding to 
the limit action (3.12). Since this action is equivalent to the PCM action by a classical canonical 
transformation4 we expect that the physical information contained in the β-function equations 
will be preserved. That implies that the β-function equations for the general PCM should be given 
by (5.14) as well. This is already proven due to the equivalence of RG flow system of equations 
in Poisson–Lie T-duality related σ -models in [23]. In this context non-Abelian T-duality is a par-
ticular case. Nevertheless, we present for completeness an independent proof that (5.14) also 
follow from the β-function equations of the PCM models action (3.8). For this action we can 
derive the metric and the two-form

ds2 = GabL
aLb, B = 1

2
BabL

a ∧ Lb, (5.15)

with G = 1
2 (E + ET ) and B = 1

2 (E − ET ) and where we have omitted a factor of 1
π

. It can be 
easily shown that the generalized spin-connections are

ω+
ab|c = 1

2
(Edafdbc − Ecdfdab + Edbfdca),

ω−
ab|c = 1

2
(Eadfdbc − Edcfdab + Ebdfdca). (5.16)

4 This was first shown for the PCM with Eab = δab : For the case of SU(2) in [18] and for a general group in [19]. 
For general coupling matrix Eab the canonical equivalence was established in [17].
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Using (4.16) and the latter, we can easily find that

R−
ab = 1

4
GpcGmi(Eplfail + Eaqfqip − Elifalp)

× (Enbfnmc + Edmfbdc − Ecefbme), (5.17)

with no appearance of diffeomorphisms. Plugging the latter into the RG flow equations

1

π

(
dGμν

dt
+ dBμν

dt

)
= 1

2π
R−

μν �⇒ dEab

dt
= 1

2
R−

ab, (5.18)

we readily find (5.14). Thus the RG flow equations of the general PCM are the same with its 
non-Abelian T-dual as stated above.

6. Applications

In this section we focus on cases of particular interest which involve a truncation of the form 
of the matrix λ. This has to be done with care since setting arbitrarily entries of the matrix λ to 
zero will not be preserved by the flow (5.8).

6.1. The SU(2) case: Lagrange and Darboux–Halphen systems

Consider the simplest case with G = SU(2) and

λ = diag(λ1, λ2, λ3). (6.1)

Using for representation matrices ta = σa√
2

, where σa , a = 1, 2, 3 are the Pauli matrices leads, 

due to our normalization conventions, for the structure constants to fabc = √
2εabc . Then from 

(5.8) we find the system of differential equations

dλ1

dt
= −2

k

(λ2 − λ1λ3)(λ3 − λ1λ2)

(1 − λ2
2)(1 − λ2

3)
(6.2)

and cyclic in 1, 2, 3. It turns out that dλij

dt
= 0, ∀i �= j , so that the restriction (6.1) to a diagonal 

matrix is a consistent one. Note the symmetry of the system under the transformation

k → −k, λi → 1

λi

, i = 1,2,3, (6.3)

which follows from (3.1).
For λi � 1 this system behaves as

dλ1

dt
= −2

k
λ2λ3 +O

(
λ3) (6.4)

and cyclic in 1, 2, 3, which is the Lagrange system.
In the opposite limit, when λa → 1, let

λa = 1 − xa

k
+O

(
1

k2

)
, a = 1,2,3. (6.5)

Then in the limit k → ∞ we obtain
dx1

dt
= 1 + 1

2x2x3

(
x2

1 − x2
2 − x2

3

)
(6.6)

and cyclic in 1, 2, 3, which is the Darboux–Halphen system. This system also follows from (5.14)
with Eab = diag(x1, x2, x3). It first appeared in RG flows for the PCM for SU(2) with the above 



594 K. Sfetsos, K. Siampos / Nuclear Physics B 885 (2014) 583–599
diagonal matrix Eab in [24]. The Lagrange and the Darboux–Halphen systems arose before in 
general relativity by imposing the self-dual condition on the Bianchi IX with SU(2) isometry 
four-dimensional Euclidean metrics [25].

In conclusion the system (6.2) interpolates between the Lagrange and the Darboux–Halphen 
systems. These have a Lax pair formulation, i.e. [26]. It is very interesting to investigate if this is 
the case for the interpolating system (6.2) as well.

6.2. The two coupling case using a symmetric coset

Let’s split the group index into a part corresponding to a subgroup H of G and the rest 
belongings to the coset G/H . We will keep denoting by Latin letters the subgroup indices and 
by Greek letters the coset indices. Consider the case in which the matrix λ has elements

λab = λH δab, λαβ = λG/H δαβ. (6.7)

It turns out that the above restriction is consistent with the system (5.8) only for symmetric coset 
spaces G/H , for which the structure constants fαβγ = 0. Using that for symmetric spaces

fabcfabd = cH δcd, fαβcfαβd = (cG − cH )δcd , fcβγ fcβδ = cG

2
δγ δ, (6.8)

we find the system of equations

dλH

dt
= −cGλ2

G/H (1 − λ2
H )2 + cH (λ2

H − λ2
G/H )(1 − λ2

H λ2
G/H )

2k(1 + λH )2(1 − λ2
G/H )2

,

dλG/H

dt
= − cGλG/H (λH − λ2

G/H )

2k(1 + λH )(1 − λ2
G/H )

. (6.9)

In the limit of λG/H = 0 they consistently truncate to the RG flow equation (5.12) with (λ, cG)

replaced by (λH , cH ).5 For small couplings these read

dλH

dt
= − 1

2k

(
cH λ2

H + (cG − cH )λ2
G/H

) +O
(
λ3),

dλG/H

dt
= −cG

2k
λH λG/H +O

(
λ3), (6.10)

which is in agreement with general CFT expectations, i.e. with (5.13). Note that for groups 
for which their rank can be taken arbitrarily large the exact expression for the running of cou-
plings can be simply obtained from the perturbative result. This can be seen by noting that 
when cG → ∞ and cH → ∞ so that their ratio remains finite we may define xH = cGλH and 

5 In fact this is the case for general cosets and for coupling matrices of the block diagonal form λ = λH ⊕ OG/H , 
where λH is a general dimH square matrix. To prove this we observe that the non-vanishing components of the matrices 
Nm are

(Na)b
c = (λadλbefdef − fabeλef )gf c, (Nα)β

c = −fαβdλdeg
ec.

Then clearly the RG flow equations (5.8) become that for a subgroup H ∈ G with λ replaced by λH . Consistent to these 
is the fact that the action (2.6) retains its form but with λ replaced by λH and with the indices a, b taking values in H . 
The interpretation of this new more general than (2.6) action is of the all-loop action of the anisotropic non-Abelian 
Thirring model for a group G where the perturbation is by a general current bilinears in H ∈ G.
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xG/H = cGλG/H . Then the running of the x’s coincides with that we would have obtained from 
the leading terms in (6.10).

6.2.1. Flows from coset CFTs
Recall that in [8] a second class of σ -models was constructed interpolating between coset 

CFTs realized by gauged WZW models and the non-Abelian T-dual of coset PCM models. This 
construction is based in a limiting procedure in which the part of the coupling matrix E (taken 
to have a block diagonal structure in the subgroup H and the coset G/H spaces) in (2.3) with 
subgroup indices is taken to be zero. Then the action (2.6) depends actually not on all of the 
dim(G) variables Xμ but on dim(G/H) variables. For more details the interested reader is refer-
eed to [8]. Returning to our case note that in this decoupling limit of the subgroup the parameter 
λH = 1. Then we find from (6.9) that

dλG/H

dt
= −cGλG/H

4k
, (6.11)

which again is in agreement with general CFT expectations. It is interesting that the all-loop 
result is identical to the one-loop in λG/H perturbative CFT result, at leading-order in the 1/k

expansion. The result in (6.11) is essentially the same as that obtained in [10] for the simplest 
case with G = SU(2) and H = U(1). In addition the RG flow will be the same no matter what 
the subgroup H is, as long as the coset G/H is a symmetric space. We note that λH = 1 is a 
fixed point, only if the subgroup is Abelian, see also [23].6

7. Comparison with literature

The purpose of this section is to compare results following from our general formula for the 
β-functions (5.8) with existing ones in the literature.

The authors in [7,13], considered the anisotropic Thirring model action given by the first two 
terms in (3.2) with symmetric coupling matrix λ and computed the corresponding β-functions 
using current algebra CFT techniques. The general formula they obtained is not apparently the 
same as (5.8) and in fact it looks more complicated. Given our completely different approach 
it is important to make a comparison. First we briefly review the results of [7]. One considers 
a perturbation of the form

Spert =
∫ ∑

A

hAOA, OA =
dim G∑
a,b=1

dA
abJ

a+J b−, (7.1)

where dA
ab are pure numbers and define the perturbation. In this work the dA

ab’s were taken to be 
symmetric in the lower indices a, b = 1, 2, . . . , dim(G). The upper index A takes as many values 
as the number of independent coupling constants hA (denoted by gA in [7]). Hence, comparing 
with our notation we have the identification λab = hAdA

ab . Due to that dA
ab = dA

ba the comparison 
with our results can only be made for symmetric matrices λ.

6 It turns out that λH = 1 corresponds to a fixed point of the group G since λG/H = 1 is also enforced. To prove this, 
we use (6.9) for λH → 1− and we find for Abelian subgroups that

dλG/H

dλH
�

(1 − λ2
G/H

)2

2λG/H (1 − λH )2
�⇒ λG/H � 1 − 1 − λH

2
+O(1 − λH )2.

Hence, the σ -model flows towards the IR to the non-Abelian T-dual of the PCM for the group G.
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One assumes that the operators OA form a closed set. Then, from the double pole in the 
operator product expansion

OA(z, z̄)OB(0,0) = 1

|z|2 C
AB

COC(0,0) + · · · , (7.2)

one extracts the structure constants CAB
C . The following three conditions ensure closeness of 

this algebra and renormalizability at all orders

dA
abd

B
cdfacefbdf = CAB

CdC
ef , dA

acd
B
bc =DAB

CdC
ab,

dA
cdfaecfebd =RA

BdB
ab. (7.3)

These relations define the set of coefficients DAB
C and RA

B . Note also the consistency relations

CAB
C = CBA

C, DAB
C =DBA

C, DAC
DDDB

E =DAB
DDDC

E. (7.4)

Finally one defines the vector and the matrix

CA(x, y) = CBC
AxByC, DA

B =DAC
BhC, (7.5)

for any two vectors x and y, as well as

h̃A = hB

((
I−D2)−1)B

A. (7.6)

Then the β-function equations are given by [7,13]

dhA

dt
= 1

k

[
1

2
CB(h̃, h̃)

(
I+D2)B

A − CB(h̃D, h̃D)DB
A + h̃B(DRD)BA

]
, (7.7)

where (h̃D)A = h̃BDB
A. Finally we note that it is consistent to truncate to a subgroup H ∈ G, 

by considering dA
ab’s with lower indices only in the Lie algebra of H . This is congruous with the 

discussion in footnote 5.
In the following we concentrate on two non-trivial examples, namely the SU(2) and the sym-

metric coset G/H cases, where we will use (7.7) to compute explicitly the RG flow equations 
for the couplings. We will find perfect agreement with (6.2) and (6.9) we have found using our 
general formula (5.8). Based on that we believe that the system (7.7) becomes identical to that in 
(5.8) for the case of a symmetric, but otherwise general, coupling matrix λ. The proof should be 
a nice mathematical exercise.

7.1. The SU(2) case

For the case of SU(2) consider turning on just three couplings, hA, A = 1, 2, 3 a case that has 
been considered in [12]. Referring to (7.1) and choosing as the non-vanishing dA

ab those with

d1
11 = d2

22 = d3
33 = 1, (7.8)

implies, by comparing with (6.1), that λ1 = h1, etc. Then the non-vanishing CAB
C ’s, DAB

C ’s 
and RA

B ’s are

C12
3 = C21

3 = −2, D11
1 = 1, R1

2 =R2
1 = 2,

C1(x, y) = −2(x2y3 + x3y2), D1
1 = λ1 (7.9)

and cyclic permutations in 1, 2, 3. Then plugging these into (7.7) we find (6.2), a result consistent 
with that in [12] (after relabeling and rescaling).
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7.2. The two coupling case using a symmetric coset

Let us concentrate on the case of symmetric coset spaces for which fαβγ = 0. We turn on 
two couplings, one for the subgroup hH and one for the coset hG/H . As before let Latin indices 
denote the subgroup and Greek ones the coset. Hence, we have that

d1
ab = δab, d2

αβ = δαβ, (7.10)

where 1 and 2 refer to the subgroup and coset, respectively. Then the non-vanishing CAB
C ’s and 

DAB
C ’s are

C11
1 = cH , C12

2 = C21
2 = cG

2
, C22

1 = cG − cH ,

D11
1 =D22

2 = 1, (7.11)

where cG, cH are the quadratic Casimir in the adjoint representation of G and H , respectively. 
Also

R1
1 = −cH , R1

2 =R2
2 = −cG

2
, R2

1 = −cG + cH . (7.12)

In deriving the above we used (6.8). Plugging these into (7.7) we find precisely (6.9) with the 
identification λH = hH and λG/H = hG/H .

Non-diagonal case Finally, the reader might also require a further example, involving a non-
diagonal (symmetric) coupling matrix, so to strengthen the declared equivalence between (5.8)
and (7.7). We did so for a consistent truncation in the SU(2) case, i.e. λ12 = λ21 and λ33 and the 
results followed from these two expressions are in perfect agreement.

8. Conclusion and outlook

The main result of the present paper is the proof of the one-loop renormalizability and the 
computation of the RG flow equations for the coupling matrix λab of the action (2.6). This 
computation was achieved using the standard expression for the one-loop renormalizability of 
two-dimensional σ -models of [20–22] and the explicit expression for the β-function equations is 
given in (5.8). We used this result to further claim that the action (2.6) is the effective action en-
coding all loop effects in the coupling matrix λab of the fully anisotropic non-Abelian Thirring 
model action defined by the first two terms in (3.2). The basic support for the above claimed 
equivalence is the fact that in some highly non-trivial cases our RG flow equations are the same 
as the ones we have found using a general formula for the running of couplings of the anisotropic 
symmetric non-Abelian Thirring model action given by (7.7). This formula was obtained in [7]
using current-algebra techniques and is an all order in the couplings result (but leading in 1/k). 
Even though we have not proven the equivalence of (5.8) and (7.7) in general we believe this to 
be the case for the case (of course when λab is symmetric). Our result (5.8) has the advantage 
of being more general since it includes cases of non-symmetric λab and in addition it has a re-
markably much simpler form. It will be interesting to investigate the RG flow equations (5.8) for 
specific low dimensional groups.

We have found a particularly interesting result for the anisotropic SU(2) case with diagonal 
coupling matrix λab. The RG flow equations interpolate between the Lagrange and Darboux–
Halphen integrable systems of differential equations. It will be interesting if the integrability 
property of the system is maintained in general beyond the these limit cases.
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Finally we note the existence of the all-loop RG flow equations for the anisotropic bosonized 
non-Abelian Thirring model with different left and right levels of the current algebra [27]. In par-
ticular, using Eq. (4.6) of this work we have computed the β-function for left and right currents 
with different levels kL and kR . The result is

dλ1

dt
= − (kL + kR)λ1(λ

2
2 + λ2

3) − 2(1 + kLkRλ2
1)λ2λ3

(1 − kLkRλ2
2)(1 − kLkRλ2

3)

and cyclic in 1, 2 and 3. This is the analogue of (6.2) to which reduces for the special case 
with kL = kR = k and λi �→ λi/k. We have also computed the analogue of (6.9) for the case of 
symmetric cosets G/H with different levels for the left and right current algebras but will not 
present here the result. Such models are not captured by our all-loop action Eq. (2.6), since the 
WZW action provides a left and a right current algebra with equal levels. It is will be interesting 
to realize the above RG flow systems of equations with specific σ -models.

As mentioned, for the general σ -model action (2.6) only the case with λab = λδab corre-
sponding to (3.4) has been proven to be integrable. It is likely that other choices for λab may 
correspond to integrable models as well. A necessary condition for a model to be integrable is 
that the non-Abelian action (3.12) to which it tends in the limit (3.9) is integrable. Since non-
Abelian T-duality preserves integrability (see Appendix D of [8]) this is equivalent to looking 
at cases with proven integrability in PCM which have been worked out in the literature. Such 
a case is the anisotropic with diagonal λab coupling matrix SU(2) PCM for which integrability 
was shown in [28–30]. It will be highly non-trivial if this model is integrable.
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