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The Geiger–Nuttall (GN) law relates the partial α-decay half-life with the energy of the escaping α
particle and contains for every isotopic chain two experimentally determined coefficients. The expression 
is supported by several phenomenological approaches, however its coefficients lack a fully microscopic 
basis. In this paper we will show that: (1) the empirical coefficients that appear in the GN law have 
a deep physical meaning, and (2) the GN law is successful within the restricted experimental data sets 
available so far, but is not valid in general. We will show that, when the dependence of logarithm values 
of the α formation probability on the neutron number is not linear or constant, the GN law is broken. 
For the α decay of neutron-deficient nucleus 186Po, the difference between the experimental half-life and 
that predicted by the GN law is as large as one order of magnitude.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
One landmark in modern physics, shaping the developments 
leading to Quantum Mechanics, was the formulation of the em-
pirical Geiger–Nuttall (GN) law in 1911 [1]. According to the GN 
law as formulated in Ref. [1], the α decay partial half-life T1/2 is 
given by

log10 T1/2 = A(Z)Q −1/2
α + B(Z), (1)

where Q α is the total energy of the α decay process (α-decay 
Q value) and A(Z) and B(Z) are the coefficients which are de-
termined by fitting experimental data for each isotopic chain. The 
GN law has been verified in long isotopic chains and no strong 
deviations have been observed: It is extremely successful and is 
considered to be generally valid. Recently the amount of α decay 
data in heavy and superheavy nuclei has greatly increased [2–7]
and the GN law is still fulfilled, reproducing most experimental 
data within a factor 2–3, as seen in Fig. 1(a) for the Yb–Ra region 
(apart from the Po chain, as will be discussed in this paper). The 
coefficients A and B give rise to different GN lines for each isotope 
series (Fig. 1(a)). The coefficients change for each isotopic chain 
which crosses the magic numbers, e.g. N = 126 [8].

The greatest challenge was thus to understand how the α par-
ticle could leave the mother nucleus without any external agent 
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disturbing it. The first successful theoretical explanation was given 
by Gamow [9] and independently by Condon and Gurney [10], 
who explained α decay as the penetration (tunneling) through the 
Coulomb barrier, leading to the Q −1/2

α dependence of Eq. (1). This 
was a great revolution in physics and confirmed the probabilistic 
interpretation of Quantum Mechanics. Besides its pioneering role 
in the development of quantum theory, the α decay also broadens 
our understanding of the quantum tunneling process of other com-
posite objects. This is a general physical process that can be found 
in other fields including condensed matter, molecular physics and 
astrophysics [11–13].

The remaining challenge is to identify the microscopic basis of 
the GN coefficients A and B . Thomas provided the first attempt 
of a microscopic theory [14]. His expression for the half life con-
sidered the probability that the four nucleons, which eventually 
constitute the α particle, get clustered at a certain distance on the 
nuclear surface. In this paper we will apply Thomas’s expression 
to probe the general validity of the GN law, explain the Z depen-
dence of the constants and their microscopic origin.

Guided by recent experimental findings, we divide the α-decay-
ing nuclei into four regions (see Fig. 2):

(I) N ≤ 126, Z ≤ 82;
(II) N ≤ 126, Z > 82;

(III) N > 126, Z > 82;
(IV) N > 126, Z ≤ 82.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. (a) The logarithms of experimental partial α-decay half-lives (in s) [2,3,7,6]
for the even–even Yb–Ra nuclei with neutron number N < 126 as a function of 
Q −1/2

α (in MeV−1/2). The straight lines show the description of the GN law with A 
and B values fitted for each isotopic chain. (b) The deviation of the experimental 
α-decay half-lives from those predicted by the GN law for the light Po isotopes.

Fig. 2. (Color online.) (a) The coefficients A(Z) and B(Z) for even–even nuclei in 
regions I (Z ≤ 82) and II (Z > 82) with N ≤ 126. The red dashed lines are fitted 
only for the data from region I with Z ≤ 82 giving A(Z) = 2.41Z − 66.7 and B(Z) =
−0.54Z − 6.61. (b) Same as (a) but for nuclei in region III (Z > 82), i.e., polonium 
to plutonium isotopes with neutron numbers N > 126. Again, the red dashed lines 
are determined by a fitting procedure, which gives A(Z) = 2.27Z −65.0 and B(Z) =
−0.47Z − 9.36.

Except for 210Pb, α decay has not yet been observed for nuclei in 
region IV. Fig. 2 shows that both coefficients A and B are linearly 
dependent upon Z for regions I and III, however with different co-
efficients. This was initially reported in Ref. [15] and attributed to 
the crossing of the N = 126 neutron shell. The recent extension 
of the available data also shows that, when crossing the Z = 82
shell gap (from region I to region II), another set of coefficients, 
strongly deviating from the values in regions I and III, is needed. 
Further, as seen in Fig. 1(b), recent α-decay experiments at SHIP 
in GSI (Darmstadt, Germany) to study the neutron-deficient Po 
isotopes [7] show a significant and gradually increasing deviation 
from the GN law using the coefficients as reported in Fig. 2. In 
186Po, the difference between the experimental half-life and that 
predicted by the GN law is as large as one order of magnitude. 
Such a strong deviation has not been seen before.

In order to understand the three issues mentioned above we 
go through the derivations of Refs. [16,17] where a generalization 
of the GN law was found. This generalization holds for all isotopic 
chains and all cluster radioactivities [18]. According to Ref. [14], 
the α-decay half-life can be written as

T1/2 = ln 2

ν

∣∣∣∣
H+

l (χ,ρ)

R Fα(R)

∣∣∣∣
2

, (2)

where ν is the velocity of the emitted α particle which carries 
an angular momentum l. As only ground-state to ground-state 
α decays of even–even nuclei are considered here, l is equal to 
0 in all cases. R is a distance around the nuclear surface where 
the wave function describing the cluster in the mother nucleus is 
matched with the outgoing cluster+daughter wave function. H+ is 
the Coulomb–Hankel function with ρ = μνR/h̄ and χ = 4Ze2/h̄ν , 
the Coulomb parameter, where μ is the reduced mass and Z is the 
charge number of the daughter nucleus. The quantity Fα(R) is the 
formation amplitude of the α cluster at distance R . Introducing 

the quantities χ ′ = 2Z
√

Aαd/Q α and ρ ′ =
√

2Aαd Z(A1/3
d + 41/3)

where Aαd = 4Ad/(4 + Ad), one gets, after imposing the condition 
of the half life being independent on R [16]

log T1/2 = aχ ′ + bρ ′ + c

= 2aZ/
√

Aαd Q −1/2
α + b

√
2Aαd Z

(
A1/3

d + 41/3
) + c, (3)

where a, b and c are constant parameters which only depend upon 
local variations of the formation probability. They are determined 
by fitting experimental data [16].

The reason why these parameters are practically constant is 
that, when going from one isotope to another, the α-particle for-
mation probability usually varies much less than the penetrability. 
On the logarithm scale of the GN law the differences in the forma-
tion probabilities are usually small fluctuations along the straight 
lines predicted by that law. In other words, the constancy of the 
parameters a, b and c is a consequence of the smooth variation 
in the nuclear structure that is often found when going from a nu-
cleus to its neighbors. This is also the reason why, for example, the 
BCS approximation works so well in many regions of nuclei.

The term aχ ′ takes into account the tunneling through the 
Coulomb barrier, while bρ ′ + c, which does not depend upon Q α , 
includes effects induced by the clusterization in the mother nu-
cleus [16]. By comparing equations (1) and (3), a correspondence 
between the coefficients A(Z) and B(Z) and the expressions aχ ′
and bρ ′ + c respectively can be deduced and the meaning of the 
coefficients can be unfolded. The observed linear dependency of 
A(Z) upon Z is substantiated by this representation. The observed 
negative values for B(Z) are understood as both terms b and c are 
negative [16]. The linear dependence upon Z of B(Z) seems to be 
in conflict with the Z 1/2 dependence of the term ρ ′ . However for 
nuclei with known α-decay half-lives for which the GN law has so 
far been applied, ρ ′ is practically a linear function of Z , as seen in 
Fig. 3.

The need for a different linear Z dependence of the coefficients 
A and B in the four regions of the nuclear chart (see Fig. 2) will 
now be addressed. A generic form for the evolution of the alpha 
formation probabilities was proposed in [7]. It was based on ex-
perimental values [3,4,6,7] and calculations performed within the 
framework of the seniority scheme. This generic form is shown in 
Fig. 4 for selected isotopic chains. Three distinct features can be 
extracted from this schematic representation.

The experimental α formation probabilities of most known α
emitters in regions I and III are nearly constant as a function 
of neutron number (or more exactly, weakly linearly dependent 
on ρ ′ , as seen in Fig. 1 of Ref. [19]). For those nuclei, the GN law 
is indeed expected to be valid and A(Z) and B(Z) follow a lin-
ear behavior as a function of Z (see Figs. 1 and 3 and Eq. (9) in 
Ref. [17]).
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Fig. 3. (Color online.) Calculated values of ρ ′ for observed even–even α emitters as 
a function of Z . The linear fit to the values is shown by the solid line.

Fig. 4. A pictorial representation of the generic form of the evolution of the α for-
mation probabilities |R F (R)|2. Thick solid lines are for isotopes, where experimental 
data are available and dashed lines are extrapolations to the regions with the yet 
unavailable data. The experimental data as cited in [7] are shown by points, con-
nected by thin lines, to guide the eye.

Approaching the N = 126 shell closure with increasing neutron 
number, a strong, exponential decrease of the formation proba-
bility is observed (see Fig. 4, in region II and the discussion in 
Ref. [7]). It is striking that in spite of a variation of |R Fα(R)|2
over one order of magnitude, the GN law and the A(Z) and B(Z)

linear dependence upon Z are still valid. This has no real physi-
cal meaning, but is a consequence of the specific dependence of 
the |R Fα(R)|2 on Q α . The Q α (as well as Q −1/2

α ) values exhibit a 
quasi-linear pattern as a function of rising neutron number when 
approaching the N = 126 shell closure. Therefore log10 |R F (R)|2
and thus log10(T1/2) will still depend linearly on Q −1/2

α . As ex-
amples, in Fig. 5 the logs of the α formation probabilities |R F (R)|2
for polonium and radon isotopes in regions II and III are shown 
as a function of Q −1/2

α . In comparison with those in region III 
for which the formation probabilities are nearly constant or only 
weakly depend on Q −1/2

α , the data in region II show an expo-
nential dependence. The other isotopic chains in region II show a 
similar linearly decreasing behavior of log10 |R F (R)|2 as a function 
of Q −1/2

α , as indicated by the red-dashed lines in the figure, how-
ever with different slopes. As a result, the GN law remains valid 
for isotopic chains in region II, but the corresponding values of A
and |B| will increase with Z beyond the trend observed in regions
I and III (see Fig. 2).

For the polonium isotopic chain with N < 126, the linear be-
havior of log10 |R F (R)|2 breaks down below 196Po (N = 112, cor-
responding to Q −1/2

α = 0.39 in Fig. 5). This explains why the GN 
law is broken in the light polonium isotopes of Fig. 1(b). This 
violation of the GN law, observed here for the first time, is induced 
by the strong suppression of the α formation probability due to 
the fact that the deformations and configurations of the ground 
Fig. 5. (Color online.) log10 |R F (R)|2 for Po (circle) and Rn (triangle) isotopes in 
region II with N < 126 (closed symbols) and region III with N > 126 (open symbols) 
as a function of Q −1/2

α . The dashed lines are to guide the eye.

states of the lightest α-decaying neutron-deficient polonium iso-
topes (A < 196) are very different from those of the daughter lead 
isotopes [20,21]. It should be mentioned that our generic form on 
the evolution of F (R) presented here and in Ref. [7] is mainly 
guided by available experimental data. A systematic microscopic 
calculation on F (R) is desired to confirm this conjecture.

In conclusion, we have studied the origin and physical meaning 
of the coefficients A(Z) and B(Z) in the GN law. These coefficients 
are determined from experimental data and show a linear depen-
dence upon Z . However, the Z -dependence is different in different 
regions of the nuclear chart. Starting from the microscopic Thomas 
expression for the decay half life we show that A(Z) models the 
tunneling process as well as the relatively small variations in the 
structure of the neighboring nuclei. The parameter B(Z) takes into 
account the clusterization of the α-particle in the mother nucleus. 
We show why the coefficient B(Z) is negative and that both A(Z)

and B(Z) have to be practically linearly dependent upon Z . We 
also demonstrated here for the first time that, when the depen-
dence of log10 |R F (R)|2 on the neutron number is not linear or 
constant, the GN law is broken. This also explains why the GN law 
works so well in all α emitters known today except for the polo-
nium isotopes, as the data within each isotopic chain are so far 
limited to a region where log10 |R F (R)|2 behaves linearly with N
or is constant. It is only for the polonium isotopic chain that ex-
perimental data have been obtained over a wide enough range to 
observe significant deviations from the GN law. Within the generic 
description [7], the different values of the alpha formation prob-
ability for regions I and III and the exponential decrease as a 
function of neutron number when approaching N = 126 for re-
gion II, can be understood as due to the available j orbitals and 
a difference in the clustering properties of the nucleons in the α
particle. Clustering of the two protons and two neutrons leading to 
the α-particle formation proceeds through high-lying empty sin-
gle particle configurations. It would therefore be very interesting 
to extend the experimental knowledge towards more neutron defi-
cient radon, radium and thorium isotopes in region II and to more 
neutron-rich lead and mercury isotopes in regions I and IV. This 
will allow us to validate the generic description, identify the satu-
ration levels of the α formation probability and to investigate the 
influence of protons and neutrons filling the same single particle 
orbitals (between 82 and 126) [22–24]. Consequently, compared 
to the use of the so far generally accepted GN description, more 
reliable predictions of the α decay half lives will be achieved in 
unknown nuclei and in low α-decay branching ratios close to sta-
bility.
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