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The inclusive J/ψ nuclear modification factor (RAA) in Pb–Pb collisions at √sNN = 2.76 TeV has been 
measured by ALICE as a function of centrality in the e+e− decay channel at mid-rapidity (|y| < 0.8) 
and as a function of centrality, transverse momentum and rapidity in the μ+μ− decay channel at 
forward-rapidity (2.5 < y < 4). The J/ψ yields measured in Pb–Pb are suppressed compared to those 
in pp collisions scaled by the number of binary collisions. The RAA integrated over a centrality range 
corresponding to 90% of the inelastic Pb–Pb cross section is 0.72 ±0.06(stat.) ±0.10(syst.) at mid-rapidity 
and 0.58 ± 0.01(stat.) ± 0.09(syst.) at forward-rapidity. At low transverse momentum, significantly larger 
values of RAA are measured at forward-rapidity compared to measurements at lower energy. These 
features suggest that a contribution to the J/ψ yield originates from charm quark (re)combination in 
the deconfined partonic medium.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The theory of Quantum Chromodynamics (QCD) predicts that 
the hot and dense nuclear matter produced during the collision 
of ultra-relativistic heavy nuclei behaves as a deconfined Plasma 
of Quarks and Gluons (QGP). This phase of matter exists for only 
a short time before the fireball cools down and the process of 
hadronization takes place. Heavy quarks are an important probe 
of the QGP since they are expected to be produced only during the 
initial stage of the collision in hard partonic interactions, thus ex-
periencing the entire evolution of the system. It was predicted that 
in a hot and dense deconfined medium like the QGP, bound states 
of charm (c) and anti-charm (c̄) quarks, i.e. charmonia, are sup-
pressed due to the screening effects induced by the high density of 
color charges [1]. The relative production probabilities of charmo-
nium states with different binding energies may provide important 
information on the properties of this medium and, in particular, on 
its temperature [2,3]. Among the charmonium states, the strongly 
bound J/ψ is of particular interest. The J/ψ production is a com-
bination from prompt and non-prompt sources. The prompt J/ψ
yield consists of the sum of direct J/ψ (≈ 65%) and excited cc̄
states such as χc and ψ(2S) decaying into J/ψ + X (≈ 35%) [4]. 
These excited states have a smaller binding energy than the J/ψ . 
Non-prompt J/ψ production is directly related to beauty hadron 
production whose relative contribution increases with the energy 
of the collision. Experimentally, J/ψ production was studied in 

* For correspondence, please use e-mail address: alice-publications@cern.ch.

heavy-ion collisions at the Super Proton Synchrotron (SPS) and at 
the Relativistic Heavy Ion Collider (RHIC), covering a large energy
range from about 20 to 200 GeV center-of-mass energy per nu-
cleon pair (

√
sNN). A suppression of the inclusive J/ψ yield in 

nucleus–nucleus (A–A) collisions with respect to the one measured 
in proton–proton (pp) scaled by the number of binary nucleon–
nucleon collisions was observed. In the most central events, the 
suppression is beyond the one induced by cold nuclear matter ef-
fects (CNM), such as shadowing and nuclear absorption, at both 
SPS [5,6] and RHIC [7]. At the SPS the J/ψ suppression is compat-
ible with the melting of the excited states whereas the RHIC data 
suggest a small amount of suppression for the direct J/ψ [8,9]. 
Similar predictions on sequential suppression [3] were made for 
the bottomonium family, which has become accessible at the Large 
Hadron Collider (LHC) energies. The sequential suppression of the 
Υ (1S), Υ (2S) and Υ (3S) states was first observed by the CMS ex-
periment in Pb–Pb collisions at 

√
sNN = 2.76 TeV [10].

The first ALICE measurement of the inclusive J/ψ production 
in central Pb–Pb collisions at 

√
sNN = 2.76 TeV at forward-rapidity 

has shown less suppression compared to PHENIX results in cen-
tral Au–Au collisions at 

√
sNN = 0.2 TeV [11]. At 

√
sNN = 2.76 TeV, 

the charm quark density produced in the collisions increases with 
respect to SPS and RHIC energies [12]. This may result in the en-
hancement of the probability to create J/ψ mesons from (re)com-
bination of charm quarks [13,14]. If the J/ψ mesons are fully 
suppressed in the QGP, their creation will take place at chem-
ical freeze-out (near the phase boundary) as detailed in [13,15,
16]. If J/ψ mesons survive in the QGP, production may take place 
continuously during the QGP lifetime [14,17,18]. Because of the 
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large increase of the cc̄ cross-section towards LHC energy the 
(re)combination mechanism may become dominant there. Accord-
ing to statistical [13] and partonic transport [17,18] models, this 
contribution leads to an increase of the RAA at the LHC with re-
spect to the one observed at RHIC. In particular, this scenario 
predicts an increase of the RAA from forward- to mid-rapidity, 
where the density of charm quarks is higher. Furthermore, in or-
der to (re)combine, two charm quarks need to be close enough 
in phase space, so that low transverse momentum J/ψ production 
is expected to be favored. The transverse momentum and rapid-
ity dependence of the J/ψ RAA are therefore crucial observables 
to sharpen the interpretation of the results, providing a deeper 
insight on the balance between J/ψ (re)combination and suppres-
sion.

In this Letter, we present results on the nuclear modification 
factor for inclusive J/ψ in Pb–Pb collisions at 

√
sNN = 2.76 TeV as a 

function of collision centrality, transverse momentum and rapidity. 
Complementary to our results, J/ψ suppression at large transverse 
momentum in Pb–Pb collisions, was reported previously by AT-
LAS [19] and CMS [20].

2. Experimental apparatus and data sample

ALICE is a general purpose heavy-ion experiment. A detailed de-
scription of the experimental apparatus can be found in [21]. It 
consists of a central barrel covering the pseudo-rapidity interval 
|η| < 0.9 and a muon spectrometer covering −4 < η < −2.5.1 J/ψ
production is measured in both rapidity ranges: at mid-rapidity 
in the dielectron decay channel and at forward-rapidity in the 
dimuon decay channel. In both cases the J/ψ transverse momen-
tum (pT) coverage extends down to zero.

At mid-rapidity, the detectors used for the J/ψ analysis are the 
Inner Tracking System (ITS) [22] and the Time Projection Cham-
ber (TPC) [23]. The ITS is composed of six concentric cylindrical 
layers of silicon detectors with radii ranging from 3.9 to 43 cm 
with respect to the beam axis. Its main purpose is to provide the 
reconstruction of the primary interaction vertex as well as sec-
ondary decay vertices of heavy flavored particles. In addition, the 
two innermost layers can provide an input at level zero (L0) to the 
trigger system. The TPC, with an active volume extending from 85 
to 247 cm in the radial direction, is the main tracking detector of 
the central barrel and also provides particle identification via the 
measurement of the specific energy loss (dE/dx) in the detector 
gas.

At forward-rapidity, the J/ψ analysis is carried out using the 
muon spectrometer [24]. The spectrometer consists of a ten inter-
action length front absorber, filtering the muons in front of five 
tracking stations made of two planes of cathode pad chambers 
each. The third station is located inside a dipole magnet with a 
3 Tm field integral. The spectrometer is completed by a Muon Trig-
ger system (MTR) made of two stations, each equipped with two 
planes of resistive plate chambers. The trigger chambers are placed 
behind a 1.2 m thick iron wall to stop secondary hadrons escap-
ing from the front absorber and low momentum muons coming 
mainly from π and K decays. Throughout its full length, a conical 
absorber made of tungsten, lead and steel protects the muon spec-
trometer against secondary particles generated by the interaction 
with the beam pipe of primary particles produced at large η.

Additional forward detectors, the VZERO [25] and the Zero De-
gree Calorimeters (ZDC) [26], are used for triggering and event 

1 In the ALICE reference frame, the muon spectrometer covers a negative η range 
and consequently a negative y range. We have chosen to present our results with a 
positive y notation.

characterization. The VZERO detector is composed of two scintilla-
tor arrays, 32 channels each, placed on both sides of the Interaction 
Point (IP). It covers 2.8 ≤ η ≤ 5.1 (VZERO-A) and −3.7 ≤ η ≤ −1.7
(VZERO-C). The ZDC are located at a distance of 114 m on both 
sides of the IP and can detect spectator neutrons and protons.

The results presented in this Letter are based on data collected 
during the 2010 and 2011 LHC Pb–Pb runs for the dielectron anal-
ysis and on data collected in the 2011 run for the dimuon one. 
Forward-rapidity results in the dimuon channel from the 2010 data 
set, based on an integrated luminosity about 25 times smaller than 
the 2011 data set, have been published previously in [11]. The 
minimum bias (MB) trigger for the 2011 data set is defined by the 
coincidence of signals in the two VZERO arrays synchronized with 
the passage of two crossing Pb bunches. In the 2010 data set, the 
MB trigger had an additional requirement on hits in the ITS. The 
two MB trigger definitions, however, lead to very similar trigger ef-
ficiencies, which are larger than 95% for inelastic Pb–Pb collisions. 
Electromagnetic interactions are rejected at the level one trigger 
(L1) by applying a cut on the minimum energy deposited by spec-
tator neutrons in the ZDC. Beam induced background is further 
reduced at the offline level by applying timing cuts on the signals 
from the VZERO and ZDC detectors.

At mid-rapidity, the 2010 data sample used in the electron 
analysis consists of 15 million events collected with the MB trigger, 
corresponding to an integrated luminosity of 2.1 μb−1. The 2011 
event sample was enriched with central and semi-central Pb–Pb 
collisions by using thresholds on the VZERO multiplicity at the L0 
trigger. The inspected integrated luminosity amounts to 25.6 μb−1, 
out of which we analyzed 20 million central (0%–10% of the cen-
trality distribution) and 20 million semi-central (10%–50%) events. 
The summed 2010 and 2011 datasets correspond to an integrated 
luminosity of Lint = 27.7 ± 0.4(stat.)+2.2

−1.8(syst. σPb–Pb) μb−1. At 
forward-rapidity, the 2011 data sample is made of about 17 mil-
lion μμMB triggers. The μμMB trigger is defined as the occur-
rence of the MB condition in coincidence with the detection in 
the MTR of two opposite-sign muons tracks. The MTR is capa-
ble of (i) delivering L0 trigger decisions at 40 MHz based on the 
detection of one or two muon trigger tracks, (ii) computing an 
approximate value of the transverse momentum of muon trigger 
tracks (ptrig

T ) and (iii) applying a threshold2 on the ptrig
T . A 1 GeV/c

threshold, applied on both muons, was chosen to collect this data 
sample. A scaling factor Fnorm is used to obtain the number of 
equivalent MB events from the number of μμMB ones. It is de-
fined as the ratio, in a MB data sample, of the number of MB 
events divided by the number of events fulfilling the μμMB trig-
ger condition. Its value, averaged over the entire data sample, is 
Fnorm = 30.56 ± 0.01(stat.) ± 1.10(syst.). The integrated luminosity 
used in this analysis is therefore Lint = NμμMB × Fnorm/σPb–Pb =
68.8 ± 0.9(stat.) ± 2.5(syst. Fnorm)+5.5

−4.5(syst. σPb–Pb) μb−1 assuming 
an inelastic Pb–Pb cross-section σPb–Pb = 7.7 ± 0.1+0.6

−0.5 b [26].
The centrality determination is based on a fit to the VZERO 

amplitude distribution as described in [27]. The fit, based on the 
Glauber model, allows for the extraction of collision-related vari-
ables such as the average of number of participant nucleons 〈Npart〉
and the average of the nuclear overlap function 〈TAA〉 per central-
ity class. Numerical values are given in Table 1. Both the electron 
and muon analyses were carried out on an event sample corre-
sponding to the most central 90% of the inelastic Pb–Pb cross-
section. In this centrality range the efficiency of the MB trigger 
is 100% and the contamination from electromagnetic processes is 
negligible.

2 The threshold is defined as ptrig
T for which the trigger probability is 50% and 

does not lead to a sharp cut in pT.
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Table 1
The average of number of participating nucleons 〈Npart〉 and the average value of 
the nuclear overlap function 〈TAA〉 with their associated systematic uncertainty for 
the centrality classes, expressed in percentages of the nuclear cross-section [27], 
used in these analyses.

Centrality 〈Npart〉 〈TAA〉 (mb−1)

0%–10% 356.0 ± 3.6 23.44 ± 0.76
10%–20% 260.1 ± 3.8 14.39 ± 0.45
20%–30% 185.8 ± 3.3 8.70 ± 0.27
30%–40% 128.5 ± 2.9 5.00 ± 0.18
40%–50% 84.7 ± 2.4 2.68 ± 0.12
50%–60% 52.4 ± 1.6 1.317 ± 0.071
60%–70% 29.77 ± 0.98 0.591 ± 0.036
70%–80% 15.27 ± 0.55 0.243 ± 0.016
80%–90% 7.49 ± 0.22 0.0983 ± 0.0076

0%–20% 308.1 ± 3.7 18.91 ± 0.61
10%–40% 191.5 ± 3.3 9.36 ± 0.30
40%–90% 37.9 ± 1.2 0.985 ± 0.051

0%–90% 124.4 ± 2.2 6.27 ± 0.21

3. Data analysis

J/ψ candidates are formed by combining pairs of opposite-sign 
(OS) electron and muon tracks reconstructed in the central barrel 
and in the muon spectrometer, respectively.

Electron candidates are selected by cutting on the quality of 
tracks reconstructed in the ITS and the TPC. The selection crite-
ria are very similar to those used in the previous analysis of pp
collisions at 

√
s = 7 TeV [24] using a tighter selection on electron 

identification. A hit in one of the two innermost layers of the ITS 
is required. This rejects a large fraction of background resulting 
from photon conversions in the detector material. The tracks are 
required to have at least 70 out of a maximum of 159 clusters 
in the TPC and to pass a quality cut based on the χ2 of the TPC 
track fit divided by the number of clusters attached to the track. 
Electron identification is done using the TPC, requiring the dE/dx
signal to be compatible with the electron expectation within a 
band of (−2.0; +3.0)σ or (−1.5; +3.0)σ for the 2010 or 2011 
data, respectively, where σ denotes the resolution of the dE/dx
measurement. Due to a lower dE/dx resolution for the 2011 data, 
for |η| < 0.5 a more restrictive electron selection, (−0.9; +3.0)σ , 
is applied. The electron/hadron separation is further improved by 
rejecting tracks which are compatible with the pion expectation 
within 3.5σ and with the proton expectation within 3.5σ or 4.0σ
in 2010 or 2011 data, respectively. Since the electrons from a J/ψ
decay have a momentum of 1.5 GeV/c in the mother particle rest 
frame, a cut of pT > 0.85 GeV/c on the candidate tracks is applied 
to reject the combinatorial background from low momentum elec-
trons. Finally, to ensure good tracking and particle identification in 
the TPC, only candidates within |η| < 0.8 are selected.

Muon tracks are reconstructed in the muon spectrometer as de-
tailed in [24] for pp collisions. This procedure remains basically 
unchanged for Pb–Pb collisions. However, to cope with the large 
background in central events, some selection criteria were tight-
ened compared to the pp analysis. The search area for finding 
clusters associated to tracks is reduced by a factor of nine, both 
muon candidates have to match a track segment in the trigger 
chambers and the track pseudo-rapidity has to be in the range 
−4 < η < −2.5. A further cut on the track transverse coordinate 
at the end of the front absorber (Rabs) is applied (17.6 ≤ Rabs ≤
89.5 cm) to ensure that muons emitted at small angles, i.e. those 
that have crossed a significant fraction of the thick beam shield, 
are rejected. Finally, to remove events very close to the edge of 
the spectrometer acceptance, only muon pairs in the rapidity range 
2.5 < y < 4 are accepted.

In the e+e− decay channel, the J/ψ yields are extracted by 
counting the number of entries in the invariant mass range 2.92 <
me+e− < 3.16 GeV/c2 after subtracting the combinatorial back-
ground. Due to the radiative decay channel and the energy loss 
of the electrons in the detector material via bremsstrahlung, only 
≈ 68% of the J/ψ are reconstructed with the mass in the counting 
mass interval. The background shape is obtained using the mixed-
event (ME) technique. Uncorrelated lepton pairs are created from 
different Pb–Pb events that have similar global properties such 
as centrality, primary vertex position and event plane angle. The 
background shape from ME is scaled to match the same-event (SE) 
invariant mass distribution in the ranges 1.5 < me+e− < 2.5 GeV/c2

and 3.2 < me+e− < 4.2 GeV/c2. These mass ranges were chosen 
such that they are close to the signal region and have equal 
number of bins on each side of the signal region. The lower 
(1.5 GeV/c2) and upper (2.5 GeV/c2) limits of the first mass range 
are chosen in order to avoid sensitivity to correlated low-mass 
dielectron pairs and J/ψ bremsstrahlung tail, respectively. The sec-
ond mass range is limited by the upper limit of the signal region 
(3.2 GeV/c2) and extends to 4.2 GeV/c2 to match in size the first 
mass interval. Here the influence of the ψ(2S) on the background 
matching procedure is neglected since the ψ(2S) dilepton yields 
are expected to be roughly 60 times smaller than J/ψ yields (esti-
mation based on LHCb measurements of J/ψ [28] and ψ(2S) [29]
cross-sections in pp collisions at 7 TeV). A good matching between 
the SE and ME distributions is observed over a broad mass range 
outside the J/ψ mass region, as visible in the top panels of Fig. 1. 
This is a clear sign that the contribution of correlated pairs to 
the OS mass spectrum is small with respect to the uncorrelated 
background or has a similar shape. The bottom panels of Fig. 1
show the background-subtracted invariant mass spectra compared 
to the J/ψ signal shape from a Monte-Carlo (MC) simulation. The 
bremsstrahlung tail from the electron energy loss in the detector 
material and the J/ψ radiative decay channel (J/ψ → e+e−γ ) is 
well described in the MC. As shown in Fig. 1, it is possible to study 
the J/ψ production in three centrality intervals (0%–10%, 10%–40%, 
40%–90%), with a signal-to-background ratio (S/B), evaluated in the 
range 2.92 < me+e− < 3.16 GeV/c2, increasing from 0.02 to 0.25 
from central to peripheral collisions.

In the μ+μ− decay channel, the J/ψ raw yield is extracted in 
each centrality and kinematic interval by using two different meth-
ods. In the first approach, the OS dimuon invariant mass distribu-
tion is fitted with the sum of an extended Crystal Ball (CB2) func-
tion to describe the signal, and a Variable Width Gaussian (VWG) 
function for the background. The CB2 function extends the stan-
dard Crystal Ball (Gaussian plus power-law tail at low masses [30]) 
by an additional power-law tail at high masses with parameters 
independent of the low mass ones. The VWG function is a Gaus-
sian function with a fourth parameter to allow linear variation of 
the width with the invariant mass of the dimuon pair. The J/ψ
signal is clearly visible in all centrality, pT or y intervals even be-
fore any background subtraction, as can be observed in the top 
panels of Fig. 2, where examples of invariant mass spectra fits 
in selected pT intervals are shown. The signal-to-background ra-
tio, evaluated within 3 standard deviations with respect to the 
J/ψ pole mass, varies from 0.16 at low pT up to 1.2 at high pT. 
The corresponding values in centrality and y intervals are in the 
range 0.16–6.5 from central to peripheral collisions and 0.19–0.59 
from low to high rapidity. In all cases, the significance is larger 
than 10. In the second approach, the combinatorial background 
was subtracted using an event-mixing technique. The background 
shape obtained from ME was normalized to the data through a 
combination of the measured like-sign muon pairs from SE. Fig. 2
(bottom panels) shows the resulting mass distribution fitted with 
the sum of a CB2 and an exponential which accounts for resid-



ALICE Collaboration / Physics Letters B 734 (2014) 314–327 317
Fig. 1. (Color online.) Top panels: invariant mass distributions for opposite-sign (OS) and mixed-events (ME) electron pairs. Bottom panels: OS invariant mass spectra, after 
the subtraction of the ME distributions, with a comparison to the Monte Carlo signal (solid lines) superimposed. The MC signal is scaled to match the integral of the OS 
distribution within the mass counting window. From left to right, distributions correspond to the centrality ranges 0%–10%, 10%–40% and 40%–90%, respectively. The panels 
for the 0%–10% and 10%–40% centrality ranges are obtained from the 2011 data, while the ones for the 40%–90% centrality range are obtained from the 2010 data. The two 
vertical dashed lines shown in each panel indicate the mass interval used for signal counting.

Fig. 2. (Color online.) Top panels: fits of the dimuon invariant mass spectra in selected pT intervals. Bottom panels: idem after subtraction of the combinatorial background 
with the event mixing technique. Distributions correspond to the centrality class 0%–90% and 2.5 < y < 4.
ual correlated background. In both approaches, the position of the 
peak of the CB2 function (mJ/ψ ), as well as its width (σJ/ψ ), are 
free parameters of the fit. Their values, obtained by fitting the in-
variant mass spectrum integrated over pT, y and centrality, are 
mJ/ψ = 3.103 ± 0.001 GeV/c2 (shifted up by 0.2% with respect to 
the PDG mass [31]) and σJ/ψ = 0.071 ± 0.001 GeV/c2. More de-

tails about the fitting procedures and the different parameters of 
the signal and background line shapes are discussed in Section 4.

The measured number of J/ψ (Ni
J/ψ ) in a centrality class i is 

normalized to the corresponding number of MB events falling in 
the centrality class (Ni

events) and further corrected for the branch-
ing ratio (BR) of the dilepton decay channel, the acceptance A and 
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Table 2
Inclusive J/ψ production cross-sections at mid-rapidity used in the interpolation procedure. The J/ψ are assumed unpolarized and the systematic uncertainties do not include 
the contribution from unknown polarization.

Experiment Collision energy
√

s Rapidity range Blldσ/dy at y = 0 stat. syst. Reference
(TeV) (nb) (nb) (nb)

PHENIX 0.2 |y| < 0.35 44.30 1.40 6.80 [38]

CDF 1.96 |y| < 0.6 201.6 1.0 17.8
−16.3 [39]

ALICE 2.76 |y| < 0.9 255.8 58.7 45.9 [40]
ALICE 7 |y| < 0.9 409.9 36.8 59.4 [24,41]
Interpolation 2.76 |y| < 0.8 252.6 16.4 25.8 this work
the efficiency ε i of the detector. In the μ+μ− analysis, Ni
events is 

computed by multiplying the number of μμMB triggered events 
by the Fnorm factor (described in Section 2) scaled by the width of 
the centrality class i. The inclusive J/ψ yield for the measured pT
and y ranges is then given by:

Y i
J/ψ = Ni

J/ψ

BRJ/ψ→l+l− Ni
events A × ε i

. (1)

The acceptance times efficiency product (A × ε) is defined as 
the ratio between the number of reconstructed J/ψ divided by 
the number of generated ones in the kinematic range under study. 
In the e+e− decay channel, A × ε is calculated from MC simu-
lations. These MC events are a superposition of Pb–Pb collisions 
generated with an appropriate HIJING [32] tune reproducing the 
measured charged particle density [33] and J/ψ generated from 
parametrized pT and y distributions (details in Section 4). The 
J/ψ dielectron decays are performed using PHOTOS [34,35]. The 
particles are then transported through a simulation of the AL-
ICE detector using GEANT 3.21 [36]. The geometrical acceptance 
is about 34%. The estimated integrated A × ε for the J/ψ emit-
ted in |y| < 0.8 amount to 0.080, 0.085 and 0.093 for the 0%–10%, 
10%–40% and 40%–90% centrality classes in the 2010 data sample 
and 0.026 and 0.028 for the 0%–10% and 10%–40% centrality classes 
in the 2011 one, respectively. The large difference in efficiency is 
mainly due to a lower efficiency of the two innermost ITS layers 
and stronger particle identification cuts used for the 2011 data set. 
In the μ+μ− decay channel, A ×ε was computed using an embed-
ding technique where MC J/ψ particles are injected into the raw 
data of real events and then reconstructed. The MC J/ψ pT and y
parametrization is taken from actual measurements. PYTHIA [37]
takes care of the J/ψ decays and the daughter particles signals 
in the detector, given by GEANT 3.21, are then added to the real 
Pb–Pb events. When studied as a function of centrality, A × ε de-
creases by 7.9%, from 0.127 in the 80%–90% centrality class to 0.117 
in the 0%–10% one. The centrality integrated A × ε (0%–90% cen-
trality class) is 0.120 with a negligible statistical uncertainty. The 
geometrical acceptance is about 18%. The quantity A × ε shows a 
non-monotonic dependence on pT, starting at approximately 0.124 
at zero transverse momentum, reaching a minimum of 0.103 at 
1.5 GeV/c and then linearly increasing up to 0.264 at 8 GeV/c. The 
rapidity dependence of A × ε reflects the geometrical acceptance 
of the muon pairs with a maximum of 0.189 centered at y = 3.3
decreasing towards the edges of the acceptance to 0.033 (0.060) at 
y = 2.5 (y = 4.0).

Finally, the nuclear modification factor is calculated as the ratio 
between the corrected J/ψ yield in Pb–Pb collisions Y Pb–Pb

J/ψ and 
the J/ψ cross-section in pp collisions scaled by the nuclear overlap 
function:

RAA = Y Pb–Pb
J/ψ

〈TAA〉 × σ
pp
J/ψ

. (2)

In the dielectron analysis, the pp reference was obtained by 
interpolating the inclusive J/ψ cross-sections at mid-rapidity mea-

sured by PHENIX [8] at 
√

s = 0.2 TeV, CDF [39] at 
√

s = 1.96 TeV
and ALICE [40,24,41] at 

√
s = 2.76 and 7 TeV. All the data points 

used in this procedure are listed in Table 2. The interpolation was 
done by fitting the data points with several functions assuming 
a linear, an exponential, a power law or a polynomial 

√
s depen-

dence. The value of the interpolated pp reference at mid-rapidity, 
dσ

pp
J/ψ/dy = 4.25 ± 0.28(stat.) ± 0.43(syst.) μb, is consistent with 

the one measured by ALICE [40], but the total uncertainty is twice 
smaller, being driven mainly by the CDF result. The statistical un-
certainty was obtained from the fitting procedure, while the sys-
tematic one was obtained by changing the fit function and by shift-
ing the data points within their experimental systematic uncertain-
ties. For the dimuon analysis, the pp reference and its associated 
uncertainties are extracted from the ALICE measurement [40].

4. Systematic uncertainties

The main sources of systematic uncertainties for the J/ψ RAA
evaluation are the tracking efficiency, the signal extraction proce-
dure, the parameterization of the J/ψ kinematic distributions used 
as input for the MC simulations, the uncertainty on the nuclear 
overlap function and the uncertainty on the J/ψ pp cross-section 
at 

√
s = 2.76 TeV. Other analysis-dependent sources are detailed in 

the following. The systematic uncertainties have been evaluated as 
a function of centrality and, for the dimuon analysis, of pT and y. 
An overview of systematic uncertainties is given in Table 3.

In the dielectron analysis, the systematic uncertainties on the 
signal extraction are estimated by varying the mass region used to 
count the signal, the mass interval used for matching the ME back-
ground and the OS distribution. In all these cases, the background-
subtracted OS distribution is compared to the MC signal shape 
and the normalized χ2 obtained is always close to 1. This shows 
that, after background subtraction, the number of correlated pairs 
not related to J/ψ decays is small and does not induce a sizeable 
systematic uncertainty. The centrality dependent systematic uncer-
tainty on the signal extraction, taken as the RMS of the distribution 
of the number of J/ψ obtained from all the performed tests, ranges 
from 7% to 9% and 4% to 6% for 2010 and 2011 data, respectively. 
The systematic uncertainties due to track reconstruction and par-
ticle identification are evaluated by varying all the analysis cuts. 
For each cut variation, the number of J/ψ signal counts is cor-
rected with the corresponding A × ε. The RMS of this quantity is 
found to vary in the range 6–9% and 4–5% in the 2010 and 2011 
data, respectively. Since the signal extraction procedure must be 
used for every cut variation, the systematic uncertainties due to 
analysis cuts and signal extraction cannot be truly disentangled. 
Thus, a global systematic uncertainty is introduced as the RMS of 
the distribution of corrected results when varying both signal ex-
traction parameters and cut values. These systematic uncertainties 
range between 8% and 11% depending on the centrality interval. 
The central value for the corrected J/ψ yield is chosen to be the 
mean of the distribution obtained from all the performed tests.

In the dimuon analysis, the systematic uncertainty on the signal 
extraction is estimated by fitting the invariant mass distribution 
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Table 3
Systematic uncertainties entering the RAA calculation. The type I (II) stands for correlated (uncorrelated) uncertainties within a given set of data points. The uncorrelated 
systematic uncertainties (type II) are given as a range.

Channel μ+μ− e+e−

Centrality pT or y Centrality

value (%) type value (%) type value (%) type

signal extraction 1–3 II 1–5 II 8–11 II
tracking efficiency 11 and 0–1 I and II 1 and 8–14 I and II
trigger efficiency 2 and 0–1 I and II 1 and 2–4 I and II n/a
input MC parameterization 3 I 0–8 II 5 I
matching efficiency 1 I 1 II n/a
centrality limits 0–5 II 0–1 I 0–3 II
〈TAA〉 3–8 II 3 I 3–5 II
σ

pp
J/ψ 9 I 6 and 5–6 I and II 12 I

Fnorm 4 I 4 I n/a
with and without background subtraction and by varying the pa-
rameters that define the power law shapes at low and high masses 
of the CB2 signal function. These fit parameters are not constrained 
by the data and cannot be let free during the fitting procedure. 
They have been fixed to different values extracted either from sim-
ulations or from pp data, where the signal-to-background ratio is 
more favorable. Fits corresponding to the various choices for the 
CB2 tails are performed, keeping the background parameters free, 
and varying the invariant mass range used for the fits. The raw 
J/ψ yield is determined as the average of the results obtained with 
the above procedure and the corresponding systematic uncertainty 
is defined as the RMS of the deviations from the average. As a 
function of centrality (pT or y) the systematic uncertainty for the 
signal extraction varies from 1% to 3% (1% to 5%). The single muon 
tracking and trigger efficiencies, εtrk and εtrg , are estimated with 
the embedded J/ψ simulation. The centrality dependence of these 
quantities is weak, since the decrease in most central collisions is 
about 1% and 3.5% for εtrk and εtrg respectively. A 11% systematic 
uncertainty on the tracking efficiency is estimated by comparing 
its determination based on real data and on a MC approach. This 
estimation relies on a calculation of the tracking efficiency in each 
station using the detector redundancy (two independent detection 
planes per station). The single track efficiency, defined as product 
of the station efficiencies, is calculated for tracks from real data 
and from simulation. The single track efficiencies are then injected 
in pure J/ψ simulations and the difference used as the J/ψ track-
ing systematic uncertainty. The pT and y dependence of the former 
uncertainty leads to a bin to bin uncorrelated component ranging 
between 8% and 14%. The systematic uncertainty on the J/ψ A × ε
corrections related to the trigger efficiency is 2%, mostly given by 
the uncertainty on the intrinsic efficiency of the trigger chambers. 
The systematic uncertainty related to the response function of the 
trigger is always below 1% except in the lowest J/ψ pT interval 
where a value of 3% was estimated. As a function of centrality, 
the systematic uncertainty of the tracking or the trigger efficien-
cies is 1% in the most central collisions and becomes negligible for 
peripheral collisions. The uncertainty on the matching efficiency 
between tracks reconstructed in the tracking and trigger chambers 
amounts to 1%. It is correlated as a function of the centrality and 
uncorrelated as a function of pT and y.

The A × ε calculation depends on the J/ψ pT and y distribu-
tions used as an input to the MC, and systematic effects originating 
from different parameterizations of these distributions must be 
taken into account. In the e+e− analysis, the J/ψ (pT, y) parame-
terization is based on an interpolation of the RHIC, CDF and LHC 
data in pp and pp̄ collisions [42] corrected using nuclear shadow-
ing calculations [43]. The systematic uncertainty was evaluated by 
varying the slope of the pT shape in a wide range such that the 
average pT changes between 1.5 GeV/c and 3.0 GeV/c. The J/ψ pT

spectra in A–A collisions measured by PHENIX [9] at mid-rapidity 
and ALICE at forward rapidity [40] at all available centralities, to-
gether with their uncertainties, are well covered in the envelope 
determined by the considered variations. A centrality correlated 
systematic uncertainty of 5% was obtained following this proce-
dure. In the μ+μ− analysis, the MC J/ψ parameterizations are 
based on the pT and y distributions measured for different cen-
trality classes. The pT–y correlation observed by LHCb in pp colli-
sions [28] was also included in the systematic study. A correlated 
variation in A × ε of 3% was observed as a function of central-
ity. The pT (y) dependence of this systematic uncertainty brings a 
maximum contribution of 1% (8%) on each point.

Further sources of systematic uncertainties affecting the nuclear 
modification factor are the uncertainty on the limits of the cen-
trality classes [27], on the nuclear overlap function and on the 
J/ψ cross-section in pp collisions at 

√
s = 2.76 TeV. An uncertainty 

on the normalization factor Fnorm, accounting for run by run fluc-
tuations on this quantity, is also added in the muon analysis. All 
numerical values can be found in Table 3.

When computing the A × ε factor, we assumed that J/ψ are 
produced unpolarized and no systematic uncertainty is assigned 
to a possible polarization. In pp collisions, mid-rapidity (pT >

10 GeV/c) and forward-rapidity (pT > 2 GeV/c) measurements 
have been done at 

√
s = 7 TeV and indeed show that J/ψ polar-

ization is compatible with zero [44–46]. In Pb–Pb collisions, J/ψ
mesons produced from charm quarks in the medium are expected 
to be unpolarized.

5. Results

In the e+e− decay channel, the inclusive J/ψ RAA was stud-
ied as a function of the collision centrality (0%–10%, 10%–40% and 
40%–90%) for pT > 0 GeV/c and |y| < 0.8. In the μ+μ− decay 
channel, the event sample collected in the 2011 run with the ded-
icated μμMB trigger allows for the study of the RAA as a function 
of the centrality of the collisions in nine intervals. Furthermore, a 
differential study of the RAA as a function of transverse momen-
tum or rapidity is also feasible. Data are analyzed in seven intervals 
in the pT range 0 < pT < 8 GeV/c range and six intervals in the y
range 2.5 < y < 4. The chosen binning matches the one adopted 
for the 

√
s = 2.76 TeV pp results, which are used as the reference 

for the evaluation of the nuclear modification factor.
Fig. 3 shows the inclusive J/ψ RAA at mid- and forward-rapidity 

as a function of the number of participant nucleons 〈Npart〉. Statis-
tical uncertainties are shown as vertical error bars, while the boxes 
represent the various uncorrelated systematic uncertainties added 
in quadrature. The systematic uncertainties correlated bin by bin 
(type II in Table 3) are summed in quadrature and referred to as 
global syst. in the legend. At forward-rapidity a clear suppression 
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Fig. 3. (Color online.) Centrality dependence of the nuclear modification factor, RAA, 
of inclusive J/ψ production in Pb–Pb collisions at √sNN = 2.76 TeV, measured at 
mid-rapidity and at forward-rapidity. The point to point uncorrelated systematic 
uncertainties (type II) are represented as boxes around the data points, while the 
statistical ones are shown as vertical bars. Global correlated systematic uncertainties 
(type I) are quoted directly in the legend.

is observed, independent of centrality for 〈Npart〉 > 70. Although 
with larger uncertainties, the mid-rapidity RAA shows a suppres-
sion of the J/ψ yield too. The centrality integrated RAA values 
are R0%–90%

AA = 0.72 ± 0.06(stat.) ± 0.10(syst.) and R0%–90%
AA = 0.58 ±

0.01(stat.) ± 0.09(syst.) at mid- and forward-rapidity, respectively. 
The systematic uncertainties on both RAA values include the con-
tribution arising from 〈TAA〉 calculations. This amounts to 3.4% of 
the computed 〈TAA〉 value and is a correlated systematic uncer-
tainty common to the mid- and forward-rapidity measurements. 
PHENIX mid- (|y| < 0.35) and forward-rapidity (1.2 < |y| < 2.2) 
results on inclusive J/ψ RAA at 

√
sNN = 0.2 TeV exhibit a much 

stronger dependence on the collision centrality and a suppression 
of about a factor of three larger in the most central collisions [9].

The measured inclusive J/ψ RAA includes contributions from 
prompt and non-prompt J/ψ ; the first one results from direct 
J/ψ production and feed-down from ψ(2S) and χc , the second 
one arises from beauty hadron decays. Non-prompt J/ψ are dif-
ferent with respect to the prompt ones, since their suppression or 
production is insensitive to color screening or regeneration mech-
anisms. Beauty hadron decay mostly occurs outside the fireball, 
and a measurement of the non-prompt J/ψ RAA is therefore con-
nected to the beauty quark in-medium energy loss (see [47] and 
references therein). At mid-rapidity, the contribution from beauty 
hadron feed-down to the inclusive J/ψ yield in pp collisions at √

s = 7 TeV is approximately 15% [48]. The prompt J/ψ RAA can be 
evaluated according to Rprompt

AA = (RAA − Rnon-prompt
AA )/(1 − FB) where 

FB is the fraction of non-prompt J/ψ measured in pp collisions, 
and Rnon-prompt

AA is the nuclear modification factor of beauty hadrons 
in Pb–Pb collisions. Thus, the prompt J/ψ RAA at mid-rapidity is 
expected to be about 7% smaller than the inclusive measurement 
if the beauty production scales with the number of binary colli-
sions (Rnon-prompt

AA = 1) and about 17% larger if the beauty is fully 
suppressed (Rnon-prompt

AA = 0). At forward-rapidity, the non-prompt 
J/ψ fraction was measured by the LHCb Collaboration to be about 
11(7)% in pp collisions at 

√
s = 7(2.76) TeV in the pT range cov-

ered by this analysis [28,49]. Then, the difference between the RAA

of prompt J/ψ and the one for inclusive J/ψ is expected to be of 
about −6% and 7% in the two aforementioned extreme cases as-
sumed for beauty production.

Fig. 4. (Color online.) Top panel: transverse momentum dependence of the central-
ity integrated J/ψ RAA measured by ALICE in Pb–Pb collisions at √sNN = 2.76 TeV
compared to CMS [20] results at the same √sNN. Bottom panel: transverse momen-
tum dependence of the J/ψ RAA measured by ALICE in the 0%–20% most central 
Pb–Pb collisions at √sNN = 2.76 TeV compared to PHENIX [9] results in the 0%–20% 
most central Au–Au collisions at √sNN = 0.2 TeV.

In the top panel of Fig. 4, the J/ψ RAA at forward-rapidity is 
shown as a function of pT for the 0%–90% centrality integrated 
Pb–Pb collisions. It exhibits a decrease from 0.78 to 0.36, indi-
cating that high pT J/ψ are more suppressed than low pT ones. 
Furthermore, at high pT a direct comparison with CMS results [20]
at the same 

√
sNN is possible, the main difference being that the 

CMS measurement covers a slightly more central rapidity range 
(1.6 < |y| < 2.4). In the overlapping pT range a similar suppres-
sion is found. One should add here that the two CMS points are 
not independent and correspond to different intervals of the J/ψ
pT (3 < pT < 30 GeV/c and 6.5 < pT < 30 GeV/c). In the bot-
tom panel of Fig. 4, the forward-rapidity J/ψ RAA for the 0%–20% 
most central collisions is shown. The observed pT dependence of 
the RAA for most central collisions is very close to the one in the 
0%–90% centrality class. This is indeed expected since almost 70% 
of the J/ψ yield is contained in the 0%–20% centrality class. Our 
data are compared to results obtained by PHENIX in 0%–20% most 
central Au–Au collisions at 

√
sNN = 0.2 TeV, in the rapidity re-

gion 1.2 < |y| < 2.2 [9]. A striking difference between the J/ψ RAA
patterns can be observed. In particular, in the low pT region the 
ALICE RAA result is a factor of up to four higher compared to the 
PHENIX one. This observation is in qualitative agreement with the 
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Fig. 5. (Color online.) The rapidity dependence of the J/ψ RAA measured in Pb–Pb
collisions at √sNN = 2.76 TeV. Both mid- and forward-rapidity measurements in-
clude a common correlated systematic uncertainty of 3.4% due to 〈TAA〉. The mid-
rapidity measurement covers the rapidity range |y| < 0.8 and the forward-rapidity 
one is given in intervals of 0.25 unit of rapidity from y = 2.5 to y = 4.

calculations from [17,50] where the (re)combination dominance in 
the J/ψ production leads to a decrease of the 〈p2

T〉 in A–A colli-
sions with respect to pp collisions. Although at the two energies 
the rapidity coverages are not the same and CNM effects might 
have a different size, our results point to the presence of a new 
contribution to the J/ψ yield at low pT.

Finally, the dependence of the J/ψ RAA on rapidity is displayed 
in Fig. 5 for the 0%–90% centrality class. At forward-rapidity, the 
J/ψ RAA decreases by about 40% from y = 2.5 to y = 4. The result 
from the electron analysis is consistent with a constant or slightly 
increasing RAA towards mid-rapidity.

6. Conclusions

The inclusive J/ψ nuclear modification factor has been mea-
sured by ALICE as a function of centrality, pT and y in Pb–Pb col-
lisions at 

√
sNN = 2.76 TeV, down to zero pT. At forward-rapidity, 

RAA shows a clear suppression of the J/ψ yield, with no signifi-
cant dependence on centrality for 〈Npart〉 larger than 70. At mid-
rapidity, the J/ψ RAA is compatible with a constant suppression as 
a function of centrality. At forward-rapidity the J/ψ RAA exhibits 
a strong pT dependence and decreases by a factor of 2 from low 
pT to high pT. This behavior strongly differs from that observed 
by PHENIX at 

√
sNN = 0.2 TeV. This result suggests that a fraction 

of the J/ψ yield is produced via (re)combination of charm quarks. 
In addition, the indication of a non-zero J/ψ elliptic flow in Pb–Pb 
collisions at 

√
sNN = 2.76 TeV observed by ALICE [51] brings an-

other hint in favor of (re)combination scenarios. Precise knowledge 
of the cold nuclear effects is necessary for further understanding 
of the J/ψ behavior. The measurement of the J/ψ production in 
p–Pb collisions at the LHC [52,53] will allow one to sharpen the 
interpretation of these results.
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W. Peryt dz,2, A. Pesci cy, Y. Pestov e, V. Petráček al, M. Petran al, M. Petris by, M. Petrovici by, C. Petta aa, 
S. Piano dd, M. Pikna ak, P. Pillot df, O. Pinazza ah,cy, L. Pinsky do, D.B. Piyarathna do, M. Planinic cr,du, 
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