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Abstract A significant fraction of the changes in momen-
tum distributions induced by dissipative phenomena in the
description of the fluid fireball created in ultrarelativistic
heavy-ion collisions actually take place when the fluid turns
into individual particles. We study these corrections in the
limit of a low freeze-out temperature of the flowing medium,
and we show that they mostly affect particles with a higher
velocity than the fluid. For these, we derive relations between
different flow harmonics, from which the functional form of
the dissipative corrections could ultimately be reconstructed
from experimental data.

1 Introduction

High-energy collisions of heavy nuclei, as performed at the
Brookhaven relativistic heavy ion collider (RHIC) and the
CERN large hadron collider (LHC), lead to the formation
of an extended fireball, the evolution of which is to a large
degree well modelled by the laws of relativistic fluid dynam-
ics (see e.g. Ref. [1] for a recent review). Especially suc-
cessful and promising for the extraction of precise values of
the transport coefficients characterizing the created hot mat-
ter are the description of collective flow and in particular its
anisotropies [2]. The latter are usually quantified in terms
of the Fourier harmonics vn(pt , y) of the measured particle
spectrum, which a priori depend on the particle type, trans-
verse momentum pt and rapidity y.

As is by now well established, these anisotropies in
the final-state momentum distributions are caused by
asymmetries—so-called “eccentricities”—in the initial-state
geometry of the expanding matter. Simplifying the picture,
one can identify three main sources for the flow coefficients
in collisions of identical nuclei at ultrarelativistic energies.
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First, the approximate almond shape of the overlap region of
the nuclei yields the major contribution to the elliptic flow
v2 in noncentral collisions [3]. Secondly, the event-by-event
fluctuations in the positions of nucleons—or more gener-
ally of the colliding degrees of freedom—inside the nuclei
at the time of the collision lead to deviations of the geometry
from the smooth shape corresponding to the overlap of ideal
spheres. These initial-state fluctuations give rise to triangu-
lar flow v3 [4] and a rapidity-even (and thereby present at
midrapidity) contribution to directed flow v1 [5], as well as
to the elliptic flow measured in most central collisions. They
also contribute to the “higher harmonics” v4, v5, v6…, which
are, however, also to a large extent controlled by a third phe-
nomenon, namely the mixing of sizable lower harmonics: v4

contains a large nonlinear contribution from v2
2 [6]; v5, from

the product v2v3 [7,8]; or v6, from v3
2 and v2

3 [9].
The evolution from the initial geometry to the final-state

anisotropies may be viewed as a filtering process, in which the
first three flow harmonics respond linearly to corresponding
initial-state asymmetries, while the higher harmonics con-
stitute some nonlinear response. The filter characteristics,
as e.g. the proportionality coefficients in the linear-response
regime, reflect the properties of the expanding medium. In
particular, if the fireball is modelled as a fluid, its dissipative
features—like shear and bulk viscosity or the relaxation time
of the viscous tensor—govern the response. Relating the flow
harmonics to the initial eccentricities gives then in principle
access to the fluid transport coefficients, which is one of the
goals of present heavy-ion physics.

In a hydrodynamical approach, dissipative phenomena
enter the description in a twofold way. They first play a role
all along the evolution, which is mathematically accounted
for by the fact that the fluid velocity obeys equations of dissi-
pative relativistic hydrodynamics, namely Navier–Stokes or
second-order equations [1]. Strictly speaking, this necessi-
tates knowledge of the temperature dependence of the trans-
port coefficients over the range covered over the fireball his-
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tory. Dissipation also affects the endpoint of the fluid evo-
lution, that is, the transition from a continuous medium to a
collection of particles. This corresponds in so-called “hybrid
models” to the switch from hydrodynamics to a particle trans-
port model [10], or in a more simplified picture, which we
shall hereafter adopt, to the sudden (kinetic) freeze out of
the fluid into noninteracting particles. Modelling this junc-
ture with the Cooper–Frye prescription [11], the invariant
distribution of particles decoupling from of a fluid with four-
velocity uμ(x) reads1

Ep
d3 N

d3p
= g

(2π)3

∫

�

f

(
p · u(x)

T

)
pμd3σμ(x), (1)

with � the freeze-out hypersurface, here defined by a con-
stant temperature T , and g the degeneracy factor for the parti-
cles. f denotes a phase space distribution, the precise form of
which depends on the particle type—boson or fermion—and
on the dissipative properties of the fluid. Thus, for the decou-
pling from a perfect fluid, f is given by the equilibrium ther-
mal distribution—Bose–Einstein or Fermi–Dirac, although
we shall from now on focus on the regime where quan-
tum statistics effects are negligible and approximate either of
them by the Maxwell–Boltzmann distribution, which will be
denoted f0. If the freezing-out fluid is dissipative, f contains
extra terms, to ensure the continuity of the energy-momentum
tensor at decoupling. These corrections have been computed,
in the case of a transition to an ideal single-component Boltz-
mann gas, for a fluid with finite shear [12] or bulk viscos-
ity [13], or a conformal fluid obeying second-order dissipa-
tive hydrodynamics [14]. It has, however, been recognised
that more realistic corrections are needed—and some have
been computed in various models [15–20]—and there have
been attempts to constrain them from the available experi-
mental data [21].

In the present study, we wish to pursue this avenue and
investigate whether the functional form of the dissipative cor-
rections to the phase space distribution at the end of the
hydrodynamic evolution, in particular their dependence on
the emitted particle momentum, can be reconstructed from
the shape of the flow harmonics. For that purpose, we fol-
low the idea of Ref. [6] and compute the Cooper–Frye inte-
gral (1) within a saddle-point approximation (Sect. 2). This
leads us to identify two main classes of particles, “slow” and
“fast”, according to how their velocity compares to the max-
imal velocity of the fluid flowing in the direction of their
momentum. We show in Sect. 3 that for slow particles, the
dissipative effects coming from freeze out are actually min-
imal, so that the qualitative behaviours found in the ideal

1 Here and throughout the paper, we use a metric with (+,−,−,−)

signature and denote four-vectors in sans serif font and three-vectors in
boldface.

case remain valid. Turning then to fast particles (Sect. 4),
we investigate the dissipative corrections from freeze out on
anisotropic flow and find that by using relations between dif-
ferent flow harmonics, it may be possible to constrain the
functional form of these effects from the data. Eventually,
in Sect. 5 we summarise our findings and compare some of
our results to “exact” numerical computations of the Cooper–
Frye integral for a toy freeze-out profile, so as to gauge the
validity of the saddle-point approximation.

Throughout this paper, we leave aside fluctuations, i.e.
we work with exactly reconstructed flow harmonics vn , not
with their root mean squares or other similar quantities as
extracted from various analysis methods.

2 Saddle-point computation of the Cooper–Frye
integral

To investigate the effect of dissipative corrections due to the
matching between fluid and particles, we shall not assume a
specific flow profile (like e.g. Bjorken flow or a blast wave) as
was done in previous analytical studies. Instead, we bypass
knowledge of the freeze-out hypersurface in the Cooper–Frye
prescription by approximating the integral with the saddle-
point method. Quite naturally, the trade off for this approxi-
mation is a restriction of the range of validity of our results,
which will only hold in given transverse momentum inter-
vals, and for some observables only.

In most models analysed so far, with the exception of
Ref. [18], the single-particle phase space distribution at
decoupling is taken to be of the form

f (x, p) = [1 + δ f (x, p)] f0

(
p · u(x)

T

)
. (2)

That is, dissipative effects contribute an additive term pro-
portional to the equilibrium distribution—in addition to the
modification of the flow velocity profile u(x). For the sake of
consistency of the hydrodynamic description, the modulus of
the “reduced” correction δ f should be (much) smaller than
1. Here, we shall also adopt the ansatz (2) and further use
the condition |δ f | � 1 to replace the actual saddle point of
the integrand in Eq. (1), corresponding to f , by the saddle
point obtained with f0 only. It can easily be checked that
the changes introduced by this simplification are actually of
second order in the small parameters controlling δ f . Since
we consider the regime of not too small momenta where f0

is given by the Maxwell–Boltzmann distribution, the sad-
dle point is then the point(s) on the freeze-out hypersurface
where p · u(x)/T is minimum. As this was already stud-
ied in Ref. [6], we shall in the main body of the text only
review the findings, relegating more detailed calculations to
Appendix A.
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For longitudinal motion, the saddle point selects regions of
the freezing-out fluid with the same rapidity yf as that (y) of
the emitted particles. Regarding transverse motion, a particle
with azimuthal angle (with respect to a given reference) ϕ is
actually stemming from a fluid cell with transverse velocity
ut pointing along ϕ, i.e. parallel to the particle transverse
momentum pt .

To further specify the transverse velocity of the fluid cor-
responding to particles with a given transverse momentum,
one needs to introduce the maximum value of |ut | for fixed
rapidity and azimuth, umax(y, ϕ). A typical value for umax

at midrapidity in heavy-ion collisions at maximum RHIC
energy or at the LHC is about 1. “Slow” resp. “fast” particles
are then defined as those with a transverse velocity pt/m
smaller resp. larger than umax(y, ϕ). The former are emitted
by a fluid region with respect to which they are at rest, i.e.
such that ut = pt/m; one then finds at once u(xs.p.) = p/m
at the saddle point xs.p., which also gives

p · u(xs.p.) = m for slow particles. (3)

We shall use this result in next section.
For fast particles, the minimum of p · u(x) is reached at a

saddle point xs.p. where the fluid transverse velocity reaches
its maximum umax(y, ϕ), and some straightforward algebra
yields

p · u(xs.p.) = mt u
0
max(y, ϕ) − pt umax(y, ϕ)

for fast particles, (4)

where we have defined u0
max(y, ϕ) ≡ √

1 + umax(y, ϕ)2,

while mt ≡
√

m2 + p2
t is the usual “transverse mass”.

Before we exploit Eqs. (3) and (4), let us recall that slow or
fast particles must actually obey more stringent conditions for
the saddle-point approximation to hold. Thus, slow particles
should have a mass significantly larger than the freeze-out
temperature, which unfortunately excludes pions and might
only marginally be fulfilled by kaons. In turn, fast particles
should obey condition (29) from Appendix A, which trans-
lates into a species-dependent lower bound on the particle
transverse momentum. In either case, the smaller the freeze-
out temperature is, the better the saddle-point approxima-
tion is.

3 Slow particles

For slow particles decoupling from an ideal fluid, it was found
that Eq. (3) leads to the remarkable property that the parti-
cle distribution resulting from the Cooper–Frye prescription
is simply (the degeneracy factor times) a function of mass
multiplying a species-independent function of the particle
transverse velocity pt/m, azimuth ϕ and rapidity y [6]:

Ep
d3 N

d3p
= c(m) F

( pt

m
, ϕ, y

)
. (5)

As a consequence, the particle spectra for different species,
plotted vs. pt/m at a given rapidity, should only differ by
a normalisation factor. Expanding the particle distribution
in Fourier series of the azimuthal angle, the Fourier coeffi-
cients vn(pt/m, y) should be identical for different species
of slow particles. Plotting as a function of transverse momen-
tum pt , instead of transverse velocity, one finds the so-called
“mass ordering” of the flow coefficients, with vn(pt ) being
smaller for heavier particles—thanks to the fact that vn is a
monotonously increasing function of transverse momentum.

As we shall show next, these generic features—namely
transverse momentum spectra as product of a particle type
dependent coefficient and a universal function of the particle
velocity and anisotropic flow coefficients depending only on
pt/m and y—actually persist for slow particles decoupling
from a dissipative fluid, at least as far as first-order or confor-
mal second-order effects are concerned. Note, however, that
the prefactors c(m) and the shape of the species-independent
function F do depend on the form of the dissipative correc-
tions.

To see that the latter still lead to a functional dependence
of the type (5), we have to inspect the form of the dissipative
corrections at freeze out more closely.

Consider first the correction accounting for shear viscous
effects. This contribution contains at least a multiplicative
factor π

μν
shear(x) pμ pν , with π

μν
shear the shear stress tensor. For

our discussion, the latter possesses the important property
that it is orthogonal to the fluid velocity, π

μν
shearuμ = 0. As

we have seen above, the saddle point for slow particles is
such that u(xs.p.) = p/m, which yields at once

π
μν
shear(xs.p.) pμ pν ∝ π

μν
shear(xs.p.)uμ(xs.p.)uν(xs.p.) = 0.

Thus, the additive correction at decoupling from shear vis-
cosity vanishes for slow particles in the saddle-point approx-
imation.

The bulk viscous term is also readily dealt with. Quite
generally, it should be of the form

δ f
(1)

bulk = Cbulk(p · u(x), p2)�(x),

with �(x) = ζ ∂μuμ(x) the bulk pressure and Cbulk a func-
tion. With the help of Eq. (3), valid for slow particles, one
sees that the arguments are actually simply m and m2, i.e.
momentum independent. In turn, the bulk pressure at freeze
out only includes the expansion rate ∂μuμ, taken at the same
(saddle) point for particles having the same transverse veloc-
ity. Again, one finds that the particle distribution depends on
momentum only through the variables pt/m, y and ϕ, so that
the conclusions found for the freeze out from an ideal fluid
remain valid, albeit with modified factors c(m) and shape
F(pt/m, ϕ, y).
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Conformal second-order corrections to the phase space
distribution of slow particles can be handled in the same
way as the shear or bulk viscous terms above. Consider thus
Eq. (30) in Appendix B, in which the corrections computed
in Ref. [14] are repeated. The five first terms contain contrac-
tions of the particle four-momentum with tensors orthogonal
to the fluid four-velocity, and they thus yield a vanishing con-
tribution at the saddle points for slow particles, by the same
argument as for first-order shear corrections. The last term
of Eq. (30) involves on the one hand the quantity ξ̄4p defined
in Eq. (31d), which in turn only depends on the energy and
momentum of the particle in the fluid local rest frame: at
the saddle point, these are simply the particle mass and zero,
respectively. Besides, that last term also involves the (second-
order) dissipative stress tensor, which has to be evaluated at
the same “universal” saddle point for particles having a given
transverse velocity, and thus will contribute a term depend-
ing on momentum only through pt/m, y and ϕ. All in all,
the correction will again lead to a distribution obeying the
scaling law (5).

One can anticipate that nonconformal second-order cor-
rections can be dealt with as easily. Yet it may be noted that
freeze out is most commonly assumed to take place at a tem-
perature at which the fluid, according to lattice gauge field
theory results, is approximately conformal, so that such cor-
rections might actually turn out to be quite small, especially
for particles that freeze out later.

4 Fast particles

Let us now turn to fast particles. Inserting Eq. (4) in the
integrand of the Cooper–Frye formula, one deduces

Ep
d3 N

d3p
∝ exp

[
pt umax(y, ϕ) − mt u0

max(y, ϕ)

T

]
. (6)

The omitted prefactor depends on the dissipative corrections,
estimated at the saddle point, as well as on the behaviour of
the velocity in the neighbourhood of the saddle point, which
necessitates more detailed knowledge on the flow profile at
freeze out. To bypass the need for this knowledge, we shall
focus on the azimuthal anisotropies of the particle distribu-
tion, i.e. the flow coefficients vn , which do not depend on
the absolute normalisation of the spectrum. For the sake of
brevity, we shall from now on drop the rapidity y from our
expressions.

We introduce the expansion of the maximum transverse
flow velocity umax(y, ϕ) at freeze out as a Fourier series

umax(ϕ) = ūmax

⎡
⎣1 + 2

∑
n≥1

Vn cos n(ϕ − �n)

⎤
⎦ , (7)

with �n the nth harmonic symmetry-plane angle. Given any
realistic velocity profile, ūmax and the anisotropies Vn—
which naturally all depend on y—are easily reconstructed.
The three-velocity value corresponding to the average max-
imum transverse flow velocity ūmax will be denoted

v̄max ≡ ūmax√
1 + ū2

max

. (8)

A typical value of 1 for ūmax amounts to v̄max � 0.7. In
turn, the Fourier coefficients Vn are assumed to be small,
say of order 0.05 or smaller. Hereafter, we shall assume that
they obey the hierarchy V2 � V3 � V1, V4, V5, and that
higher coefficients vanish. Yet our calculations can easily be
repeated with any other hierarchy of the anisotropies of the
maximum transverse flow velocity at freeze out.

Expansion (7) is reported in Eq. (6), namely into the expo-
nent and—if necessary—in the prefactor. In the latter, one
should strictly speaking know the Fourier expansions of var-
ious combinations of the derivatives of the flow velocity u(x)

around the saddle point—for instance, the azimuthal depen-
dence of the components of the shear stress tensor. We shall
for simplicity neglect this dependence, considering that it
only represents a small modulation of a quantity which is
already small in itself. There is however no difficulty of prin-
ciple in including this refinement, at the cost of introduc-
ing new Fourier coefficients for each azimuthally dependent
quantity.

Some straightforward algebra involving the Taylor expan-
sion of the exponent in Eq. (6) then yields the Fourier coef-
ficients of the invariant single-particle distribution for fast
particles. Restricting ourselves to the first five harmonics,
one finds

v1(pt ) = [I(pt ) − D(pt )]V1

+[I(pt )
2 − I(pt )D(pt )]V2V3, (9a)

v2(pt ) = [I(pt ) − D(pt )]V2, (9b)

v3(pt ) = [I(pt ) − D(pt )]V3 + O(V1V2), (9c)

v4(pt ) = [I(pt ) − D(pt )]V4

+
[I(pt )

2

2
− I(pt )D(pt )

]
V 2

2 , (9d)

v5(pt ) = [I(pt ) − D(pt )]V5

+[I(pt )
2 − I(pt )D(pt )]V2V3. (9e)

In these relations, I(pt ) is a simple function that does not
depend on the dissipative corrections to the single-particle
phase space distribution, namely

I(pt ) = ūmax

T
(pt − mt v̄max). (10)

For fast particles, pt/mt > v̄max so that I(pt ) is always
positive. The function D(pt ) represents the term stemming
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from the dissipative contributions δ f to the phase space dis-
tributions, and it vanishes when these are absent, that is, for
particles freezing out from an ideal fluid. The actual form of
D(pt ), in particular the functional dependence on pt , directly
reflects that of δ f . We give as an example the function D(pt )

resulting from considering only first-order shear viscous cor-
rections as given by Grad’s prescription in Appendix C. More
generally, one can compute D(pt ) starting from any ansatz
for δ f . This can then be compared with the shape constrained
from experimental results as we explain below.

Before that, let us discuss Eqs. (9), starting with the “ideal
case” when dissipative effects vanish, i.e. D(pt ) = 0. Equa-
tions (9b) and (10) then reduce to Eq. (8) of Ref. [6] for
v2(pt ). Similarly, one recovers the nonlinear ideal relations
v4(pt ) � v2(pt )

2/2 [6] and v5(pt ) � v2(pt )v3(pt ) [8],
valid in the large pt regime where the linear contributions to
these higher harmonics become negligible.

For particles freezing out of a dissipative fluid, D(pt ) is
now non-zero. Another change, which is not reflected in our
notations, affects the average ūmax and Fourier coefficients
Vn of the maximum flow velocity at freeze out, which do
depend on the amount of dissipation along the system evo-
lution. In the following discussion, we take the values of
these quantities as fixed, and we only consider the effect of
including D(pt ) or not.

First, one sees at once that when D(pt ) > 0, its inclusion
leads to a decrease of every flow harmonic (9). Now, the
actual sign of D(pt ) depends on the flow profile at freeze
out. In existing hydrodynamical simulations, it has turned
out to be positive, as hinted at in particular by the decrease of
v2(pt ) at large transverse momentum and midrapidity, which
a posteriori explains our choice of signs in Eqs. (9). There are,
however, theoretical grounds to expect that the bulk viscous
contribution to D(pt ) could change sign [21]—although it
is not clear whether this should happen into the fast particle
region—, so that probably no definite statement can be made.

Among Eqs. (9), some show obvious similarities. Thus,
Eqs. (9b) and (9c) predict a constant ratio v3(pt )/v2(pt ) in
case the hierarchy V3 ∼ V2 � V1 holds.2 Likewise, Eqs. (9a)
and (9e) are very similar and predict analogous v1(pt ) and
v5(pt ) in the regime where the linear contributions to these
harmonics become negligible with respect to the V2V3 term.
Let us emphasise that these similarities between different
flow harmonics hold in the regime of fast particles, i.e. far

2 We checked for such a regularity in the ALICE data for identified
particles in semi-peripheral Pb–Pb collisions and found that the ratio
v3(pt )/v2(pt ) for kaons and (anti)protons is identical in the transverse
momentum range where they are “fast”; the ratio is however not con-
stant, but increasing. This might be due to the fact that in the considered
centrality range, the hierarchy of flow harmonics does not hold, so that
the nonlinear V1V2 contribution to v3(pt ) starts playing a role. In the
absence of the relevant v1(pt ) data, we could not investigate this idea
further.

from pt = 0, where the analyticity of the momentum dis-
tribution induces different scaling behaviours for each flow
harmonic [22].

Another finding from Eqs. (9) is that the nonlinear
relations valid in the ideal case no longer hold. Thus,
v4(pt )/v2(pt )

2 is now smaller than 1
2 when V4 can be

neglected and, more generally, this ratio is decreased by the
inclusion of the dissipative correction at freeze out D(pt ),
whether or not V4 is taken into account. In contrast, when
neglecting V5 the ratio v5(pt )/v2(pt )v3(pt ) increases for
D(pt ) 	= 0 and is thus larger than the “ideal” value of 1.
These qualitative results are borne out by results either from
a Boltzmann transport model [23] or from hydrodynamical
simulations [8,24].

The nonlinear relations can actually be exploited for more
quantitative results, still in the case of negligible linear con-
tributions. Thus, one finds from Eqs. (9b), (9c) and (9e)

v5(pt ) − v2(pt )v3(pt )

v3(pt )
= D(pt )V2, (11)

or similarly, using Eqs. (9b)–(9d)

v2(pt )
2 − 2v4(pt ) = D(pt )

2V 2
2 . (12)

That is, one can isolate the dissipative contribution from
decoupling to v2(pt )—and more generally, the term D(pt ).
Here we gave two independent relations from which the dis-
sipative term can be experimentally constrained and then
compared with the functional form derived from a functional
ansatz for δ f .

5 Discussion

In the previous two sections, we investigated the effect of the
dissipative correction δ f to the phase space distribution of
particles at freeze out on the particle spectrum.

We first found that for slow particles, which are emitted by
a fluid region moving at the same velocity, the results valid
in the ideal case are qualitatively not modified by dissipa-
tive effects: spectra for different particles coincide, up to a
multiplicative factor, when considered as a function of trans-
verse velocity pt/m; and this implies mass ordering of the
flow harmonics. This result starts bridging the gap between
the limiting cases of ideal fluid dynamics on the one side [6]
and Boltzmann transport calculations with very few scatter-
ings per particle on the other side [25], in which the role of
velocity as scaling variable was emphasised.

For fast particles, we focussed on the anisotropic flow
coefficients vn(pt ). Here, we recovered the qualitative
behaviours already identified in numerical simulations for
both “linearly” and “nonlinearly responding” harmonics. In
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addition, we showed that by investigating appropriate combi-
nations of several flow harmonics—involving a nonlinear one
and the linear ones that contribute to it—, one could ideally
reconstruct from the data the momentum dependence of δ f .
We only gave two examples (11) or (12) of such relations,
but other can be derived, in particular by generalizing our
present “single-particle” study to multiparticle correlations.

To gauge the validity of our results, especially of the rela-
tions found for fast particles, we tested them on the flow coef-
ficients arising from the numerical integration over a three-
dimensional freeze-out hypersurface � of some flow profile.
More precisely, we took for � an infinite (along the longi-
tudinal axis) azimuthally symmetric cylinder of radius R, at
a constant proper time τf.o.. Using as space-time coordinates
the proper time τ , cylindrical coordinates r, φ and space-time
rapidity ηs , we assumed for the fluid velocity on � a gener-
alised blast wave-like profile for the radial coordinate [26,27]

ur (r, φ) = ūmax
r

R

(
1 + 2

5∑
n=1

Vn cos nφ

)
, (13)

together with uφ = uη = 0 in the azimuthal and ηs direc-
tions, as well as naturally uτ = √

1 + (ur )2 in the time-
like direction. From this expression, one directly reads off
the maximal transverse velocity [cf. Eq. (7)]. The plots pre-
sented below were obtained with the values R = 7.5 fm,
τf.o. = 5.25 fm/c, T0 = 160 MeV, ūmax = 0.55 and
V2 = 0.05—corresponding to the choice made in Ref. [12]—
and additionally V3 = 0.05 and all other Vn = 0. We per-
formed tests with other values, without changing the findings
we now report.

With such a choice of flow profile, seven out of the ten
different components of the shear viscous stress tensor π

μν
shear

are non-zero. Nevertheless, in our saddle-point approxima-
tion we only keep πrr

shear as explained in Appendix C. With
the relatively small chosen value of ūmax and with a ratio
η/s = 0.16, the coefficient C ′

shear defined in that appendix is
of order 0.6, which ensures that some of the terms we have
neglected in deriving the correction term (34) remain small
as long as pt (or more accurately pt − mt v̄max) is not too
large. One can naturally depart from this assumption, at the
cost of considering a more lengthy formula for the correction
D(pt ).

Given this set up for our numerical toy model for the
Cooper–Frye distribution, we can compare its results with the
findings within the saddle-point approximation, focussing
on fast particles—that is, on the region pt � 0.6 GeV/c
for pions. To begin with a blunt statement, the saddle-point
behaviours (9) represent a bad approximation to those of the
numerical simulation in the pt range which seems reasonable
for the comparison to experimental data. To list a few discrep-
ancies, which already appear for the decoupling from an ideal
fluid: v2(pt ) in the exact blast wave model grows quadrati-
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Fig. 1 Difference between the values of the pion elliptic flow v2(pt ) in
the ideal and shear viscous cases, for a full computation of the Cooper–
Frye integral (dashed) or within the saddle-point approximation (full
curve)

cally at low pt (for pions, until about 1–1.5 GeV/c), while
Eq. (9b) is almost linear. Equations (9b) and (9c) predict
parallel behaviours for v2(pt ) and v3(pt )—with our choice
of values for V2 and V3, they should be equal—, while the
full computation gives v3(pT ) significantly smaller [the ratio
v3(pt )/v2(pt ) for pions grows from 0.5 at 1 GeV/c to 0.8 at
3 GeV/c]. Below 3 GeV/c, the “exact” (we shall from now on
use this short formulation) v1(pt ) and v4(pt ) differ by more
than a factor 2, while Eqs. (9a) and (9d) give them equal; on
the other hand, the exact v4(pt ) almost equals v5(pt ), while
relations (9) predict a factor 2 in the ideal case. In short, the
approximations (9) are quite unsatisfactory below 3 GeV/c.
Let us, however, note that they become much better above
5 GeV/c, as was actually already observed for the nonlin-
ear relations between higher harmonics and the lower ones
in realistic hydrodynamical computations [8]. This region is
probably not relevant for comparison to experimental data,
but might help with the understanding of numerical fluid
dynamics simulations.

Despite our having just criticised the “absolute” predic-
tions (9), we shall now argue that the saddle-point approx-
imation captures the effect of dissipative effects at freeze
out in an astonishingly good manner. To illustrate this point,
we display in Fig. 1 the difference between the ideal and
shear viscous v2(pt )—computed with the same values of
all parameters listed below Eq. (13), in particular ūmax—as
given by the exact numerical integration of the Cooper–Frye
integral (dashed curve). This difference should only reflect
the effect of the dissipative correction δ f , which within our
saddle-point calculation, represented by the full curve, is
simply D(pt )V2, with D(pt ) given by Eq. (34). The agree-
ment between the numerical and analytical results is obvi-
ously excellent, especially when keeping in mind that the
v2(pt ) values themselves are quite poorly approximated by
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Fig. 2 Same as Fig. 1 for triangular flow v3(pt )

the saddle-point calculation. Note that the growing departure
between the two curves above 2 GeV/c arises from our hav-
ing discarded terms in deriving the simple formula (34) and
can be cured by including more terms. On the other hand,
we have no explanation for the excellent agreement at low
momentum, outside the regime of fast particles.

As mentioned above, the exact v2(pt ) and v3(pt ) are quite
different from each other, in contrast to the saddle-point pre-
diction. In Fig. 2, we show the difference of the ideal and
viscous v3(pt ), analogous to Fig. 1. Again, the saddle-point
result D(pt )V3 provides a good approximation to the full
computation, especially given that the saddle-point calcula-
tion for either of the v3(pt ) is too large by a factor of about
two or more across this pt range.

Figures 1 and 2 show that the saddle-point calculation cor-
rectly approximates the correction arising from the additive
dissipative term at freeze out. The displayed quantities are,
however, not experimental observables and thus this particu-
lar result can only be of use for numerical simulations, in
which the corrections can be turned on or off at will. In
contrast, the combinations on the left-hand sides (lhs) of
Eqs. (11) and (12) only involve measurable quantities. In
Fig. 3, we show the squared lhs of Eq. (11) and the lhs of
Eq. (12), computed within our exact freeze-out model with
shear viscosity. From those equations, they should be equal,
namely to the squared dissipative contribution to v2(pt ).
The danger here is that these combinations of flow coef-
ficients do not vanish when computed with the harmonics
vn(pt ) obtained in “exact” calculations without dissipative
correction—and accordingly they are about a factor of 2–3
larger than [D(pt )V2]2. This is somewhat disappointing, yet
we view the good agreement—which persists for other sets
of parameters—between the two curves in Fig. 3 as a hint that
the displayed quantities open the possibility to pin down the
effects of dissipation at decoupling, although we could not
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5
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Fig. 3 Combinations of flow harmonics [full squared lhs of Eq. (11);
dashed lhs of Eq. (12)] for pions in a full computation of the Cooper–
Frye integral with viscous corrections

come up with a crisp mathematical argument to substantiate
that statement.

Now, in this paper, we have admittedly left aside a few
phenomena, which could spoil the validity of our findings.
Initial-state fluctuations are probably not hard to deal with, as
their effect is to add analysis-method-dependent multiplica-
tive coefficients [8,23]—related to the initial eccentricities,
and which can be deduced from the study of integrated flow
or from that of slow particles—in front of the flow harmonics
in relations (11) or (12).

A possibly more worrisome effect is that of rescatterings,
if any, after the fluid-particle transition, which might blur the
relations by contributing some more anisotropic flow. Again,
we think this difficulty can be handled, first by exploiting par-
ticles that rescatter less and secondly by gauging the influence
of hadronic collisions in transport models. Here we wish to
mention an interesting possibility: by investigating particles
with different cross sections, i.e. that decouple at different
stages of the evolution, one could ideally hope to map—once
the functional form of δ f is known, although it admittedly
depends on the particle type!—the temperature dependence
of the transport coefficients in some region in the hadronic
phase. In the future, we wish to investigate this idea within
more realistic numerical simulations.
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Appendix A: Details of the saddle-point calculations

In this appendix, we give the main steps of the saddle-
point calculations of the Cooper–Frye integral. For the sake
of brevity, the x dependence of the velocity will often be
dropped in the following.

Let pt und y be the transverse momentum and longitu-
dinal rapidity of an emitted particle of mass m in a fixed
“laboratory” frame and mt its transverse mass. We denote
by ut resp. y f the transverse component resp. longitudinal
rapidity of the fluid four-velocity, whose timelike compo-

nent is then given by
√

1 + u2
t cosh y f , as follows from the

normalisation uμuμ = 1. Eventually, ϕ resp. ϕ f stands for
the azimuth of the particle transverse momentum resp. of the
fluid transverse velocity with respect to some fixed axis.

With these notations, one quickly finds

p · u = mt

√
1 + u2

t cosh(y − y f ) − pt · ut

= mt

√
1 + u2

t cosh(y − y f ) − pt ut cos(ϕ − ϕ f ),

(14)

with pt = |pt |, ut = |ut |.
It is convenient to introduce the transverse rapidity y f,t

of the fluid—defined through ut = sinh y f,t —and that of
the emitted particle, yt , which obeys mt = m cosh yt , pt =
m sinh yt . With their help, the inner product (14) becomes

p · u = m cosh yt cosh y f,t cosh(y − y f )

− m sinh yt sinh y f,t cos(ϕ − ϕ f ). (15)

Minimising p · u with respect to y f or ϕ f is trivial and gives
the conditions

y f = y and ϕ f = ϕ. (16)

The former means that the time and longitudinal compo-
nents (in a Cartesian coordinate system) of the particle
four-momentum and the fluid four-velocity obey pz/p0 =
uz/u0(= tanh y) at the point(s) of the freeze-out surface
where p · u(x)/T is minimal. In turn, the equality ϕ f = ϕ

means that the transverse components of the corresponding
four-vectors are parallel at that (those) emission point(s).

Straightforward computations yield the second derivatives
of p · u(x) with respect to either y f or ϕ f ; at the minimum,
their respective values are

∂2(p · u)

∂y2
f

∣∣∣∣
min

= m cosh yt cosh y f,t , (17a)

∂2(p · u)

∂ϕ2
f

∣∣∣∣
min

= m sinh yt sinh y f,t . (17b)

Under conditions (16), the inner product of particle four-
momentum and fluid four-velocity reads

p · u = m cosh yt cosh y f,t − m sinh yt sinh y f,t

= m cosh(yt − y f,t ), (18)

which is clearly minimal when yt − y f,t is smallest. Note
that the first line can also be rewritten as

p · u = mt cosh y f,t − pt sinh y f,t . (19)

Instead of characterizing the transverse components of
four-vectors—particle momentum or fluid velocity—through
the azimuthal angle and transverse rapidity, one may adopt
the same choice as in Ref. [6]. Fixing the four-momentum of
the emitted particle—or actually, its transverse momentum
pt —, one considers the components of the transverse fluid
velocity parallel and orthogonal to pt , denoted respectively
by u‖ and u⊥. In that coordinate system, Eq. (14) reads

p · u = mt

√
1 + u2‖ + u2⊥ cosh(y − y f ) − pt u‖, (20)

which is obviously minimum when

y f = y and u⊥ = 0, (21)

equivalent to the conditions of Eq. (16) and resulting in

p · u = mt

√
1 + u2‖ − pt u‖, (22)

whose minimum is reached when v‖ ≡ u‖/
√

1 + u2‖ is as

close as possible to pt/mt —which naturally amounts to yt −
y f,t being smallest. The second derivatives of p · u(x) with
respect to either y f or u⊥ at the minimum are

∂2(p · u)

∂y2
f

∣∣∣∣
min

= mt

√
1 + u2‖, (23a)

∂2(p · u)

∂u2⊥

∣∣∣∣
min

= mt√
1 + u2‖

. (23b)

We now proceed with the minimisation of p·u(x) and discuss
the distinction between slow and fast particles.

A.1 Slow particles

If there is a point on the freeze-out hypersurface such that
y f,t (x) = yt —which in the terminology introduced in
Ref. [6] defines “slow particles”—then it gives the minimum
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of p ·u(x), which simply equals m [see Eq. (3)]. As thus, this
constitutes the saddle point xs.p. of the Cooper–Frye integral.

One easily checks that conditions (16) together with
y f,t = yt are equivalent to the relation pμ = muμ(xs.p.)

at the saddle point(s). The second derivative of p · u(x) with
respect to y f,t is trivially equal to p · u(x) itself. Making the
substitution y f,t = yt in Eq. (14) yields for the non-vanishing
second derivatives at the saddle point

∂2(p · u)

∂y2
f

∣∣∣∣
min

= m cosh2 yt = m2
t

m
, (24a)

∂2(p · u)

∂ϕ2
f

∣∣∣∣
min

= m sinh2 yt = p2
t

m
, (24b)

∂2(p · u)

∂y2
f,t

∣∣∣∣
min

= m for slow particles. (24c)

Equivalently, in the pt -attached coordinate system with (u‖,
u⊥) components, the identity y f,t = yt becomes v‖ =
pt/mt , and the second derivatives of p · u(x) at the mini-
mum read

∂2(p · u)

∂y2
f

∣∣∣∣
min

= m2
t

m
, (25a)

∂2(p · u)

∂u2⊥

∣∣∣∣
min

= m, (25b)

∂2(p · u)

∂u2‖

∣∣∣∣
min

= m3

m2
t

for slow particles. (25c)

In the saddle-point calculation, these derivatives, divided by
T , become the inverse widths of Gaussians which are inte-
grated over.

To ensure the validity of the saddle-point approximation,
the higher terms in the Taylor expansion of p ·u(x)/T should
be negligible compared to the quadratic ones. Considering for
instance the derivatives with respect to the transverse rapidity,
the odd ones vanish at the saddle point while the even ones all
are equal to m/T , as shown by Eq. (18). Fixing momentarily
y f and ϕ f to their saddle-point values, one thus has

p · u(x)

T
∼ m

T
+ m

T

(y f,t − yt )
2

2
+ m

T

(y f,t − yt )
4

4! + · · ·

The quadratic term in this expression is at most unity for
values of y f,t − yt �

√
T/m. The quartic term is then

much smaller than the quadratic one provided m � T . This
strong inequality constitutes a second condition—besides
that regarding their transverse velocity—to be fulfilled by
slow particles for the saddle-point calculation to hold.

A.2 Fast particles

For “fast particles”, defined as those whose transverse
velocity is larger than the maximal transverse velocity
umax(y f , ϕ f ) reached by the fluid flowing in the same direc-
tion, p · u(x) is minimal when the fluid transverse veloc-
ity takes its maximum value along that direction, namely
ymax

f,t (y f , ϕ f ) = ln[umax(y f , ϕ f ) + u0
max(y f , ϕ f )], where

we have defined u0
max(y f , ϕ f ) =

√
1 + umax(y f , ϕ f )2. This

gives the value of the product (15) at the corresponding point
on the freeze-out hypersurface, namely

p · u(xs.p.) = m cosh yt u0
max(y, ϕ) − m sinh yt umax(y, ϕ),

(26)

which is equivalent to Eq. (4). At that saddle point, one also
finds the first derivative

∂(p · u)

∂y f,t

∣∣∣∣
min

= mt umax(y, ϕ) − pt u
0
max(y, ϕ), (27a)

or equivalently, in the pt -attached coordinate system of
Ref. [6],

∂(p · u)

∂u‖

∣∣∣∣
min

= mtvmax(y, ϕ) − pt , (27b)

with vmax(y, ϕ) ≡ umax(y, ϕ)/u0
max(y, ϕ). The latter expres-

sion shows at once that this derivative is negative, since
pt/mt > vmax(y, ϕ). As for slow particles, the other first
two derivatives vanish.

In turn the non-vanishing second derivatives are

∂2(p · u)

∂y2
f

∣∣∣∣
min

= mt u
0
max(y, ϕ), (28a)

∂2(p · u)

∂ϕ2
f

∣∣∣∣
min

= pt umax(y, ϕ), (28b)

∂2(p · u)

∂y2
f,t

∣∣∣∣
min

= mt u
0
max(y, ϕ) − pt umax(y, ϕ) (28c)

for fast particles.

The second derivative with respect to y f,t is actually irrele-
vant for the saddle-point calculation, since the corresponding
first derivative does not vanish and thus is the leading term of
the approximation. It is, however, important to determine the
region of validity of the approximation. Writing, with y f and
ϕ f fixed to their saddle-point values (note that y f,t − yt ≤ 0,
so that the linear term is actually positive despite the negative
derivative)
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p · u(x)

T
∼ mt u0

max − pt umax

T
− pt u0

max−mt umax

T
(y f,t −yt )

+ mt u0
max − pt umax

T

(y f,t − yt )
2

2
+ · · · ,

one finds that the quadratic term is negligible compared to
the linear one provided

(mt umax − pt u0
max)

2

mt u0
max − pt umax

� T . (29)

This is the criterion—actually more stringent than the con-
dition pt > mtvmax—which gives the validity region of the
saddle-point approximation for fast particles.

Appendix B: Conformal second-order correction
to the phase space distributions

To make this paper more self-contained, we gather hereafter
the expression of the conformal second-order correction to
the phase space distribution as computed within the relax-
ation time approximation by Teaney and Yan [14], to whose
paper we refer the reader for more details. Note that we

give here the relative correction δ f
(2)

, while equations (2.30)
and (2.31) of Ref. [14] relate to the absolute correction

δ f (2) = δ f
(2) × f0. Accordingly, the scalar quantities χ̄i p,

ξ̄ j p we discuss below differ from their counterparts χi p, ξ j p

in Ref. [14].
We denote byπμν the dissipative stress tensor up to second

order in the conformal case, that is, including not only the
first-order correction proportional to η, but also the second-
order terms involving the relaxation time τπ and the “usual”
coefficients λ1, λ2, λ3 [28]. �μν is the projector on the local
rest frame, i.e. orthogonal to the fluid four-velocity, and∇μ ≡
�μν∂ν denotes the spatial derivatives in that frame.

With these notations, the conformal second-order relative
correction to the phase space distribution at freeze out reads

δ f
(2) = χ̄1p

η2

pμ1 pμ2 pμ3 pμ4

T 6 π〈μ1μ2πμ3μ4〉

+ χ̄2p

η

pμ1 pμ2 pμ3

T 5

×
[

6

T
π〈μ1μ2∇μ3〉T − ∇〈μ1πμ2μ3〉

]

+ ξ̄1p

η2

pμ2 pμ1

T 4 πλ〈μ2
πμ1〉λ

+ ξ̄2p

η

pμ2 pμ1

T 3

[
πμ2μ1 + η∇〈μ2 uμ1〉

]

+ ξ̄3p

η

pμ2

T 3

[
�μ2λ2∂λ1π

λ1λ2
]+ ξ̄4p

T 2η2 πμνπμν, (30)

where the angular brackets denote the construction of a trace-
less symmetric tensor orthogonal to the fluid four-velocity.
Together with a third function χ̄0p which will appear here-
after, χ̄1p and χ̄2p are related to the equilibrium distribu-
tion (for χ̄1p) and to the relaxation time of the correspond-
ing approximation, yet their precise expressions will not be
needed. In equation (30), the four scalar functions ξ̄1p, ξ̄2p,
ξ̄3p, ξ̄4p are linearly related to χ̄0p, χ̄1p and χ̄2p through

ξ̄1p = χ̄1p
4 p2

LR

7 T 2 − χ̄2p Ep,LR

ητπ T
(ητπ + λ1), (31a)

ξ̄2p = χ̄2p Ep,LR

T 2τπ

− χ̄0p, (31b)

ξ̄3p = −χ̄2p
2 p2

LR

5 T 2 + 2χ̄0p
η

s

Ep,LR

T
− ap∗ , (31c)

ξ̄4p = χ̄1p
2 p4

LR

15 T 4 − χ̄2p
Ep,LR p2

LR

3 T 3

− χ̄0p
η

s

E2
p,LR

T 2 c2
s − aE∗

Ep,LR

T
, (31d)

with Ep,LR and pLR the particle energy and momentum in
the local rest frame, and aE∗ , ap∗ two coefficients discussed
in Ref [14] that play no role here.

Appendix C: Anisotropic flow modification
from the shear viscous correction at freeze out

In this appendix, we illustrate the passage from a given dis-
sipative correction δ f to the phase space distribution to the
corresponding function D(pt ) in Eqs. (9) on an example.

Within the framework of Grad’s prescription, the relative
correction to the phase space distribution due to shear viscous
effects reads

δ f
(1)

shear = 1

2[e(x) + P(x)]T (x)2 π
μν
shear(x) pμ pν

≡ Cshear(x)π
μν
shear(x) pμ pν, (32)

with e resp. P the energy density resp. pressure and π
μν
shear the

(traceless) shear viscous part of the stress dissipative tensor.
The latter can be recast as π

μν
shear = η∇〈μuν〉, with η the shear

viscosity.
To handle the product π

μν
shear pμ pν , one can again use the

Landau matching condition, to cancel out the component
of the particle four-momentum pμ along the flow velocity
uμ. Introducing qμ ≡ pμ − (p0/u0)uμ, one thus obtains
π

μν
shear pμ pν = π

μν
shearqμqν .

Let us make a few assumptions on the velocity profile
at freeze out. We thus assume that it is approximately radial
and neglect the azimuthal modulation of its gradient—which
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amounts to leaving aside higher-order terms in some small
Fourier coefficients, as already mentioned above Eqs. (9).
Under those hypotheses, only the radial component pt −
mtvmax(ϕ), with vmax(ϕ) ≡ umax(ϕ)/u0

max(ϕ), of q plays a
role, and one finds at the saddle point xs.p. corresponding to
a given four-momentum p

δ f
(1)

shear = Cshear(xs.p.)η∇〈r ur〉(xs.p.)[pt − mtvmax(ϕ)]2,

where the superscript r denotes the radial direction.
Let C ′

shear ≡ Cshear(xs.p.)η ∇〈r ur〉(xs.p.). Using the
Fourier expansion (7) to expand vmax(ϕ), one finds after some
algebra

1 + δ f
(1)

shear � [1 + C ′
shear(pt − mt v̄max)

2]
×
[

1 − 2C ′
shear(pt − mt v̄max)

1 + C ′
shear(pt − mt v̄max)2

mt v̄max

1 + ū2
max

×
∑
n≥1

2Vn cos n(ϕ − �n)

]
. (33)

The first factor is independent of azimuth and thus does
not contribute to the flow coefficients vn(pt ). In turn, the
second factor yields D(pt ):

D(pt )shear = 2C ′
shear(pt − mt v̄max)

1 + C ′
shear(pt − mt v̄max)2

mt v̄max

1 + ū2
max

. (34)

The terms in I(pt ) in Eqs. (9) come from the exponential in
Eq. (6), which eventually multiplies Eq. (33).

C ′
shear(pt −mt v̄max)

2 should be significantly smaller than
1, so that viscous corrections remain small. The dependence
of D(pt ) on the transverse momentum is thus actually given
by the numerator, and it is approximately quadratic.
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