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The past decade has seen a tremendous effort toward unraveling the relationship between entanglement
and emergent spacetime. These investigations have revealed that entanglement between holographic
degrees of freedom is crucial for the existence of bulk spacetime. We examine this connection from the
other end of the entanglement spectrum and clarify the assertion that maximally entangled states have no
reconstructable spacetime. To do so, we first define the conditions for bulk reconstructability. Under these
terms, we scrutinize two cases of maximally entangled holographic states. One is the familiar example of
AdS black holes; these are dual to thermal states of the boundary conformal field theory. Sending the
temperature to the cutoff scale makes the state maximally entangled and the respective black hole consumes
the spacetime. We then examine the de Sitter limit of Friedmann-Robertson-Walker (FRW) spacetimes.
This limit is maximally entangled if one formulates the boundary theory on the holographic screen.
Paralleling the anti–de Sitter (AdS) black hole, we find the resulting reconstructable region of spacetime
vanishes. Motivated by these results, we prove a theorem showing that maximally entangled states have no
reconstructable spacetime. Evidently, the emergence of spacetime is endemic to intermediate entanglement.
By studying the manner in which intermediate entanglement is achieved, we uncover important properties
about the boundary theory of FRW spacetimes. With this clarified understanding, our final discussion
elucidates the natural way in which holographic Hilbert spaces may house states dual to different
geometries. This paper provides a coherent picture clarifying the link between spacetime and entanglement
and develops many promising avenues of further work.
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I. INTRODUCTION

It is believed that dynamical spacetime described by
general relativity is an emergent phenomenon in the
fundamental theory of quantum gravity. Despite this
pervasive idea, the materialization of spacetime itself is
not fully understood. Holography posits that a fundamental
description of quantum gravity resides in a nongravitational
spacetime whose dimension is less than that of the
corresponding bulk spacetime [1–3]. In this paper, we
study the emergence of gravitational spacetime in the
context of holography, using the renowned anti–de Sitter
(AdS)/conformal field theory (CFT) correspondence [4]
and a putative holographic theory of Friedmann-Robertson-
Walker (FRW) spacetimes [5].

In this paper, we expound on the intimate relationship
between the emergence of spacetime and the lack of
maximal entanglement in the boundary state. Through this,
we see that the existence of spacetime is necessarily non-
generic and that nature seizes the opportunity to construct
local spacetime when states deviate from maximal entan-
glement. A reason why this viewpoint is not heavily
emphasized (see, however, e.g., Refs. [6,7]) in the standard
context of AdS/CFT is that one almost always considers
states with energy much lower than the cutoff (often sent to
infinity). The restriction to these “low energy” states
implicitly narrows our perspective to those automatically
having nonmaximal entropy. However, in a holographic
theorywith a finite cutoff scale (or a fundamentally nonlocal
theory), the regime ofmaximal entropy ismuchmore readily
accessible. This happens to be the case in FRW holography,
and perhaps holography in general. Through this lens, we
analyze the emergence of spacetime both in the familiar
setting of Schwarzschild-AdS spacetime with an infrared
cutoff and in flat FRW universes. We explicitly see that the
directly reconstructable region of spacetime [6,8] emerges
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only as we deviate from maximally entangled states. This
implies that a holographic theory of exact de Sitter space
cannot be obtained as a natural limit of theories dual to FRW
spacetimes by sending the fluid equation of state parameter,
w, to −1. In addition to analyzing these two examples, we
prove a theorem demonstrating the lack of directly recon-
structable spacetime in the case that a boundary state is
maximally entangled.
After surveying the relationship between spacetime and

(the lack of) entanglement, we then analyze the deviation
from maximal entropy itself. The size of the subregions for
which deviations occur reveals valuable information about
the underlying holographic theory, and observing the
corresponding emergence of spacetime in the bulk provides
a glimpse into the mechanism by which nature creates bulk
local degrees of freedom. In the case of Schwarzschild-AdS
spacetime, reconstructable spacetime (the region between
the horizon and the cutoff) appears as the temperature in the
local boundary theory (the CFT) is lowered, and the
resulting entanglement entropy structure (calculated holo-
graphically) is consistent with a local theory at high
temperature. However, this entanglement structure is not
observed in the case of FRW spacetimes as we adjust w
away from −1; additionally, the reconstructable region
grows from the deepest points in the bulk outward. This
suggests that the manner in which entanglement is scaf-
folded is unlike that of AdS/CFT. In fact, this aberrant
behavior leads us to believe that the holographic theory
dual to FRW spacetimes has nonlocal interactions.
The relationship between spacetime and quantum entan-

glement between holographic degrees of freedom is no
secret [9–15], but what is spacetime? Undoubtedly, entan-
glement is a necessity for the existence of spacetime. But it
is indeed possible to have too much of a good thing. The
analysis here exposes the inability to construct spacetime
from maximally entangled boundary states. Since typical
states in a Hilbert space are maximally entangled [16], this
implies that states with bulk dual are not typical. We see
that spacetime is an emergent property of nongeneric states
in the Hilbert space with both nonvanishing and non-
maximal entanglement for subregions. The existence of
entanglement allows for the construction of a code sub-
space of states [17] in which local, semiclassical bulk
degrees of freedom can be encoded redundantly.
Simultaneously, the lack of maximal entanglement allows
for a code subspace with subsystem recovery—hence
partitioning the bulk into a collection of local Hilbert
spaces. With this perspective, we see that holographic
theories are exceedingly enterprising—once deviating from
maximal entanglement, nature immediately seizes the
opportunity to construct spacetime. In this sense, spacetime
is the byproduct of nature’s efficient use of intermediate
entanglement to construct codes with subsystem recovery.
For a given spacetime with a holographic boundary, one

can calculate the von Neumann entropies for all possible

subregions of the boundary via the Hubeny-Rangamani-
Ryu-Takayanagi (HRRT) prescription [9,10,15]. The cor-
responding entanglement structure heavily constrains the
possible boundary states, but by no means uniquely
specifies it. In fact, given an entanglement structure and
a tensor product Hilbert space, one can always find a basis
for the Hilbert space in which all basis states have the
desired entanglement structure. If one considers each of
these basis states to be dual to the spacetime reproducing
the entanglement, then by superpositions one could entirely
change the entanglement structure, and hence the space-
time. This property naturally raises the question of how the
boundary Hilbert space can accommodate states dual to
different semiclassical geometries. Fortunately, for generic
dynamical systems, the Hilbert space can be binned into
energy bands, and canonical typicality provides us with the
result that generic states within these bands have the same
entanglement structure, regardless of the energy band’s
size. This allows the holographic Hilbert space to contain
states dual to many different spacetimes, each of which
can have bulk excitations encoded state independently.
Importantly, this is contingent on the result that typical
states have no spacetime.

A. Outline

Section II walks through the statement that maximally
entangled (and hence typical) states have no reconstruct-
able spacetime. This is broken down into parts. First, we
must define what we mean by reconstructable; this is
detailed in Sec. II A, and is very important for under-
standing the framework of the rest of the paper. We then use
this construction in Sec. II B to investigate the reconstruct-
able region of AdS spacetime with a black hole. We see the
expected behavior that the reconstructable region of space-
time vanishes as the temperature of the black hole reaches
the cutoff scale, making the state typical. In Sec. II C, we
show that de Sitter states are maximally entangled by
finding their HRRT surfaces. In Sec. II D, we combine
numerical results for flat FRW universes and use the
additional property that de Sitter’s HRRT surfaces lie on
a null cone to show that the reconstructable region vanishes
in the de Sitter limit of FRW spacetimes. Motivated by
these results, in Sec. II E we prove a theorem showing that
if a state is maximally entangled, then its HRRT surfaces
either wrap the holographic space or live on the null cone.
This is then used to present the general argument that
maximally entangled states have no spacetime.
Section III compares the emergence of spacetime in the

two theories we are considering. Sections III A and III B
present results comparing the entanglement structure of
AdS black holes and FRW spacetimes, respectively.
Section III C interprets these results and argues that the
appropriate holographic dual of FRW spacetimes is most
likely nonlocal.
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In Sec. IV, we put together all of the previous results and
explain how one Hilbert space can contain states dual to
many different semiclassical spacetimes. Here we discuss
the lack of a need for state dependence when describing the
directly reconstructable region.
In Appendix A, we analyze two-sided black holes within

our construction and discuss how a version of comple-
mentarity works in this setup. Appendixes B and C collect
explicit calculations for Schwarzschild-AdS and the de
Sitter limit of FRW spacetimes, respectively.

II. MAXIMALLY ENTROPIC STATES
HAVE NO SPACETIME

In this section, we see that maximally entangled states in
holographic theories do not have directly reconstructable
spacetime. First, we lay out the conditions for reconstruct-
ability in general theories of holographic spacetimes. Then
we examine the familiar example of a large static black hole
in AdS spacetime and determine its reconstructable region.
We then discuss the de Sitter limit of flat FRW space-
times. Finally, we prove a theorem establishing that maxi-
mally entropic holographic states have no reconstructable
spacetime.

A. Holographic reconstructability

In order to argue that typical states have no reconstruct-
able region, we must first present the conditions for a region
of spacetime to be reconstructed from the boundary theory.
We adopt the formalism presented first in Ref. [8] but
appropriately generalized in Ref. [6] to theories living
on holographic screens [18] (which naturally includes
the boundary of AdS spacetime as in the AdS/CFT
correspondence).
The question to answer is as follows: “Given a boundary

state and its time evolution with a known gravitational
bulk dual, what regions of the bulk can be reconstructed?”
This may sound tautological, but it is not. Settings in
which this question is nontrivial include spacetimes with
black holes and other singularities. From entanglement
wedge reconstruction [19,20], we know that the information
of a pure black hole is contained in the boundary theory but
whether or not the interior is reconstructable is unknown. In
holographic theories of general spacetimes, we are inter-
ested in describing spacetimes with big bang singularities
and a natural question is whether or not the theory recon-
structs spacetime arbitrarily close to the initial singularity.
To answer this question, Ref. [8] proposed that recon-

structable points in a spacetime are precisely those that
can be localized at the intersection of entanglement
wedges. This is similar to the proposal in Ref. [21] which
advocates that reconstructable points are those located at
the intersection of HRRT surfaces anchored to arbitrary
achronal subregions of the AdS conformal boundary.
However, this construction lacks the ability to localize

points in entanglement shadows, which can form in rather
tame spacetimes (e.g. a neutron star in AdS spacetime),
while using the intersection of entanglement wedges allows
us to probe these regions.
In order to generalize this to theories living on holo-

graphic screens, an essential change is that one can only
consider HRRT surfaces anchored to the leaves of a given
holographic screen (usually associated to a fixed reference
frame) [6]. This is because holographic screens have a
unique foliation into leaves that corresponds to a particular
time foliation of the holographic theory. Thus the von
Neumann entropy of subregions in the holographic theory
only makes sense for subregions of a single leaf. Note that
despite the lack of a unique time foliation of the conformal
boundary, this subtlety is also present in AdS/CFT. Namely,
one should consider only a single time foliation of the
boundary and the HRRT surfaces anchored to the asso-
ciated equal time slices even in asymptotically AdS space-
times [6].1 This issue becomes manifest when the boundary
contains multiple disconnected components, as we discuss
in Appendix A.
Thus we define the reconstructable region of a spacetime

as the union of all points that can be localized at the
boundary of entanglement wedges of all subregions of
leaves of the holographic screen. Henceforth, we refer to
the regions of spacetime constructed in this way as the
directly reconstructable regions (or simply the reconstruct-
able regions when the context is clear), and our analysis
primarily focuses on these regions. For a more detailed
study of directly reconstructable regions in general space-
times, see Ref. [6]. In particular, this definition only allows
for the reconstruction of points outside the horizon for a
quasistatic one-sided black hole, since such a horizon acts
as an extremal surface barrier [23].2 This also prevents the
direct reconstruction of points near singularities such as
big bang singularities and the black hole singularity of a
two-sided black hole.
Now that we have detailed the conditions for regions of

spacetime to be directly reconstructable, we must determine
a measure of “how much” spacetime is reconstructable.
This allows us to see the loss of spacetime in the limit
of states becoming typical. In the context of quantum
error correction [17], we are attempting to quantify the

1This is related to the work in Ref. [22], which studied the
breakdown of the HRRT formula in certain limits of boundary
subregions. These breakdowns correspond to disallowed folia-
tions of the boundary theory.

2This does not exclude the possibility that the holographic
theory allows for some effective description of regions other than
the directly reconstructable one, e.g. the black hole interior
(perhaps along the lines of Ref. [24]). This may make the interior
spacetime manifest, perhaps at the cost of losing the local
description elsewhere, and may be necessary to describe the fate
of a physical object falling into a black hole. We focus on
spacetime regions that can be described by the boundary theory
without resorting to such descriptions.
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factorization of the code subspace, e.g. how many dangling
bulk legs exist in a tensor network representation of the
code [25,26]. We expect the spacetime volume of the
reconstructable region to be indicative to this property, and
we use it in our subsequent analyses. The bulk spacetime
directly reconstructable from a single leaf depends on
features of the bulk, for example, the existence of shadows
and time dependence. In the case of (dþ 1)-dimensional
flat FRW spacetimes, we find that a codimension-0 region
can be reconstructed from a single leaf. On the other hand,
in any static spacetime, all HRRT surfaces anchored to one
leaf live in the same time slice in the bulk, and hence their
intersections reconstruct a codimension-1 surface of the
bulk. This is the case in an AdS black hole.
The discrepancy of the dimensions of the directly recon-

structable regions for different spacetimes of interest may
seem to cause issues when trying to compare the loss
of spacetime in these systems. Namely, it seems difficult
to compare the loss of reconstructable spacetime in
Schwarzschild-AdS spacetime as we increase the black hole
mass to the loss of spacetime in thew → −1 limit of flat FRW
spacetimes. However, in all cases, the spacetime region
directly reconstructable from a small time interval in the
boundary theory is codimension 0. We can then examine the
relative loss of spacetime in both cases (black hole horizon
approaching the boundary in AdS spacetime and w → −1 in
FRW spacetimes) by taking the ratio of the volume of the
reconstructable region to the reconstructable volume of some
reference state (e.g. pure AdS spacetime and flat FRW
spacetime with some fixed w ≠ −1). In static spacetimes,
this reduces to a ratio of the spatial volumes reconstructed on
a codimension-1 slice, allowing us to consider only the
volume of regions reconstructed from single leaves.

B. Large AdS black holes

Here we see how spacetime disappears as we increase the
mass of the black hole in static Schwarzschild-AdS
spacetime, making the corresponding holographic state
maximally entangled. We consider a holographic pure state
living on the (single) conformal boundary of AdS space-
time. We introduce an infrared cutoff r ≤ R in AdS
spacetime and consider a dþ 1-dimensional large black
hole with horizon radius r ¼ rþ.
As discussed in Sec. II A, the size of the spacetime

region directly reconstructable from the boundary theory is
characterized by Vðrþ; RÞ, the spatial volume between the
black hole horizon and the cutoff. We normalize it by the
volume of the region r ≤ R in empty AdS spacetime, VðRÞ,
to get the ratio

f

�
rþ
R

�
≡ Vðrþ; RÞ

VðRÞ ¼ ðd − 1Þ r
d−1þ

Rd−1

Z R
rþ

1

xd−2ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

xd

q dx; ð1Þ

which depends only on rþ=R (and d). As expected, it
behaves as

f

�
rþ
R

��≃1 ðrþ ≪ RÞ
→ 0 ðrþ → RÞ; ð2Þ

in the two opposite limits. The details of this calculation
can be found in Appendix B 1. Here, we plot fðrþ=RÞ in
Fig. 1 for various values of d.
In the limit rþ → R, the HRRT surface, γA, anchored

to the boundary of subregion A of a boundary space
(a constant t slice of the r ¼ R hypersurface) becomes
the region A itself or the complement, Ā, of A on the
boundary space, whichever has the smaller volume.3 This
implies that the entanglement entropy of A, given by the
area of the HRRT surface as SA ¼ kγAk=4ld−1P , becomes
exactly proportional to the smaller of the volumes of A and
Ā in the boundary theory,

SA ¼ 1

4ld−1P

minfkAk; kĀkg: ð3Þ

Here, kxk represents the volume of the object x (often
called the area for a codimension-2 surface in space-
time), and lP is the (dþ 1)-dimensional Planck length
in the bulk. Via usual thermodynamic arguments, we
interpret this to mean that the state in the boundary theory
is generic, so that it obeys the Page law [16].4 This in turn
implies that the temperature of the system, which is
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FIG. 1. The volume Vðrþ; RÞ of the Schwarzschild-AdS
spacetime that can be reconstructed from the boundary theory,
normalized by the corresponding volume VðRÞ in empty AdS
spacetime: f ¼ Vðrþ; RÞ=VðRÞ. Here, R is the infrared cutoff of
(dþ 1)-dimensional AdS spacetime, and rþ is the horizon radius
of the black hole.

3We do not impose a homology constraint, since we consider a
pure state in the holographic theory. Additionally, we only
consider subregions larger than the cutoff size.

4Page’s analysis tells us that for a generic state (a Haar random
state) in a Hilbert space, the entanglement entropy of a reduced
state is nearly maximal. In fact, at the level of the approximation
we employ in this paper, kAk=ld−1P → ∞, such a state has the
maximal entanglement entropy for any subregion, Eq. (3).

NOMURA, RATH, and SALZETTA PHYS. REV. D 97, 106010 (2018)

106010-4



identified as the Hawking temperature TH, is at the cutoff
scale.5 TH is related to rþ by

rþ
R

¼ 4πl2

dR
TH; ð4Þ

where l is the AdS radius. Hence, the cutoff scale of the
boundary theory is given by [27]

Λ ¼ dR
4πl2

: ð5Þ

This allows us to interpret the horizontal axis of Fig. 1 as
TH=Λ from the viewpoint of the boundary theory.
We finally make a few comments. First, it is important to

note that by the infrared cutoff, we do not mean that the
spacetime literally ends there as in the scenario of Ref. [28].
Such termination of spacetime would introduce dynamical
gravity in the holographic theory, making the maximum
entropy of a subregion scale as the area, rather than the
volume, in the holographic theory. Rather, our infrared cutoff
heremeans thatwe focus only on the degrees of freedom in the
bulk deeper than r ¼ R, corresponding to setting the sliding
renormalization scale to be ≈R=l2 in the boundary theory. In
particular, the boundary theory is still nongravitational.
Second, to state that spacetime disappears in the limit

where the holographic state becomes typical, it is crucial to
define spacetime as the directly reconstructable region.
This becomes clear by considering a large subregion A on
the boundary theory such that A and its HRRT surface γA
enclose the black hole at the center. If we take the simple
viewpoint of entanglement wedge reconstruction, this
would say that spacetime does not disappear even if
the black hole becomes large and its horizon approaches
the cutoff surface, since the black hole interior is within the
entanglement wedge of A so that it still exists in the sense of
entanglement wedge reconstruction. We, however, claim
that such a region does not exist as a localizable spacetime
region, as explained in Sec. II A.
Third, the curves in Fig. 1 are not monotonically

decreasing as rþ increases for d > 2, despite the fact that

d
drþ

fSA;max − SA;BHðrþÞg < 0: ð6Þ

Here, SA;max and SA;BHðrþÞ are the maximal entropy and the
entropy corresponding to the black hole geometry of
subregion A, given by

SA;max ¼
kAk
4ld−1P

; SA;BHðrþÞ ¼
kAk
4ld−1P

rd−1þ
Rd−1 : ð7Þ

This increase in spacetime volume may be demonstrating
that the additional entanglement in the boundary state
allows for more bulk nodes in the code subspace.
Alternatively, this may be a feature of using volume as
our measure. Regardless, the decrease observed near the
cutoff temperature is the main focus of our attention, and
we expect any other reasonable measure to correspondingly
vanish.
Finally, the statement that spacetime disappears as the

holographic state approaches typicality persists for two-
sided black holes. In this setup, there is a new issue that
does not exist in the case of single-sided black holes: the
choice of a reference frame associated with a relative time
shift between the two boundaries. The discussion of two-
sided black holes is given in Appendix A.

C. de Sitter states are maximally entropic

We have seen that a large black hole in AdS spacetime
with rþ → R corresponds to CFT states at the cutoff
temperature, and that the holographic states in this limit
have the entanglement entropy structure of Eq. (3). Below,
we refer to states exhibiting Eq. (3) as the maximally
entropic states. Is there an analogous situation in the
holographic theory of FRW spacetimes, described in
Ref. [5]? Here we argue that the de Sitter limit
(w → −1) in flat FRW universes provides one.6

We first see that the holographic state becomes maxi-
mally entropic in the case that a universe approaches de
Sitter space at late times [15]. This situation arises when the
universe contains multiple fluid components including one
with w ¼ −1, so that it is dominated by the w ¼ −1
component at late times. This analysis does not apply
directly to the case of a single component with w ¼ −1þ ϵ
(ϵ → 0þ), which is discussed later.
In the universe under consideration, the FRW metric

approaches the de Sitter metric in flat slicing at late times

ds2 ¼ −dt2 þ e
2t
α ðdr2 þ r2dΩ2

d−1Þ; ð8Þ

where α is the Hubble radius, and we have taken the
spacetime dimension of the bulk to be dþ 1. The Penrose
diagram of this spacetime is depicted in Fig. 2, where
constant time slices are drawn and the region covered by
the coordinates is shaded; future timelike infinity Iþ
corresponds to t ¼ ∞, while the null hypersurface N
corresponds to t ¼ −∞. At late times, the past holographic
screen of the FRWuniverse asymptotes to the codimension-
1 null hypersurface Σ0 depicted in the figure. This hyper-
surface is located at

r ¼ αe−
t
α; ð9Þ

5When we refer to a high temperature state, we do not mean
that the whole holographic state is a mixed thermal state. What
we really mean is a high energy state, since we focus on pure
states.

6For a simple proof applicable to 2þ 1 dimensions, see
Appendix C 1.
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which corresponds to the cosmological horizon for an
observer moving along the r ¼ 0 geodesic.
We can now transform the coordinates to static slicing

ds2 ¼ −
�
1 −

ρ2

α2

�
dτ2 þ 1

1 − ρ2

α2

dρ2 þ ρ2dΩ2
d−1: ð10Þ

In Fig. 3, we depict constant τ (red) and constant ρ (blue)
slices, with the shaded region being covered by the
coordinates. This metric makes it manifest that the space-
time has a Killing symmetry corresponding to τ translation.
Using this symmetry, we can map a leaf of the original
FRW universe to the τ ¼ 0 hypersurface, Σ. Since the leaf
of the universe under consideration approaches arbitrarily
close to Eq. (9) at late times, the image of the map, Ξ0,
asymptotes to the bifurcation surface Ξ at

ρ ¼ α; ð11Þ

for a leaf at later times.
Consider an arbitrary subregion A on Ξ0 and the minimal

area surface γA on Σ anchored to the boundary of A, ∂A.
Since the geometry of Σ is Sd with Ξ being an equator, the
minimal area surface γA becomes the region A itself (or its
complement on Ξ0, whichever is smaller) in the limit
Ξ0 → Ξ. Strictly speaking, this statement does not apply
for a small subset of subregions, since Ξ0 is not exactly Ξ
unless the leaf under consideration is at strictly infinite
time. (For subregions in this subset, the minimal area
surfaces probe ρ ≪ α. For spherical caps, these subregions
are approximately hemispheres.) However, the fractional
size of the subset goes to 0 as we focus on later leaves.

Continuity then tells us that our conclusion persists for all
subregions.
The surface γA found above is in fact an extremal surface,

since the bifurcation surface Ξ is an extremal surface, so
any subregion of it is also extremal. It is easy to show that
this surface is indeed the HRRT surface, the minimal area
extremal surface. Suppose there is another extremal surface
γ0A anchored to ∂A. We could then send a null congruence
from γ0A down to Σ, yielding another codimension-2 surface
γ00A given by the intersection of the null congruence and Σ.
Because γ0A is extremal, the focusing of the null rays implies
kγ0Ak > kγ00Ak, and by construction kγAk < kγ00Ak. This
implies that γA is the HRRT surface, and hence

SA ¼ 1

4ld−1P

minfkAk; kĀkg: ð12Þ

Namely, the holographic state representing a FRWuniverse
that asymptotically approaches de Sitter space becomes a
maximally entropic state in the late time limit.
The global spacetime structure in the case of a single

fluid component withw ≠ −1 is qualitatively different from
the case discussed above. For example, the area of a leaf
grows indefinitely. However, for any finite time interval, the
behavior of the system approaches that of de Sitter space in
the limit w → −1. In fact, the numerical analysis of Ref. [5]
tells us that the holographic entanglement entropy of a
spherical cap region becomes maximal in the w → −1
limit. We show in Appendix C 2 that this occurs for an
arbitrary subregion on a leaf.

D. Spacetime disappears as w → − 1
in the holographic FRW theory

We have seen in our AdS/CFT example that as the
holographic state approaches typicality, and hence becomes

FIG. 2. The Penrose diagram of de Sitter space. The spacetime
region covered by the flat-slicing coordinates is shaded, and
constant time slices in this coordinate system are drawn. The
codimension-1 null hypersurface Σ0 is the cosmological horizon
for an observer at r ¼ 0, to which the holographic screen of the
FRW universe asymptotes in the future.

FIG. 3. Constant time slices and the spacetime region covered
by the coordinates in static slicing of de Sitter space. Here, Σ is
the τ ¼ 0 hypersurface, and Ξ is the bifurcation surface, given by
ρ ¼ α with finite τ.
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maximally entropic, the directly reconstructable region
disappears. On the other hand, we have shown that the
entanglement entropies for flat FRW universes approaches
the maximal form as w → −1. Does this limit have a
corresponding disappearance of reconstructable spacetime?
Here we show that the answer to this question is yes.
From the analysis of Sec. II C, we see that a leaf at late

times in universes approaching de Sitter space can be
mapped to a surface on the τ ¼ 0 hypersurface Σ, which
asymptotes to the bifurcation surface Ξ in the late time
limit. From the Killing symmetry, the HRRT surfaces
anchored to this mapped leaf must all be restricted to
living on Σ. Mapping the HRRT surfaces back to the
original location, we see that they asymptote to living on
the null hypersurface Σ0. Thus, we find that the HRRT
surface for any subregion of a leaf σ� asymptotes to
the future boundary of the causal region Dσ� , which we

denote by ∂DðþÞ
σ� , as a universe approaches de Sitter space.

A similar argument holds for universes where w → −1. In
Appendix C 3, we present some examples where we can see
this behavior using analytic expressions for HRRT
surfaces.
What does this imply for the reconstructable region in de

Sitter space? Using the prescription outlined in Sec. II A,
we find that spacetime points on the future causal boundary

of a leaf, ∂DðþÞ
σ� , can be reconstructed. This is a codimen-

sion-1 region in spacetime. One might then think that we
can reconstruct a codimension-0 region by considering
multiple leaves, as was the case in a Schwarzschild-AdS
black hole. However, the holographic screen of de Sitter
space is itself a null hypersurface, with future leaves lying
precisely on the future causal boundary of past leaves. This
means that even by using multiple leaves we cannot
reconstruct any nonzero measure spacetime region in the
de Sitter (and w → −1) limit.
We now compute the reconstructable region in (2þ 1)-

dimensional flat FRW spacetimes. As discussed in Sec. II
A, this region is comprised of points that can be localized as
the intersection of edges of entanglement wedges. We
consider the reconstructable region associated to a single
leaf, and hence this prescription reduces to finding points
located at the intersection of HRRT surfaces anchored to
the leaf. This alone gives us a codimension-0 reconstruct-
able region. In (2þ 1)-dimensional FRW spacetimes,
HRRT surfaces are simply geodesics in the bulk spacetime,
and this problem becomes tractable.
For a (2þ 1)-dimensional flat FRW universe filled with

a single fluid component w, the leaf of the holographic
screen at conformal time η� is located at coordinate radius

r� ¼
a
_a

����
η¼η�

¼ wη�: ð13Þ

Let us parametrize the points on the leaf by ϕ ∈ ½0; 2πÞ.
Consider an interval of the leaf at time η� centered at ϕ0

with half opening angle ψ . The HRRT surface of this
subregion is simply the geodesic connecting the end points
of the interval: ðη;ϕÞ ¼ ðη�;ϕ0 − ψÞ and (η�, ϕ0 þ ψ). It is
clear from the symmetry of the setup that if we consider a
second geodesic anchored to an interval with the same
opening angle but with a center ϕ0

0 ∈ ½ϕ0 − 2ψ ;ϕ0 þ 2ψ �,
then the two geodesics intersect at a point, specifically
where ϕ ¼ ðϕ0 þ ϕ0

0Þ=2. Using these pairs of geodesics, it
is clear that we can reconstruct all points on all geodesics
anchored to the leaf. The union of these points gives us a
codimension-0 region.
Can we get a larger region? In (2þ 1)-dimensional flat

FRW spacetimes, the answer is no. In higher dimensions,
knowing the HRRT surfaces for all spherical cap regions
may not be sufficient to figure out reconstructable regions;
for example, one may consider using disjoint regions in the
hopes that the new HRRT surfaces would explore regions
inaccessible to the previous HRRT surfaces (although we
do not know if this really leads to a larger reconstructable
region). However, in 2þ 1 dimensions, both connected and
disconnected phases of extremal surfaces are constructed
from the geodesics already considered, so we gain nothing
from considering disconnected subregions. We thus find
that the set of all points on HRRT surfaces anchored to
arbitrary subregions on a leaf is exactly the reconstructable
region from the state on the leaf.
In Fig. 4, we show a plot of the reconstructable spacetime

volume as a function of w. It shows a qualitatively similar
behavior to that of Fig. 1, where the reconstructable volume
increases and then sharply declines to 0 as the holographic
state becomes maximally entropic.
We can also perform a similar analysis in higher

dimensions. Due to the numerical difficulty in finding
extremal surfaces, here we restrict ourselves to the region
reconstructable by spherical cap regions (which may indeed
be the fully reconstructable region) and to only a few
representative values of w. The results are plotted in Fig. 5

FIG. 4. The spacetime volume of the reconstructable region in
(2þ 1)-dimensional flat FRW universes for w ∈ ð−0.9;−1Þ,
normalized by the reconstructable volume for w ¼ −0.9.
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for (3þ 1)-dimensional FRW universes. These demon-
strate the behavior that the extremal surfaces, and hence
the reconstructable region, become more and more null
as w → −1.
The discussion in this subsection says that the recon-

structable spacetime region disappears in the holographic
theory of FRW spacetimes as the holographic state
becomes maximally entropic in the de Sitter limit. While
a microstate becoming maximally entropic does not
directly mean that states representing the corresponding
spacetime become typical in the holographic Hilbert space
(since the number of independent microstates could still be
small), we expect that the former indeed implies the latter
as usual thermodynamic intuition suggests; see Sec. IV for
further discussion. In any event, since typical states in a
holographic theory are maximally entropic, we expect that
the reconstructable spacetime region disappears as the
holographic state becomes typical.
An important implication of the analysis here is that a

holographic theory of de Sitter space cannot be obtained by
taking a limit in the holographic theory of FRW spacetimes.
A holographic theory of exact de Sitter space, if any, would
have to be formulated in a different manner.7

E. Maximally entropic states have no spacetime

In this subsection, we provide a proof for the statement
that the directly reconstructable region of a maximally
entropic leaf is either the leaf itself or a subset of its null

cone. We use this result to argue that maximally entropic
states have no spacetime. This heavily utilizes the maximin
techniques developed in Ref. [29].
Theorem 1: Consider a compact codimension-2

spacelike surface, σ, with area A, living in a space-
time that satisfies Rabvavb ≥ 0 for all null vectors va.
Suppose HRRT surfaces can consistently be anchored to σ.8

Let mðΓÞ denote the HRRT surface anchored to the
boundary, ∂Γ, of a subregion Γ of σ.
If kmðΓÞk ¼ minfkΓk; kΓ̄kg; ∀ Γ ⊂ σ, then either σ is a

bifurcation surface or all of the HRRT surfaces of σ lie on a
nonexpanding null hypersurface connected to σ.
Proof.—If Γ1 and Γ2 are subregions of σ, we abbreviate

Γ1 ∪ Γ2 as Γ1Γ2. Let mðΓÞΣ denote the representative of
mðΓÞ on a complete achronal surface Σ, defined by the
intersection of Σ with a null congruence shot out from
mðΓÞ. From the extremality of mðΓÞ, Rabvavb ≥ 0, and the
Raychaudhuri equation, kmðΓÞΣk ≤ kmðΓÞk.
Consider three connected subregions A, B, C of σ such

that ∂A ∩ ∂B ≠ ∅, ∂B ∩ ∂C ≠ ∅ where both such inter-
sections are codimension 3, and kA ∪ B ∪ Ck ≤ kσk=2;
see Fig. 6 for a diagram. By Theorem 17.h of Ref. [29], take
mðABCÞ and mðBÞ to be on the same achronal surface, Σ.
Now, consider the representatives mðABÞΣ and mðBCÞΣ.
From the properties of representatives and maximin sur-
faces, we have

SðABÞ þ SðBCÞ ≥ kmðABÞΣk
4ld−1P

þ kmðBCÞΣk
4ld−1P

≥ SðABCÞ þ SðBÞ: ð14Þ

The assumption of maximal entropies then tells us that
strong subadditivity is saturated, and hence

(a) (b) (c)

FIG. 5. reconstructable spacetime regions for various values of w in (3þ 1)-dimensional flat FRWuniverses. The horizontal axis is the
distance from the center, normalized by that to the leaf. The vertical axis is the difference in conformal time from the leaf, normalized
such that the null ray from the leaf would reach 1. The full reconstructable region for each leaf would be the gray region between the two
lines rotated about the vertical axis.

7Another instance in which spacetime disappears is when the
holographic description changes from that based on a past
holographic screen (foliated by marginally antitrapped surfaces)
to a future holographic screen (marginally trapped surfaces).
Such a change of description may occur in a spacetime with a late
time collapsing phase, e.g. in a closed FRW universe with the
holographic screen constructed naturally in an observer-centric
manner. (For an interpretation of such spacetime, see Ref. [5].)
Since the leaf at the time of the transition is extremal, the analysis
here indicates that the spacetime region reconstructable from a
single leaf disappears at that time. This makes the necessity of the
change of the description more natural.

8This requires the expansion of the two null hypersurfaces
bounding DðσÞ to have θ ≤ 0, where DðσÞ is the interior domain
of dependence of some achronal set whose boundary is σ. These
HRRT surfaces are guaranteed to exist and satisfy basic entan-
glement inequalities; see Refs. [15,30].
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kmðABÞΣk ¼ kmðABÞk;
kmðBCÞΣk ¼ kmðBCÞk: ð15Þ

Additionally, mðABÞΣ ∩ mðBCÞΣ ≠ ∅.
We have two cases depending on the nature of Σ.
Case 1:mðABCÞ,mðBÞ,mðABÞΣ, andmðBCÞΣ live on Σ

which is a non-null hypersurface.
Suppose mðABÞΣ ∩ mðBCÞΣ is a codimension-3 sur-
face, meaning they intersect through some surface, p,
depicted in Fig. 6. One could then smooth out the
“corners” around p to create new surfaces homolo-
gous to ABC and B. This is depicted through the
maroon lines in Fig. 6. By the triangle inequality, these
new, smoothed out surfaces, wðABCÞ and wðBÞ,
would have less total area than mðABCÞ ∪ mðBÞ
because p ∈ Σ, which is spacelike. However, this
contradicts the minimality of mðABCÞ and mðBÞ,

ðkAk þ kBk þ kCkÞ þ kBk
¼ kmðABCÞk þ kmðBÞk
≤ kwðABCÞk þ kwðBÞk
< kmðABÞΣk þ kmðBCÞΣk
¼ ðkAk þ kBkÞ þ ðkBk þ kCkÞ: ð16Þ

Therefore, mðABÞΣ and mðBCÞΣ cannot intersect
through some codimension-3 surface, yet they must
still intersect. This requires mðABÞΣ and mðBCÞΣ to
coincide somewhere, a neighborhood of x, and by
theorem 4.e of Ref. [29] these two surfaces must
coincide at every point connected to x. This means that

mðABÞ¼mðAÞ∪mðBÞ and mðBCÞ ¼ mðBÞ ∪ mðCÞ.
The only way this can consistently occur for all possible
A, B, and C is formðΓÞ ⊂ σ. This means that σ itself is
extremal, and hence is a bifurcation surface.

Case 2: mðABCÞ, mðBÞ, mðABÞΣ, and mðBCÞΣ live on
hypersurface Σ which is at least partially null.

Suppose mðABÞΣ ∩ mðBCÞΣ is a codimension-3 sur-
face, p. If at p, Σ is null and nonexpanding, then
smoothing out the intersection does not result in new
surfaces with smaller area. This is the condition that
θu ¼ 0 on the null hypersurface, Σu, coincident with Σ
at p, where u is the null vector generating Σu at p.
Hence, the representatives can intersect at p and
simultaneously saturate strong subadditivity. Addition-
ally, because kmðBCÞΣk ¼ kmðBCÞk, we know that
θv ¼ 0 along the hypersurface generating the repre-
sentatives of mðBCÞ, where v is the null vector gen-
erating this hypersurface. Therefore at p, θu ¼ θv ¼ 0.
We can now scan across mðBCÞΣ by considering its

intersection with mðAB0ÞΣ where ðB0; C0Þ is a biparti-
tion of B ∪ C where ∂B0 ∩ ∂A ≠ ∅, and then consid-
ering all such bipartitions. This is illustrated in Fig. 7 by
splitting up B∪C at a few points labeled by xi; for
example, B0¼½b;x3� and C0¼½x3;c� is one such allow-
able bipartition. By continuity, all of mðBCÞΣ is
scanned.9

By the argument in the previous paragraph, all
intersection points along mðBCÞΣ must then have
θu ¼ θv ¼ 0. Assuming nondegeneracy,mðBCÞΣ must
therefore be the HRRT surface mðBCÞ. Additionally,
every point ofmðBCÞ lives on some null, nonexpanding
hypersurface and at ∂mðBCÞ this surface connects to σ.
Hence, at ∂mðBCÞ, σ must be marginal. This argument
can be repeated for any set of appropriate subregions.
This tells us that all HRRT surfaces have the previously
stated properties.
Now, by theorem 17.h of Ref. [29], we can construct

an achronal surface, Σ, that is foliated by HRRT sur-
faces. Each point of Σ must now be null and nonexpa-
nding. Additionally, the boundary of Σ, σ, must be
marginal. Let k denote the vector in this local marginal
direction. This uniquely specifies Σ as the null non-
expanding hypersurface generated by k. This is true for
all Σ foliated by HRRT surfaces, and each HRRT
surface can belong to some foliation of a Σ.10 Hence
all extremal surfaces anchored to σ must belong to a
nonexpanding null hypersurface.

FIG. 6. Diagrams representing the achronal surface Σ in which
two HRRT surfaces, mðABCÞ and mðBÞ, live. mðABÞΣ and
mðBCÞΣ are the representatives of mðABÞ and mðBCÞ, respec-
tively. They are shown to be intersecting at p. On a spacelike Σ,
one could deform around this intersection to create two new
surfaces with smaller areas.

9We believe this is sufficient to scan over the whole surface
assuming the spacetime is smooth. Additionally, Eq. (15) requires
there to be no energy density between a HRRT surface and its
representative; this precludes jumps in the representatives due to
entanglement shadows and the like.

10Under the assumption of the theorem, the HRRT surface of
disconnected subregions is always disconnected. This is because
the disconnected surface is extremal.
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Back to the beginning, if the intersection ofmðABÞΣ
andmðBCÞΣ is codimension 2, then the argument from
case 1 applies and σ must be extremal.

This concludes the proof of theorem 1. ▪
Corollary 1: Consider a codimension-2 surface, σ,

with area A, living in a spacetime satisfying Rabvavb ≥ 0.
Let mðΓÞ denote the HRRT surface anchored to ∂Γ.
If σ is not marginal, then it cannot satisfy kmðΓÞk ¼

minfkΓk; kΓ̄kg; ∀ Γ ⊂ σ.
Proof.—The contrapositive of this statement is proven by

theorem 1. ▪
Consider the case that σ is a leaf of a past holographic

screen. If the leaf is extremal and the screen is not null, then
the directly reconstructable spacetime is just the leaf itself.
Additionally, this tells us the holographic screen must halt
at this point. This indicates the end of a holographic
description based on the past holographic screen. At this
point, one can stitch the beginning of a new future holo-
graphic screen that starts at a bifurcation surface, patching
together two holographic descriptions. This occurs in
collapsing universes; see footnote 7.
In the other case, if all of the HRRT surfaces of σ have area

corresponding to themaximal entropy, then all of the extremal
surfaces must lie on the future null cone of the leaf, where this
null cone is nonexpanding and compact. This cone itself is the
limit of a past holographic screen because θk ¼ 0. Barring the
existence of a continuum of compact, nonexpanding, null
hypersurfaces, the holographic screen then follows along this
null surface from the leaf. Hence the directly reconstructable
regionwill only be the screen itself, exactly as we observed in
the case of de Sitter space. Again, we see that maximal
entanglement corresponds to the end of a holographic
description, but in this case the screen does not end; this
corresponds to a stable final state.

In Sec. II B, we took the boundary to be at some large,
fixed radius in AdS spacetime. One may be concerned that
this cutoff surface is not marginal, and hence theorem 1
does not apply. However, in the limit that the black hole
radius approaches the boundary, the statement holds
because the horizon of the black hole satisfies the needed
properties. Note that until this final limit, corollary 1 tells us
that the entanglement of the boundary cannot be maximal.
Finally we are prepared to make a statement about

typicality. Typical boundary states aremaximally entangled,
and hence the argument shows us that for holo-
graphic theories living on screens (an instance of which
is AdS/CFT), typical states have no directly reconstructable
spacetime.

III. SPACETIME EMERGES THROUGH
DEVIATIONS FROM MAXIMAL ENTROPY

We have seen that when the holographic state becomes
maximally entropic, spacetime defined as the directly
reconstructable region disappears. Conversely, bulk space-
time emerges when we change parameters, e.g. the mass of
the black hole or the equation of state parameter w, deviating
the state frommaximal entropy. In this section, we study how
this deviation may occur and find qualitative differences
between the cases of Schwarzschild-AdS and flat FRW
spacetimes. This has important implications for the struc-
tures of holographic theories representing these spacetimes.

A. CFT with subcutoff temperatures

Consider the setup discussed in Sec. II B: a large black
hole in asymptotically AdS spacetime. The holographic
theory is then a local quantum (conformal) field theory.
When the temperature of the system is at the cutoff scale,
the holographic state has maximal entropies, Eq. (3).
As we lower the temperature, the state deviates from a
maximally entropic one, and correspondingly bulk space-
time emerges—the horizon of the black hole recedes from
the cutoff surface, and the reconstructable spacetime region
appears; see Fig. 1.
Suppose the temperature of the system T is lower than

the cutoff scale, T < Λ. We are interested in the behavior of
von Neumann entropies of subregions of characteristic
length L in the boundary theory. These entropies are
calculated holographically by finding the areas of the
HRRT surfaces anchored to subregions of the cutoff surface
r ¼ R. We analyze this problem analytically for spherical
cap regions in Appendix B 2. For sufficiently high temper-
ature, T ≫ ðΛd−2=lÞ1=ðd−1Þ, we find that the entanglement
entropy for a subregion A behaves as

SA ≈

(
cAd−2Ld−2Λd−2 for L≪ L�;

cAd−2
rd−1þ Ld−1

l2d−2
≈ cðTΛÞd−1Ad−2Ld−1Λd−1 for L≫ L�:

ð17Þ

FIG. 7. This depicts how one can scan across the representative
mðBCÞΣ by bipartitioning BC on the achronal surface Σ. At each
of these intersections, pðxiÞ, θu ¼ θv ¼ 0 if the state on the leaf is
maximally entropic and Σ is null and nonexpanding.
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Here,

L� ≈
l2Rd−2

rd−1þ
≈
Λd−2

Td−1 ; ð18Þ

c ≈ ðl=lPÞd−1 is the central charge of the CFT, and Ad−2 is
the area of the (d − 2)-dimensional unit sphere. We find
that the scaling of the entanglement entropy changes
(smoothly) from an area law to a volume law as L increases.
For T ≪ ðΛd−2=lÞ1=ðd−1Þ, i.e. L� ≫ l, the entanglement
entropy obeys an area law for all subregions. We note
that the length in the boundary theory is still measured in
terms of the d-dimensional metric at infinity with the
conformal factor stripped off. The cutoff length is thus
1=Λ ≈Oðl2=RÞ, and the size of the boundary space
is ≈OðlÞ.
While we have analyzed spherical cap subregions, the

behavior of the entanglement entropy found above is more
general. When the temperature is lowered from the cutoff
scale, the entanglement entropy SA deviates from the
maximal value. Defining

QA ¼ SA
SA;max

¼ SA
kAk=4ld−1P

; ð19Þ

we find that

QA ≈

(
1
LΛ for L ≪ Λd−2

Td−1 ;

ðTΛÞd−1 for L ≫ Λd−2

Td−1 :
ð20Þ

Here, we have assumed that subregionA is characterized by a
single length scale L, and that the temperature is sufficiently
high, T≫ ðΛd−2=lÞ1=ðd−1Þ. [If T≪ ðΛd−2=lÞ1=ðd−1Þ, QA≈
1=LΛ for all subregions.] This behavior is depicted sche-
matically in Fig. 8.
We find that as the temperature is lowered from the

cutoff scale, two things occur for entanglement entropies.
(i) For sufficiently large subregions, the entanglement

entropies still obey a volume law, but the coefficient
becomes smaller.

(ii) The more the temperature is lowered, the further
subregions have entanglement entropies obeying an
area law. This occurs from shorter scales, i.e.
subregions with smaller sizes.

These make the entanglement entropies deviate from the
maximal value and lead to the emergence of reconstructable
spacetime: the region between the black hole horizon and
the cutoff surface, rþ < r ≤ R.

B. FRW universes with w > − 1
As spacetime emerges by reducing the mass of the black

hole in the Schwarzschild-AdS case, a codimension-0
spacetime region that is reconstructable from a single leaf
appears when w is increased from −1. As in the AdS case,

this appearance is associated with a deviation of entangle-
ment entropies from saturation. However, the manner in
which this deviation occurs is qualitatively different in the
two cases.
To illustrate the salient points, let us consider flat FRW

spacetimes with a single fluid component w and a spherical
cap region A on a leaf parametrized by the half opening
angle ψ . Below, we focus on entanglement entropies SwðψÞ
of the regions with ψ ≤ π=2. Those with ψ > π=2 are given
by the relation SwðψÞ ¼ Swðπ − ψÞ.
As before, we define

QwðψÞ ¼
SwðψÞ
SmaxðψÞ

¼ SwðψÞ
kAk=4ld−1P

: ð21Þ

This quantity was calculated in Ref. [5] in 3þ 1 dimen-
sions, which we reproduce in Fig. 9. The basic features are
similar in other dimensions. In particular, QwðψÞ satisfies
the properties given in Eqs. (C3) and (C4) in Appendix C 1.
We find that the way QwðψÞ deviates from 1 as w is

increased from−1 is qualitatively different from theway the
similar quantity QA deviates from 1 in the Schwarzschild-
AdS case as the temperature is reduced from the cutoff scale.
In particular, we find that in the FRW case

(i) the deviation from QwðψÞ ¼ 1 occurs from larger
subregions. Namely, as w is raised from −1, QwðψÞ
is reduced from 1 first in the vicinity of ψ ¼ π=2.

(ii) There is no regime in which the entanglement
entropy obeys an area law, QwðψÞ ∼ 1=ψ , or a
volume law with a reduced coefficient, QwðψÞ ¼
const < 1.

As we see next, these have profound implications for the
nature of the holographic theory of FRW spacetimes.

FIG. 8. A schematic depiction of the entanglement entropy in
the Schwarzschild-AdS spacetime, normalized by the maximal
value of entropy in the subregion, QA ¼ SA=SA;max, and depicted
as a function of the size L of subregion A; see Eq. (20). The scales
of the axes are arbitrary. As the mass of the black hole is lowered
(the temperature T of the holographic theory is reduced from the
cutoff Λ), QA deviates from 1 in a specific manner.
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C. Locality vs nonlocality

In the following discussion, we assume that the dynam-
ics in the holographic theory are chaotic and nonintegrable
as expected in a theory of quantum gravity; see, e.g.
Ref. [31]. Such systems are expected to satisfy the
eigenstate thermalization hypothesis (ETH) [32,33], so
generic high energy eigenstates reproduce the behavior
of a thermal Gibbs density matrix. In addition, we note that
the dimension of the holographic Hilbert space is large
(A=4ld−1P ≫ 1) and finite size effects causing deviations
from the thermodynamic limit can be ignored.
We have already seen that one way to obtain a maximally

entropic state is to look at high energy states in a local
theory. In the context of AdS/CFT, this corresponds to
examining black holes with temperature near the cutoff
scale. To deviate from maximal entropy, one can then
simply lower the energy of the states being considered. For
subregions beyond the correlation length, the reduced
density matrix is well approximated by a Gibbs density
matrix, and hence the entropy obeys a volume law but with
a prefactor dependent on the temperature T. For length
scales below the correlation length, the von Neumann
entropy is dominated by the area law contribution.
Together, these combine to give entanglement entropy
curves that have the qualitative behavior shown in
Fig. 8. Note that in a local theory, lowering the temperature
shows deviation from thermal behavior originating at small
length scales. Namely, the slope of QA begins deviating
from 0 at small scales. This entropy deviation at small
scales is expected to be a general phenomenon of equilib-
rium states governed by a local Hamiltonian.
However, the entanglement entropy curves calculated for

holographically FRW universes show drastically different

behavior; see Fig. 9.11 Namely, the deviations from
maximal entropy originate at large length scales, and the
entanglement entropy for small subregions is maximal
regardless of the fluid parameter w. Additionally, these
entropy curves are invariant under time translation. This
behavior cannot be achieved by a local theory. One may
think that a Lifshitz-type theory with large z may be able to
accommodate such behavior due to large momentum
coupling, but the leading order contribution to the entan-
glement entropy in d dimensions is believed to be propor-
tional to ðL=ϵÞd−1−1=z for weakly coupled theories [34],
where L is the characteristic length of the entangling region
and ϵ is the cutoff length. Thus entanglement entropy is
proportional to the volume only in the limit that z → ∞,
which would be a nonlocal field theory. Indeed, entangle-
ment entropy being maximal for small subregions is
observed in a number of nonlocal theories [35–40] and
is likely a generic phenomenon in such theories.
This leads us to believe that an appropriate holographic

description of FRW universes would be nonlocal.12

This provides us with a few possibilities of theories that
have the desired qualitative features, all of which have a
freedom to tune a parameter which corresponds to chang-
ing w (and hence the entropy).

(I) A nonlocal theory with a characteristic length scale
below the system size, changing the nonlocal length
scale of the theory or energy of the state.

(II) A nonlocal theory coupling sites together at all
length scales (like a long-range interacting spin
chain or a variant of the Sachdev-Ye-Kitaev
(SYK) model [41–43] with all-to-all random cou-
pling between a fixed number, q, of sites, SYKq),
changing the energy of the state.

(III) A nonlocal theory with a fundamental parameter
controlling the coupling at all scales in which
variations can change the entropy, for example,
changing the number of sites coupled to each other
in each term of the Hamiltonian (analogous to
changing q in SYKq).

The ground states of theories in case (I) are explored in
Refs. [35–37] in string theory frameworks. This case can

FIG. 9. The entanglement entropy in the holographic theory of
flat FRW spacetimes normalized by the maximal value of entropy
in the subregion, QwðψÞ ¼ SwðψÞ=SmaxðψÞ, as a function of the
size of the subregion, a half opening angle ψ . As the equation of
state parameter w is increased from −1,QwðψÞ deviates from 1 in
a way different from the Schwarzschild-AdS case.

11It should be emphasized that we are calculating the entan-
glement entropy of the boundary state on the holographic screen,
not the entropy associated with any bulk quantum fields. We refer
to the degrees of freedom on the screen that govern the back-
ground gravitation dynamics as the gravitational degrees of
freedom. Any low energy bulk excitations (which may include
gravitons) are higher order corrections to the entanglement
entropy and we do not discuss them.

12It is a logical possibility that a local theory could exhibit
volume law entropy behavior due to open dynamics. Since the
size of the leaf is constantly growing, there are degrees of
freedom constantly being added to the system, which could
already have long-range entanglement. This seems to be an
ad hoc solution, and we do not elaborate on this possibility
further.
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also be realized as a spin chain with interactions that couple
all sites within a distance smaller than the characteristic
nonlocal length scale. Above the nonlocal length scale an
area law term starts to pick up and eventually dominates.
However, because of this eventual turn-on of an area law,
the qualitative features of the entropy normalized by
volume are different than those exhibited by FRW entropy
curves. Namely, the concavity of the QA plot beyond the
nonlocal length scale is opposite to that observed in the
FRW case. This is because beyond the nonlocal length
scale the entropy approaches an area law; hence the second
derivative of QA is positive, unlike that observed in the
FRW case. Raising the temperature only adds an overall
constant asymptotic value to QA. Hence, the concavity of
QA forbids the holographic theory of FRW spacetimes from
being a theory with a characteristic nonlocal length scale
smaller than the system size.
This reasoning leaves us with nonlocal theories with

characteristic interaction lengths comparable to the system
size—what does this mean? It simply means that a site can
be coupled to any other site. For simplicity we consider
SYK-like theories but rather than being zero dimensional
we split up the degrees of freedom to live on a lattice but
keep the random couplings between them. At first thought,
one may think that because of the random, all-to-all
coupling the entanglement entropy for all subregions would
always be maximal. However this is not the case. The
entanglement entropy for small regions is indeed maximal,
but then deviates at large length scales [39,40]. One can
intuitively understand this by thinking about the SYK2

model and Bell pairs. The SYK couplings are random, and
some sites have significantly higher coupling than average.
In the ground state, these pairs have a high probability of
being entangled, so if the subregion of interest contains
only half of one of these special pairs, this raises the
entanglement with the outside. However, once the sub-
region becomes larger there is a higher probability that a
complete Bell pair is contained, and this drops the
entanglement entropy.
From this intuition, one can see that the ground state of

SYK-like theories has near maximal entanglement for
small regions, which then deviates at large length scales.
At higher energies, the probability of minimizing the term
in the Hamiltonian coupling these special sites (and
creating the effective Bell pair) is lowered, and hence
the entanglement entropy of all subregions monotonically
increases [40,44]. This behavior is reminiscent of that
observed in FRW entanglement entropy if we relate the
fluid parameter, w, to the energy of the nonlocal state: the
case (II) listed above. The limit of T → ∞ then corresponds
to w → −1.
The third possibility (III) is similar to the one just

discussed, but with the difference that w is dual not to
temperature but to a fundamental parameter dictating the
“connectivity” of the boundary theory. In the language of

SYKq, this would correspond to changing q, where q is the
number of coupled fermions in each interaction term of the
Hamiltonian. As q increases, the ground state entanglement
monotonically increases and as q → ∞ becomes maximal.
This would be the limit corresponding to w → −1.
However, any possibility like this, which employs a change
of a fundamental parameter of the Hamiltonian, requires us
to manufacture the whole Hilbert space of the boundary
theory by considering the collection of only the low
energy states for each value of q. We would like one
related class of spacetimes to be dual to one boundary
theory, which is not the case in this option. We thus focus
on option (II) as the best candidate, but we cannot logically
exclude option (III).
It is interesting to observe the relationship between

where the deviation from volume law entropy occurs
and where the corresponding spacetime emerges. In the
Schwarzschild-AdS case, QA drops from 1 immediately at
small subregions, and the spacetime that emerges is
precisely that which is reconstructed from small subre-
gions. Hence the directly reconstructable region appears at
the boundary and grows inwards as the temperature of the
state is lowered. The converse is true in the case of FRW
spacetimes. As we move away from w ¼ −1, the entan-
glement entropy drops from maximal at large subregions
and the corresponding spacetime that emerges is con-
structed by intersecting large surfaces. This is because
the HRRT surfaces of small subregions of leaves with w
near −1 all lie on the same codimension-1 surface, the
future causal boundary of the leaf, analogous to the small
surfaces in Fig. 13 in Appendix C 3. The HRRT surfaces
for large subregions deviate from this and hence allow for
reconstructing a codimension-0 region starting with points
deepest in the bulk.
The language of quantum error correction [17] and

tensor networks [11,25,26] allows for a nice interpretation
of this phenomenon. The loss of entanglement in pure
gravitational degrees of freedom affords nature the oppor-
tunity to redundantly encode local bulk degrees of freedom
in the boundary. In AdS spacetime, short range entangle-
ment is lost first, and hence there is “room” for the
information of local bulk degrees of freedom to be stored.
In the case of FRW, long range entanglement is lost first,
and subsequently points in the bulk that require large
subregions to reconstruct emerge first.

IV. HOLOGRAPHIC HILBERT SPACES

The analysis of the previous sections brings us to a
suitable position to discuss the structure of holographic
Hilbert spaces. In this section, we propose how a single
theory can host states with different spacetime duals while
keeping geometric operators linear in the space of micro-
states for a fixed semiclassical geometry. We use intuition
gathered from quantum thermodynamic arguments to guide
us. Similar ideas have been discussed in Ref. [45]. Here we
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present a slightly generalized argument to emphasize its
independence of dynamics, and explain its application to
our framework.
Let us assume that the entanglement entropy of sub-

regions of a boundary state dual to a semiclassical
geometry is calculated via the HRRT prescription. Given
a bulk spacetime, one can then find the corresponding
entanglement entropies for all subregions of the boundary.
Note that here we consider the “classical limit.” Namely, all
the subregions we consider contain OðN Þ degrees of
freedom, where

N ¼ A
4ld−1P

; ð22Þ

with A being the volume of the holographic space. The
collection of all boundary subregions and their correspond-
ing entanglement entropies is referred to as the entangle-
ment structure of the state, which we denote by SðjψiÞ.
From here, it is natural to ask whether or not all states

with the same entanglement structure are dual to the same
bulk spacetime. This might indeed be the case, but it leads
to some undesirable features. These primarily stem from
the fact that given a particular entanglement structure, one
can find a basis for the Hilbert space in which all basis
states have the specified entanglement structure. For a
Hilbert space with a local product structure, one can do this
by applying local unitaries to a state—these retain the
entanglement structure and yet generate orthogonal states.
This would imply that by generically superposing eOðN Þ of
these states, one could drastically alter the entanglement
structure and create a state dual to a completely different
spacetime. Hence, geometric quantities could not be
represented by linear operators, even in an approximate
sense. If this were the case, a strong form of state
dependence would be necessary to make sense of dynamics
in the gravitational degrees of freedom [6].
However, it is not required that every state in the

holographic Hilbert space with the same entanglement
structure is dual to the same spacetime. How can this
consistently happen? Given an entanglement structure,
SðjϕiÞ, we expect the existence of a subspace in which
generic states (within this subspace) have this same
entanglement structure up to OðN pÞ corrections with
p < 1. The existence of a subspace with a unique entan-
glement structure is not surprising if the dimension of the
subspace is eOðN pÞ with (p < 1), since we generally expect

S

�XeM
i¼1

cijψ ii
�

¼ SðjψiÞ þOðMÞ; ð23Þ

where Sðjψ iiÞ ¼ SðjψiÞ for all i.
However, we argue further that there exist such sub-

spaces with dimension eOðN Þ, spanned by some basis states
jψ ii (i ¼ 1;…; eQN ), with

S

�XeQN

i¼1

cijψ ii
�

¼ SðjψiÞ þOðN p;p < 1Þ; ð24Þ

where Q ≤ 1 does not scale withN . The existence of these
subspaces with entanglement structures invariant under
superpositions is expected from canonical typicality (also
referred to as the general canonical principle) [46,47]. This
provides us with the powerful result that generic states in
subspaces have the same reduced density matrix for small
subsystems (up to small corrections). The proof of this
statement is purely kinematical and hence applies gener-
ally. In fact, from canonical typicality the correction term in
Eq. (24) is exponentially small, Oðe−QN =2Þ.
Canonical typicality is a highly nontrivial statement

because the size of the subspaces in question is large
enough that one would naively think that superpositions
would ruin the entanglement structure at OðN Þ.13
Therefore, even if one considers an exponentially large
superposition of microstates (so long as they are generic
states from the same subspace), geometric operators can be
effectively linear within this subspace. We propose that
states dual to semiclassical geometries are precisely generic
states within their respective subspaces.
An example of one of these subspaces is an energy band

of a SYK theory. These harbor an exponentially large
number of states, and yet from canonical typicality any
superposition of generic states within this band has the
same entanglement entropy. Another example is states that
have energy scaling with the central charge, c, in AdS/CFT.
These are dual to large black holes and there are also an
exponentially large number of states within the energy
band. Despite this, generic states within this energy band
have the same entanglement entropy structure. Essentially,
canonical typicality proves the existence of exponentially
large subspaces that have entanglement structures pre-
served under superpositions of just as many states.
We need this strengthened statement because the entan-

glement entropy calculations for FRW suggest that the size
of subspaces dual to identical spacetimes is exponentially
large. This is because the quantity Q in Eq. (24) is related
with von Neumann entropies characterizing the whole
state, e.g. QA in Sec. III A with A being the half boundary
space and Qwðπ=2Þ in Sec. III B. This intuition stems from
the statement that the thermal entropy density and entan-
glement entropy density for states in the thermodynamic
limit are approximately equal. For generic states within
some energy interval subspace, this holds by canonical
typicality. The statement also results from assuming that the
system satisfies the ETH (like in AdS/CFT). SYK models,
however, do not strictly satisfy the ETH; nevertheless, it

13Note that if one fine-tunes coefficients and selects states in
this subspace carefully, one could construct a state with lower
entanglement via superposition.
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remains true that QA at half system size gives a good
approximation for the thermal entropy density, and the
discrepancy vanishes as the energy of the states is
increased. For these reasons, we expect Qwðπ=2Þ to well
approximate the thermal entropy density of states dual to a
FRW spacetime with fluid parameter w.
We can now address the properties of typical states

within an entire Hilbert space. Consider a holographic
Hilbert space of a given theory, e.g. a CFT with a finite
cutoff or the holographic theory of FRW spacetimes. If
there are multiple superselection sectors in a given theory,
then we focus on one of them. In such a Hilbert space, the
effective subspace with Q ¼ 1 corresponds to typical
states. Applying Page’s analysis, we can then conclude
that the only entanglement structure consistent with
Eq. (24) where Q ¼ 1 must be that of maximal entropy.
For example, the number of microstates for a large black
hole approaches the dimension of the boundary Hilbert
space as T → Λ, and these states are maximally entangled.
Similarly, using the argument in the previous paragraph, the
number of independent microstates in the de Sitter limit
approaches the dimension of the boundary Hilbert space,
and these states are maximally entangled. As shown in
Sec. II, the directly reconstructable spacetime region
vanishes in these cases—an effective subspace with Q ¼
1 does not have reconstructable spacetime. It is in this sense
that typical states in the whole Hilbert space have no
reconstructable spacetime.
On the other hand, if Q < 1, the corresponding entan-

glement structure SðjψiÞ can be nonmaximal, and generic
states in this subspace may be dual to some bulk spacetime.
As discussed in Sec. III C, we expect that dynamics of the
boundary theory can naturally select these subspaces, for
example by simply lowering the energy of the system in the
case of the boundary CFT.
The structure discussed here allows for a single holo-

graphic Hilbert space to harbor effective subspaces dual to
different geometries, allows for a “generically linear”
spacetime operator, and hence eliminates the need for
any strong form of state dependence.14 Because this
“spacetime operator” is identical for states of a given
entanglement, it obviously acts linearly on generic super-
positions of states within one of these dynamically selected,

entanglement-invariant subspaces. We suspect that it is
only in this thermodynamic sense that classical spacetime
emerges from the fundamental theory of quantum gravity.

V. CONCLUSION

A. Discussion

Our understanding of the relationship between spacetime
and entanglement seems to be converging. The necessity of
entanglement between boundary degrees of freedom for the
existence of spacetime has been known for some time, but
this fact may have mistakenly established the intuition that
the fabric of spacetime itself is purely this entanglement.
However, this cannot be the case. A one-to-one mapping
between the entanglement structure of a boundary state and
the directly reconstructable bulk spacetime cannot be
upheld in a state independent manner. In addition, we
see that as boundary entanglement approaches maximality
the reconstructable region of the bulk vanishes.
In hindsight, this should not be too surprising. Let us

recall Van Raamsdonk’s discussion [12] relating spacetime
to entanglement by examining the link between mutual
information and correlations in a system. The mutual
information between two boundary subsystems A and B
is defined as

IðA;BÞ ¼ SðAÞ þ SðBÞ − SðA ∪ BÞ: ð25Þ

This quantity bounds the correlations in a system between
operators OA and OB, supported solely on A and B via the
relation

IðA;BÞ ≥ ðhOAOBi − hOAihOBiÞ2
2jOAj2jOBj2

: ð26Þ

Hence, when the mutual information between two sub-
regions A and B vanishes, the correlation between local
operators supported within the subregions must also vanish.
Assuming that subregion duality holds, this implies that
correlation functions of bulk fields vanish. Generally,
correlators between two bulk fields go as

hO1ðx1ÞO2ðx2Þi ∼ afðLÞ; ð27Þ

where L is the distance of the shortest geodesic connecting
x1 and x2, a is some theory dependent constant, and fðzÞ is
a decreasing function of z. One can then make the argument
that decreasing entanglement between regions drops the
mutual information between the regions, and hence makesL
effectively infinite. This implies that the spacetime regions
dual to subregions A and B are disconnected when the
entanglement (and hence mutual information) vanishes. For
intuition’s sake, one can imagine two subregions of the AdS
boundary which are in a connected entanglement phase—
increasing the distance between these two subregions drops

14By strong state dependence, we mean a theory that would
require state dependence to describe bulk excitations in the
directly reconstructable region of a boundary state which is a
generic superposition of states dual to a given spacetime. For a
more detailed analysis of this statement, we refer the reader to
Ref. [6]. The main result is that requiring linearity for the multiple
boundary representations of a bulk operator is impossible if the
number of geometry microstates is eN . This prohibits the
existence of a directly reconstructable region for typical states.
Note that the directly reconstructable region does not probe
behind black hole horizons, and hence we are not addressing the
possibility that state dependence is necessary to recover the black
hole interior.
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the mutual information. This is an argument demonstrating
the need for entanglement in a holographic theory dual to
spacetime, so long as the holographic theory has subregion
duality.
However, there is a different (quite the opposite) way to

make the mutual information between small (less than half
of the system) subregions vanish, and consequently kill the
bulk correlations. This is by considering maximally
entropic boundary states—in these, the mutual information
vanishes for any pair of subregions. This is the case both in
cutoff temperature AdS black holes and in the de Sitter
limit of the holographic theory of FRW universes. In these,
the boundary states are maximally entropic and hence the
bulk correlators must vanish; however, there exist finite
length geodesics in the bulk (even if restricted only to the
directly reconstructable region) which connect all points on
the boundary. This means that the prefactor, a, of Eq. (27)
must vanish, making the bulk theory ultralocal. In these
cases, the maximal entropy implies that there cannot be an
extra emergent bulk dimension. This is because the ground
state of any quantum field theory quantized on spacelike
hypersurfaces must be entangled at arbitrarily short scales,
which is violated by the assumption that a ¼ 0. However,
this is not necessarily unexpected—in both de Sitter space
and cutoff temperature black holes, the directly recon-
structable regions are codimension-1 null surfaces of the
bulk (the de Sitter horizon and black hole horizon respec-
tively). A natural description of the fields on these surfaces
would be through null quantization, which is known to be
ultralocal [48]. Accordingly, we see a breakdown in the
holographic description.
From the above arguments one can convince oneself that

it is not entanglement itself which allows for the con-
struction of spacetime, but rather something related to
intermediate entanglement.
How can this be better understood? The framework of

tensor networks provides some intuition behind this. Here,
a maximally entropic boundary state is most naturally
represented by a single bulk node with one bulk leg and
multiple boundary legs.15 Hence the spacetime is just one
nonlocalizable bulk region, a “clump” as defined in
Ref. [8]. This bulk point can be reconstructed once a
subregion of the boundary contains more than half of the
boundary legs. Here it is clear that a maximally entropic
boundary state has no dual spacetime, and yet it is possible
to encode a bulk code subspace with full recovery once
more than half of the boundary is obtained. Note that these
typical states all satisfy (in fact saturate) the holographic
entropy cone inequalities [49] simply because a random
tensor network accurately describes the state, but this does

not mean that there is a reconstructable region of the
spacetime.
Additionally, if maximally entropic states did have

reconstructable spacetime, then state dependence would
be necessary in order to describe bulk excitations in these
states, under the assumption that subregion duality holds.
This is because the number of microstates with maximal
entropy is approximately the dimension of the full boundary
Hilbert space, and by the argument in Sec. VC of Ref. [6], it
is impossible to find a boundary representation of a bulk
operator that has support only on a subregion of the
boundary and acts approximately linearly on all microstates
of a given spacetime. Intuitively, this is because the operator
will be overconstrained by insisting that it both has support
on a subregion of the boundary and acts linearly on D
microstates, when the dimension of the full boundary space
isD. This means that if we require state independence, then
the only possible boundary operators representing bulk
excitations for a maximally entropic state must have support
on the full boundary space.16 Therefore, the minimum
possible subregion in which bulk excitations can be encoded
state independently is the whole boundary space; hence
there is no directly reconstructable spacetime. This directly
highlights the tension between reconstructing spacetime for
maximally entropic states (in any manner), and requiring
both subregion duality and state independence.
But what happens if we lower the entanglement of the

boundary state while keeping the dimension of the boun-
dary Hilbert space constant? Again, we turn to tensor
networks for intuition. In these situations, a natural way to
encode submaximal entanglement (while fixing the bulk
leg dimension) is by including more bulk nodes. Therefore,
by reducing the boundary entanglement, it is possible to
create a bulk code subspace in which subsystem recovery is
possible. It seems that quantum gravity naturally utilizes
this submaximal entanglement in order to encode informa-
tion via subregion duality. This suggests that perhaps
entanglement is not the fundamental constituent of space-
time per se, but rather the avenue by which subregion
duality manifests.

B. Future directions

This paper has attempted to clarify the nature of
spacetime in holographic theories and it naturally raises
interesting questions to be investigated in future work.

15Any attempt to create a bulk by artificially including more
nodes with extremely large bulk bond dimension can be reduced
to the case of one bulk node.

16This is not contradicting the statement in the previous
paragraph that the sole bulk node’s state in a random tensor
can be recovered with just more than half of the boundary. In that
case, only the recovery of the bulk code subspace for one
microstate was considered. State independence would require
us to have an operator that acts linearly on all microstates of a
given spacetime.
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1. Reconstructability and generalized holographic
renormalization

The analysis of this paper utilized the condition for
reconstructable spacetime presented in Ref. [8], but
appropriately generalized for use in the context of
holographic screens [6]. This paper illuminated some
highly desirable properties of the directly reconstruct-
able region defined in this manner—namely that one can
describe this region state independently. It would be
extremely beneficial to attempt to find an explicit way
to construct bulk operators using this method, perhaps
uniting it with the methods of entanglement wedge
reconstruction [50,51].
It would also be interesting to try and develop new tools

for reconstructing the bulk. The relationship between the
depth in the bulk and the scale in the boundary theory in
AdS/CFT suggests that it may be possible to define the
reconstructable region of spacetime as that which is swept
through a renormalization procedure. How this manifests in
general holography is not clear, but it is suggestive that
there exists at least one foliation where one can “pull” the
leaf inward while retaining the ability to consistently apply
the HRRT prescription. Because the area of these renor-
malized leaves is monotonically decreasing, it is natural
that this “pulling”may correspond to some renormalization
procedure. The decrease in area also happens locally, which
can be seen by generalizing the spacelike monotonicity
theorem of Ref. [5].
One guess as to how to construct the renormalized leaf is

to first pick the coarse graining scale of the boundary, and
then define the new leaf as the collection of all of the
deepest points of the extremal surfaces anchored to sub-
regions with the size of the coarse graining scale. In AdS/
CFT this will pull the boundary in along the z direction as
expected, while in FRW spacetimes this will pull the leaf
along the null direction if the coarse graining scale is small.
Using this method, one can renormalize to a given scale in a
number of different ways. For example, one could perform
many small renormalization steps or one large one. The
renormalized leaves in the two cases will generically differ,
and this may correspond to the difference between one-shot
renormalization and a renormalization group method. The
collection of all renormalized leaves may then determine
the reconstructable region.17 Theorem 1 tells us that once
the renormalized state becomes maximally entropic, the
renormalization procedure must halt. Furthermore, because
extremal surfaces for nonmaximally entropic states probe
the bulk, this renormalization procedure continues until the
leaf becomes maximally entangled. Thus, this renormali-
zation group flow halts only once a bifurcation surface or a
null nonexpanding surface is reached. In this language,

maximally entropic states correspond to fixed points. This
is speculation, but may shed some light on the nature of
renormalization in general holographic theories.

2. Cosmic equilibration

In Sec. II E, we proved that maximally entropic states
have no directly reconstructable spacetime. Additionally,
we argued that if one desires a state on a holographic screen
to be maximally entropic and evolve in time, then the
holographic screen is a null nonexpanding surface and the
directly reconstructable region is no more than the screen
itself. This suggests that in a holographic theory of
cosmological spacetimes, if a state becomes maximally
entropic and the screen does not halt, then the holographic
description approaches that of de Sitter space.
Consequently, the area of the screen is constant. It would
be interesting to investigate the result from the other
direction. By first assuming that the screen approaches a
constant area, one may be able to argue that the leaves
would then approach maximal entropy, and hence the
holographic description approaches that of de Sitter space.
This could provide another way to consider equilibrating to
de Sitter-type solutions; see Ref. [52].

3. Complementarity

In Appendix A, we highlighted the dependence of the
reconstructable region on the frame of reference. In the case
of the two-sided AdS black hole, we considered different
reference frames corresponding to different time slicings in
the same boundary theory—as one shifts the difference in
the two boundary times, one recovers more and more of the
black hole interior. This is an example of complementarity.
It would be interesting to pursue this idea further and
investigate the directly reconstructable region of a two-
sided black hole.
One intriguing aspect of the two-sided black hole is that

the directly reconstructable region does not extend beyond
the extremal surface barrier; this is a macroscopic distance
away from the future singularity, regardless of the boundary
frame. Does this mean that the boundary CFT cannot
describe semiclassical physics behind this barrier, even
where curvature is small? Perhaps this means that there is a
different description for the interior, living on a different
holographic space.

4. Fundamentality of subregion duality

In many of the discussions throughout this paper, we
either required subregion duality or saw that it naturally
arose from other considerations. This seems to suggest that
subregion duality is a fundamental characteristic of general
holography. Investigating the manner in which subregion
duality arises in AdS/CFT may shed light on holography in
general spacetimes.

17Using this construction, it is not possible to extend
reconstruction beyond horizons, but it is possible to reach behind
entanglement shadows.
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5. Holographic theory of flat FRW spacetimes

One of the most obvious open problems is that of finding
an effective holographic theory applicable beyond asymp-
totically AdS spacetimes. In this paper and throughout
previous work, we have focused on the case of flat FRW
universes and assumed that a theory exists on the holo-
graphic screen in which the generalized HRRT prescription
holds. Investigations into this have led to a deeper under-
standing of the nature of entanglement in constructing
spacetime, along with (the lack of) state dependence in
holographic theories.
It seems that a consistent theory is possible, and the

most promising candidate for a theory describing the
gravitational degrees of freedom is a theory with long-
range interactions in which the energy of the states is dual
to the fluid parameter of the FRW universe. We know
that it cannot be entirely nonlocal because this would
prohibit the existence of entanglement phase transitions.
A theory with long-range interactions would accurately
reproduce the entanglement entropy structure we observe
for FRW universes and would allow for a universal theory
describing the single class of spacetimes. Beyond this, we
have some additional data about the properties of the
boundary theory.
We know that a code subspace of states manifests, and

these states are dual to bulk excitations. Assuming
subregion duality holds, one can ask the question of
whether or not nonlocality/very long-range interaction in
the gravitational degrees of freedom prohibits the local
propagation of bulk excitations in the boundary theory.
We expect that the operators dual to bulk excitations are
weakly coupled to the gravitational degrees of freedom,
and that a local description of these bulk operators exists
in the boundary. In fact, this is what happens when one
renormalizes the AdS boundary down to a single AdS
volume [53]. This renormalization induces an infinite set
of interactions which makes the resulting theory on the
renormalized boundary nonlocal. Despite this, the renor-
malized theory still describes bulk physics through sub-
region duality. Hence, the nonlocality of the boundary
theory does not seem to be a fundamental obstacle in
describing low energy excitations using local dynamics
in the boundary theory.18 The dynamics of boundary
operators dual to bulk excitations in flat FRW spacetimes
was studied in Ref. [54] and it was determined that
regardless of dimension and fluid parameter, the spread
of these operators was characteristic of a theory with
z ¼ 4 Lifshitz scaling. This provides extra constraints for
finding a candidate theory.

6. Holographic theory for general spacetimes

It might appear that defining quantum gravity using
holography, as envisioned here, is background dependent.
Namely, the holographic theory is given for each class of
background spacetimes, e.g. asymptotically AdS space-
times and flat FRW spacetimes. This situation is analogous
to defining string theory on the world sheet, which is
defined separately on each target space background. From
the perspective of the world sheet, different backgrounds
correspond to different theories living on the two-dimen-
sional spacetime. Nevertheless, we believe there exists
some unified framework encompassing all these possibil-
ities. Similarly, in the case of holographic theories, it is
plausible that the resultant theories for different back-
ground spacetimes correspond to different sectors
described within a single framework.
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APPENDIX A: RECONSTRUCTABILITY OF
TWO-SIDED BLACK HOLES AND

COMPLEMENTARITY

In the main part of the text, we have focused on
spacetimes having a simply connected boundary. It is
interesting to consider when this is not the case and
examine which (if any) results persist. For definiteness,
we here analyze the case of a two-sided eternal black hole
in asymptotically AdS spacetime. In this case, the holo-
graphic screen is the union of the two asymptotic bounda-
ries at spacelike infinity. The boundary theory comprises
two CFTs, CFTL and CFTR, which are decoupled
from each other. Hence, the Hamiltonian for the system
is given by

Htotal ¼ HL þHR: ðA1Þ

The times tL and tR associated respectively withHL andHR
run in opposite directions along the two asymptotic
boundaries.
Since the theories are decoupled, it might appear that

one could evolve each of the theories independently—
effectively foliating the holographic screen by two inde-
pendent parameters, ðtL; tRÞ. Per the construction outlined
in Sec. II A, the directly reconstructable region would then
be the union of all points localized by intersecting entan-
glement wedges of HRRT surfaces individually anchored
to “one” leaf, each of which is labeled by ðtL; tRÞ. Here, one

18It would be interesting to study this effective boundary
theory, induced in AdS/CFT by renormalizing all the way down
to the AdS scale. The holographic theory capturing sub-AdS
locality could be very closely related to the theory on holographic
screens.
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leaf corresponds to picking a connected, equal time slice of
the left boundary and independently a connected, equal
time slice of the right boundary. If this were the case, the
reconstructable region would be most of the spacetime,
including a macroscopic portion of the interior (aside from
a region near the singularity with r < rþ=21=d, where rþ is
the horizon radius) [55].
However, a theory described by Hamiltonian dynamics

should have a single time parameter. To make the holo-
graphic theory compatible with this, we postulate that there
is a single parameter t that foliates the multiple discon-
nected components of the holographic screen. From this
assumption, there are multiple suitable foliations, and
among them we must pick one—this corresponds to
choosing a reference frame, a gauge for the holographic
redundancy [56]. In the case of a two-sided black hole, this
gives us a one parameter family of foliations corresponding
to the freedom in choosing the relative time shift between
tL and tR in the CFTs, even after choosing a natural
foliation at each boundary.
In general, each of these individual foliations reconstructs

a different region of the bulk spacetime. For example,
adopting the usual thermofield double state construction
[57] corresponds to choosing a reference frame

tL ¼ tR ¼ t; ðA2Þ

inwhich the t ¼ 0 slice in the bulk is the one passing through
the bifurcation surface. Since time translation is a Killing
symmetry in this spacetime, and the bifurcation surface is
invariant under this translation, the HRRT surfaces for
any time t never enter the interior of the black hole.
Connected HRRT surfaces always pass through the
bifurcation surface in such a situation (unless the sub-
region has support on only one of the boundaries, in
which case the HRRT surface stays in one side of the
black hole). The reconstructable region in this reference
frame, therefore, does not include the interior of the
black hole.
However, one could alternatively consider a reference

frame in which there is a relative shift in the two times

tL ¼ tþ Δ; tR ¼ t: ðA3Þ

In this case, the connected HRRT surfaces would
not necessarily pass through the bifurcation surface and
could probe regions of the interior, and hence parts of
the interior will be reconstructable. We can interpret
this foliation dependence of the reconstructable region
as a version of complementarity [58]. In this light, the
canonical thermofield double time foliation corresponds to
an entirely exterior description of the black hole, while
increasing Δ allows for more of the region behind the
horizon to be reconstructed. An important point is that we
should not consider leaves with different Δ’s in a single

description—they correspond to different descriptions in
different reference frames. We also note that regardless of
the foliation, we cannot reconstruct near the singularity
because of the extremal surface barrier located at
r ¼ rþ=21=d. This suggests that in order to probe physics
of the singularity we must use a different method.
With this interpretation of bulk reconstruction, we

examine whether or not spacetime disappears as we
approach maximal entropy. A priori, it seems that a
macroscopic spacetime region would remain as we increase
the black hole radius because some portion of the interior is
reconstructable. However, this apparent contradiction is
resolved by considering a finite coordinate time interval
and examining the reconstructable volume as one increases
the temperature.
Consider any foliation where the relative time shift

between tL and tR has been fixed. In order to carry out
the analysis analogous to Sec. II B, we fix an interval of
coordinate time Δt and fix the cutoff surface at r ¼ R.
Increasing the temperature of the black hole moves the
horizon closer and closer to the cutoff surface, which can be
represented in the Penrose diagram as in Fig. 10. The
allowed range of times is depicted by the constant time
surfaces t1 and t2. As we take the limit rþ → R, which
corresponds to taking the temperature of the black hole
TH → Λ where Λ is the cutoff in the boundary theory, the
finite range of time collapses down to the bifurcation
surface on both sides. Thus, the relative reconstructable
spacetime volume shrinks to 0.

FIG. 10. The spacetime regions reconstructable using con-
nected HRRT surfaces anchored to subregions with support on
both asymptotic boundaries within the range t ∈ ½t1; t2� are
depicted (green shaded regions) for two different values of black
hole horizon radius rþ in a two-sided eternal AdS black hole. The
holographic screen (blue) in both cases is the cutoff surface
r ¼ R. Here, we superimpose the respective Penrose diagrams in
the two cases to compare the amount of reconstructable spacetime
volume available by allowing connected HRRT surfaces.
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We find that our claim persists despite the addition of a
disconnected boundary region that allows for the
reconstruction of spacetime behind a black hole horizon.

APPENDIX B: CALCULATIONS FOR THE
SCHWARZSCHILD-ADS SPACETIME

In this appendix, we provide explicit calculations of the
spatial volume and HRRT surfaces of the Schwarzschild-
AdS spacetime.

1. Reconstructable volume

The Schwarzschild-AdS spacetime in dþ 1 dimensions
is described by the metric

ds2 ¼ −
�
r2

l2
þ 1 −

2μ

rd−2

�
dt2 þ dr2

r2

l2 þ 1 − 2μ
rd−2

þ r2dΩ2
d−1;

ðB1Þ

where l is the AdS radius, and μ is related with the black
hole horizon radius rþ as

2μ ¼ rdþ
l2

�
1þ l2

r2þ

�
: ðB2Þ

The Hawking temperature of the black hole is given by

TH ¼ dr2þ þ ðd − 2Þl2
4πrþl2

: ðB3Þ

Consider a large AdS black hole rþ ≫ l. In this limit,

2μ ¼ rdþ
l2

; TH ¼ drþ
4πl2

; ðB4Þ

and the metric is well approximated by

ds2 ¼ −
�
r2

l2
−

rdþ
l2rd−2

�
dt2 þ dr2

r2

l2 −
rdþ

l2rd−2

þ r2dΩ2
d−1: ðB5Þ

Let us now introduce an infrared cutoff r ≤ R and consider
the spatial volume between the black hole horizon and the
cutoff

Vðrþ; RÞ ¼ Ad−1

Z
R

rþ

rd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 −
rdþ

l2rd−2

q dr

¼ 2πd=2

Γðd=2Þ lr
d−1þ

Z R
rþ

1

xd−2ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

xd

q dx; ðB6Þ

where Ad−1 ¼ 2πd=2=Γðd=2Þ is the area of the (d − 1)-
dimensional unit sphere. Here, we have focused on the
spatial volume because the system is static.

We normalize this volume by the volume of the region
r ≤ R in empty AdS spacetime,

VðRÞ ¼ Ad−1

Z
R

0

rd−1ffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 þ 1

q dr

¼ 2πd=2

ðd − 1ÞΓðd=2Þ lR
d−1; ðB7Þ

where we have used R ≫ l in the second line. This gives us
the quantity quoted in Eq. (1),

f

�
rþ
R

�
≡Vðrþ;RÞ

VðRÞ ¼ðd−1Þ r
d−1þ

Rd−1

Z R
rþ

1

xd−2ffiffiffiffiffiffiffiffiffiffi
1− 1

xd

q dx: ðB8Þ

2. HRRT surfaces

Consider a large black hole in asymptotically AdS
spacetime. The holographic theory is then a CFT.
Suppose the temperature of the system T is lower than
the cutoff scale, T < Λ. Here we study the behavior of the
von Neumann entropy of a spherical cap region A on r ¼ R
in this setup.
The region is specified by a half opening angle ψ ,

0 ≤ θ ≤ ψ ; ðB9Þ

where θ is a polar angle parametrizing Sd−1 with constant t
and r. The HRRT surface γA is then given by function rðθÞ,
which is determined by minimizing the area functional,

kγAk ¼ min
rðθÞ

"
Ad−2

Z
ψ

0

rd−2sind−2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðdrdθÞ2

r2

l2 þ 1 − 2μ
rd−2

s
dθ

#
;

ðB10Þ

with the boundary condition

rðψÞ ¼ R; ðB11Þ

where Ad−2 is the area of the (d − 2)-dimensional unit
sphere, and μ is given by Eq. (B1). Here and below, we
assume ψ ≤ π=2. For ψ > π=2, the entropy of A is
determined by SðψÞ ¼ Sðπ − ψÞ.
The surface γA is well approximated to consist of two

components: (i) a “cylindrical” piece with θ ¼ ψ , which is
perpendicular to the cutoff surface r ¼ R and extends
down to r ¼ r0 (< R), and (ii) the “bottom lid” with
r ¼ r0 and 0 ≤ θ ≤ ψ ; see Fig. 11. The area of the surface
is then given by
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kγAk ¼ min
r0

�
Ad−2sind−2ψ

Z
R

r0

rd−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 −
rdþ

l2rd−2

q dr

þ Ad−2rd−10

Z
ψ

0

sind−2θdθ

�
; ðB12Þ

where rþ is the horizon radius, and we have used the
approximation that rþ ≫ l and hence Eq. (B4). The value
of r0 is determined by the minimization conditionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 −
rdþ
rd−20

s
¼ sind−2ψ

ðd − 1Þ R ψ
0 sind−2θdθ

l: ðB13Þ

As discussed in Sec. II B, the cutoff at r ¼ R in our
context simply means that the renormalization scale in the
boundary theory is lowered; in particular, it does not mean
that the theory is modified by actually terminating space
there. The length in the boundary theory, therefore, is still
measured in terms of the d-dimensional metric at infinity,
r ¼ ∞, with the conformal factor stripped off. The radius
of the region A is then given by

L ¼ lψ ; ðB14Þ
and not Rψ . Since the cutoff length is 1=Λ ≈ l2=R, we
should only consider the region ψ ≳ l=R.
The solution of Eq. (B13) behaves as

ðiÞ r0 ¼
l
ψ
ð≫ rþÞ for

l
R
< ψ ≪

l
rþ

; ðB15Þ

ðiiÞ r0−rþ¼ l2

dψ2rþ

�
≪

rþ
d

�
for

l
rþ

≪ψ≪1; ðB16Þ

ðiiiÞ r0 − rþ ¼ Oð1Þ l
2

rþ
for ψ ≈Oð1Þ: ðB17Þ

In the case of (i), kγAk is dominated by the first term in
Eq. (B12), so that

kγAk ¼ Ad−2

d − 2
lRd−2ψd−2: ðB18Þ

Here and below, we assume d > 2. We thus obtain an area
law for the entropy,

SA ¼ kγAk
4ld−1P

≈ cAd−2Ld−2Λd−2; ðB19Þ

where c ≈ ðl=lPÞd−1 is the central charge of the boun-
dary CFT.
In the case of (ii), kγAk is given by

kγAk ¼ Ad−2

d − 2
lRd−2ψd−2 þ Ad−2

d − 1
rd−1þ ψd−1: ðB20Þ

We find that the first (second) term is larger for

ψ < ð>Þ d − 1

d − 2

lRd−2

rd−1þ
; ðB21Þ

so that the entanglement entropy behaves as

SA≈
�cAd−2Ld−2Λd−2 forL≪L�;

cAd−2
rd−1þ Ld−1

l2d−2 ≈cðTΛÞd−1Ad−2Ld−1Λd−1 forL≫L�;

ðB22Þ

where

L� ≈
l2Rd−2

rd−1þ
≈
Λd−2

Td−1 : ðB23Þ

For ψ ≈Oð1Þ, i.e. case (iii), we find

SA ≈ c

�
T
Λ

�
d−1

Ad−2Ld−1Λd−1: ðB24Þ

Combining the results in all three cases gives the expression
in Eqs. (17) and (18).

APPENDIX C: CALCULATIONS FOR THE
DE SITTER LIMIT OF FRW UNIVERSES

This appendix collects explicit calculations for entropies
and HRRT surfaces in the de Sitter limit of FRW
spacetimes.

FIG. 11. The HRRT surface γA in the Schwarzschild-AdS
spacetime can be well approximated by consisting of two
components: a cylindrical piece with θ ¼ ψ and a bottom lid
piece with r ¼ r0.
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1. Entropies in the case of (2 + 1)-dimensional bulk

Here we see that for (2þ 1)-dimensional FRW space-
times, the results of Ref. [5] immediately tell us that the
entanglement entropy of an arbitrary (not necessarily
connected) subregion A is maximal in the de Sitter limit,

SA;w→−1 ¼
1

4lP
minfkAk; kĀkg: ðC1Þ

Consider a FRW universe in dþ 1 dimensions domi-
nated by a single ideal fluid component with the equation of
state parameter w ¼ p=ρ (jwj ≤ 1). From the analysis of
Ref. [5], we know that the holographic entanglement
entropy of a spherical cap region A on a leaf—parametrized
by the half opening angle ψ as viewed from the center of
the bulk—scales with the smaller of the volumes of A and
Ā. The proportionality constant,

QwðψÞ≡ SðψÞ
1

4ld−1P
minfkAk; kĀkg ; ðC2Þ

satisfies the properties

Qwðψ → 0Þ → 1; Qw→−1ðψÞ → 1; ðC3Þ

∂QwðψÞ
∂ψ

����
ψ¼0

¼ 0;
∂QwðψÞ

∂ψ
����
ψ<π

2

≤ 0;
∂QwðψÞ

∂w < 0:

ðC4Þ

[The original analysis was performed for (3þ 1)-
dimensional FRW universes, but these properties persist
in arbitrary spacetime dimensions.]
The second relation in Eq. (C3) implies that in the de

Sitter limit, w → −1, the holographic entanglement entropy
of a spherical cap region is maximal. Now, consider
(2þ 1)-dimensional FRW universes, in which a leaf has
only one spatial dimension. We consider a subregion on the
leaf consisting of the union of two small intervals A and B.
Note that a similar setup is often discussed in AdS/CFT,
where two possible extremal surfaces homologous to the
subregion compete, so that a phase transition from the
disconnected to connected HRRT surfaces occurs as
the regions A and B are taken to be closer; see Fig. 12.
We want to understand what happens in the case of FRW
spacetimes.
We denote the areas of two possible extremal surfaces by

EdisconnectedðABÞ ¼ EðAÞ þ EðBÞ
¼ QwðAÞkAk þQwðBÞkBk; ðC5Þ

and

EconnectedðABÞ ¼ EðABCÞ þ EðCÞ
¼ QwðABCÞkABCk þQwðCÞkCk; ðC6Þ

where A, B, and C are defined in Fig. 12. A phase transition
can occur when

EdisconnectedðABÞ ¼ EconnectedðABÞ: ðC7Þ

The condition of Eq. (C7) can be satisfied for any w
away from the de Sitter limit because of the second relation
in Eq. (C4). Since a larger region has a greater volume but
also has a smaller coefficient, it is possible for the two
extremal surfaces to compete. However, in the de Sitter
limit the requirement for a phase transition becomes

kABCk þ kCk ¼ kAk þ kBk; ðC8Þ

which is clearly impossible because the left-hand side is
always greater. Since a general subregion of the leaf is a
union of disconnected intervals, the above argument
implies that the entanglement entropy is merely the sum
of each interval’s volume for sufficiently small regions.
Extending the argument to large regions in which their
complements matter, we can conclude that arbitrary sub-
regions have maximal entanglement entropies in a (2þ 1)-
dimensional de Sitter universe.

2. Entropies in the w → − 1 limit of FRW spacetimes

The global spacetime structure in the case of a single
fluid component withw ≠ −1 is qualitatively different from
the case discussed mainly in Sec. II C, i.e. the case in which
a universe approaches de Sitter space at late times.
Nevertheless, here we show that the holographic entangle-
ment entropy of an arbitrary subregion on a leaf becomes
maximal in the w → −1 limit.
Let us consider a FRW universe filled with a single fluid

component with the equation of state w. The scale factor is
then given by

aðtÞ ¼ ct
2

dð1þwÞ; ðC9Þ

where c > 0 is a constant. We focus on a leaf σ� at time t�
and the causal region Dσ� associated with it. Following
Ref. [5], we perform t�-dependent coordinate transforma-
tion on the FRW time and radial coordinates t and r,

(a) (b)

FIG. 12. Two possible extremal surfaces anchored to the
boundary of a subregion AB on a leaf, given by the union of
two disjoint intervals A and B. The areas of the surfaces depicted
in (a) and (b) are denoted by EdisconnectedðABÞ and EconnectedðABÞ,
respectively.
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η ¼ 2

d − 2þ dw

��
t
t�

�d−2þdw
dð1þwÞ

− 1

	
; ðC10Þ

ρ ¼ 2

dð1þ wÞ ct
−d−2þdw

dð1þwÞ� r: ðC11Þ

This converts the metric into the form

ds2 ¼
�

A�
Ad−1

� 2
d−1
�
d − 2þ dw

2
ηþ 1

� 4
d−2þdw

× ð−dη2 þ dρ2 þ ρ2dΩ2
d−1Þ; ðC12Þ

where Ad−1 is the area of the (d − 1)-dimensional unit
sphere, defined below Eq. (B6), andA� is the volume of the
leaf σ�,

A� ¼
�
dð1þ wÞ

2

�
d−1

Ad−1td−1� : ðC13Þ

In these coordinates, Dσ� is mapped into the region η ∈
½−1; 1� and ρ ∈ ½0; 1 − jηj�.19
We can now take w ¼ −1þ ϵ in Eq. (C12) and expand it

around ϵ ¼ 0. This gives

ds2 ¼
�

A�
Ad−1

� 2
d−1
�

1

ð1 − ηÞ2

− d
ηþ ð1 − ηÞ lnð1 − ηÞ

ð1 − ηÞ3 ϵþ � � �
�

× ð−dη2 þ dρ2 þ ρ2dΩ2
d−1Þ: ðC14Þ

The leading order term describes the causal region inside a
leaf of volume A� in de Sitter space with conformal
coordinates. The time translational Killing symmetry in
these coordinates is

η → aηþ 1 − a; ðC15Þ

ρ → aρ: ðC16Þ

The expansion in Eq. (C14) is not valid when η≲ 1 − ϵ.
However, this occurs only for a small subset of all the
subregions on σ�, which becomes measure 0 when ϵ → 0.
Continuity then tells us that the entanglement entropy SA of
any subregion A on σ� takes the same value as that
calculated in de Sitter space in the ϵ → 0 limit.
However, we have already concluded from the argument
in Sec. II C that the entanglement entropies take the
maximal form in de Sitter space, hence

SA ⟶
w→−1

1

4ld−1P

minfkAk; kĀkg: ðC17Þ

Note that the area of the leaf, A�, keeps growing
indefinitely, so that Dσ� at each time t� is mapped to
a different auxiliary de Sitter space. The ratio QwðAÞ ¼
SA=ðminfkAk; kĀkg=4ld−1P Þ, however, depends only on w
and not t�.

3. HRRT surfaces

Here we present two examples in which one can
analytically see the convergence of the HRRT surfaces
onto the future boundary of the causal region of a leaf in the
de Sitter limit.

a. The de Sitter limit of FRW universes in 2 + 1
dimensions

As the first example, consider the de Sitter limit of FRW
universes in 2þ 1 dimensions,

ds2 ¼ a2ðηÞð−dη2 þ dx2 þ dy2Þ: ðC18Þ

Here, η ∈ ð−∞; 0Þ is the conformal time, and the scale
factor is given by

aðηÞ ¼ c
η
; ðC19Þ

where c is a positive constant. In this case, we can obtain an
analytic solution for HRRT surfaces, which are geodesics
in 2þ 1 dimensions.
In order to find a spacelike geodesic anchored to two

points on the leaf, we can use the symmetry of the problem
to rotate our axes so that the points lie at constant y ¼ y0.
To find a geodesic, we need to extremize the distance
functional

D ¼
Z

dη
c
η

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 − 1

p
; ðC20Þ

where _x ¼ dx=dη, and we have used the fact that the
geodesic lies on the y ¼ y0 hypersurface. This functional
has no explicit dependence on x, which means the existence
of a quantity that is conserved along the geodesic

∂D
∂ _x ¼ c_x

η
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 − 1

p ≡ px: ðC21Þ

Using this, we obtain a first-order ordinary differential
equation

dη
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c2

p2
xη

2

s
; ðC22Þ

19For w ≥ −1þ 4=d, the region Dσ� hits the big bang
singularity, so we need to restrict our attention to a portion of
Dσ� , e.g.D

þ
σ� ¼ fp ∈ Dσ� jtðpÞ ≥ t�g. This issue is not relevant to

our discussion here.
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which can be easily solved to give the analytic expression
for the geodesic

(
ηðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p2
x

q
;

yðxÞ ¼ y0:
ðC23Þ

The holographic screen of FRWuniverses in the de Sitter
limit lies on

η ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
≡ −r: ðC24Þ

Consider a leaf at η ¼ η� ¼ −r� and a subregion on it
specified by a half opening angle ψ (0 ≤ ψ ≤ π). The end
points of the HRRT surface are then at

ðx; yÞ ¼ ð∓ η� sinψ ;−η� cosψÞ: ðC25Þ

This can be used to determine px and y0 in Eq. (C23),
giving the final expression for the geodesic

�
ηðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y20

p
;

yðxÞ ¼ y0;
ðC26Þ

where y0 ¼ −η� cosψ . By varying the angle ψ , the HRRT
surfaces sweep a codimension-1 surface in the bulk, which
is indeed the future boundary of the causal region of
the leaf,

η ¼ −r; 0 ≤ r ≤ r�ð¼ −η�Þ: ðC27Þ

These surfaces are depicted in x − y − η space in Fig. 13.
We can clearly see that all the HRRT surfaces are spacelike,
except for that corresponding to ψ ¼ π=2 which is null.

b. Small spherical caps in FRW universes
in d + 1 dimensions

Another example in which simple analytic expressions
are obtained is the limit of small spherical cap regions,
ψ ≪ 1, on a leaf. Consider a flat FRW universe in dþ 1
dimensions,

ds2 ¼ aðηÞ2ð−dη2 þ dr2 þ r2dΩ2
d−1Þ; ðC28Þ

filled with a single fluid component with the equation of
state w. We consider the leaf σ� at η ¼ η�, which is located
at

r ¼ a
_a
: ðC29Þ

The future boundary F� of the causal region Dσ� is then
given by

F�∶ ηðrÞ ¼ η� þ
a
_a
− r: ðC30Þ

Here and below, the scale factor and its derivatives without
an argument represent those at η ¼ η�,

a≡aðη�Þ; _a≡daðηÞ
dη

����
η¼η�

; ä≡d2aðηÞ
dη2

����
η¼η�

: ðC31Þ

We consider a spherical cap region A on the leaf σ�,
specified by a half opening angle ψ ,

0 ≤ θ ≤ ψ ; ðC32Þ

where θ is a polar angle parametrizing Sd−1 with constant η
and r. Following Ref. [5], we go to cylindrical coordinates,

ξ ¼ r sin θ; z ¼ r cos θ −
a
_a
cosψ : ðC33Þ

In these coordinates, the null cone F� in Eq. (C30) is
given by

F�∶ ηðξÞ ¼ η� þ
a
_a
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ

�
zþ a

_a
cosψ

�
2

s
; ðC34Þ

and the boundary of A, ∂A, is located at

η ¼ η�; ξ ¼ a
_a
sinψ ≡ ξ�; z ¼ 0: ðC35Þ

The HRRT surface γA anchored to ∂A is on the z ¼ 0
hypersurface [5]. We compare this HRRT surface with the
intersection of F� and z ¼ 0,

lA∶ ηðξÞ ¼ η� þ
a
_a
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ a

_a
cosψ

r
; ðC36Þ

FIG. 13. HRRT surfaces anchored to subregions on a leaf in
(2þ 1)-dimensional de Sitter space. They all lie on the future
boundary of the causal region associated with the leaf.

NOMURA, RATH, and SALZETTA PHYS. REV. D 97, 106010 (2018)

106010-24



see Fig. 14. Using Eq. (C35) and expanding in powers of
ψ ∼ ξ=ða= _aÞ, this can be written as

lA∶ ηðξÞ¼η�þ
_a
2a

ðξ2�−ξ2Þþ _a3

8a3
ðξ2�−ξ2Þ2þ���: ðC37Þ

For ψ ≪ 1, the HRRT surface can be expressed in a
power series form

γA∶ ηðξÞ ¼ η� þ ηð2ÞðξÞ þ ηð4ÞðξÞ þ � � � ; ðC38Þ

where

ηð2ÞðξÞ ¼ _a
2a

ðξ2� − ξ2Þ; ðC39Þ

ηð4ÞðξÞ ¼ −
_a

8a3ðdþ 1Þ ðξ
2� − ξ2Þ

× ½ _a2fðdþ 5Þξ2� − ðd − 3Þξ2g
− aäfðdþ 3Þξ2� − ðd − 1Þξ2g�: ðC40Þ

In the universe dominated by a single fluid component, the
scale factor behaves as

aðηÞ ∝ η
2

d−2þdw: ðC41Þ

Plugging this into Eq. (C40), we obtain

ηð4ÞðξÞ ¼ _a3

16ðdþ 1Þa3 ðξ
2� − ξ2Þ½f2 − ð1þ 3wÞd

− ð1þ wÞd2gξ2� − f2þ ð3þ wÞd
− ð1þ wÞd2gξ2�: ðC42Þ

We find that for w ¼ −1, the surface given by Eqs. (C38),
(C39), and (C42) agrees with lA in Eq. (C37). Namely, the
HRRT surface γA is on the null cone F�.
One can see how γA approaches F� as w → −1 by

subtracting Eq. (C38) from Eq. (C37),

ηlAðξÞ − ηγAðξÞ ¼ _a3

16a3
d

dþ 1
ð1þ wÞðξ2� − ξ2Þfðdþ 3Þξ2�

− ðd − 1Þξ2g
≥ 0: ðC43Þ

The inequality is saturated only for w ¼ −1 (except at the
end points at ξ ¼ ξ�).
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