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Abstract

We demonstrate explicitly that the vacuum expectation values (vevs) of BPS line operators in 4d N = 2
super Yang–Mills theory compactified on a circle, computed by localization techniques, can be expanded in 
terms of Darboux coordinates as proposed by Gaiotto, Moore, and Neitzke [1]. However, we need to aug-
ment the expressions for Darboux coordinates with additional monopole bubbling contributions to obtain a 
precise match. Using D-brane realization of these singular BPS line operators, we derive and incorporate 
the monopole bubbling contributions as well as predict the degeneracies of framed BPS states contributing 
to the line operator vevs in the limit of vanishing simultaneous spatial and R-symmetry rotation fugacity 
parameter.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Brief introduction and summary

D-branes (Dirichlet branes) have become indispensable tools for modern field theorists, and 
one extremely fruitful application is to study the non-perturbative objects such as instantons, vor-
tices or domain walls in supersymmetric gauge theories (see [2] for a pedagogical review). In this 
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note, we will use D-branes to study the BPS (Bogomolnyi–Prasad–Sommerfeld) line operators 
such as Wilson and ’t Hooft lines in 4d N = 2 supersymmetric gauge theories. They can be 
regarded as the heavy BPS probe particles carrying electric and magnetic charges whose world 
lines can form closed loops, namely the Wilson and ’t Hooft loops. The vacuum expectation 
values (vevs) of these non-local observables characterize different phases of gauge theories and 
provide invaluable quantitative tests for various field theoretic dualities. Recent exciting progress 
in localization techniques has enabled the computations of their vevs exactly. In a parallel but 
not entirely unrelated development, the same line operators feature prominently in the study of 
so-called “wall-crossing” phenomena in 4d N = 2 gauge theories [1], which concerns counting 
the degeneracies of BPS particles. Our aim here is to explicitly connect these two extremely rich 
areas through the BPS line operators and their corresponding D-brane configurations will play a 
pivotal role in establishing such a connection.

Our main result (4.20) is a rewriting of the following relation:

〈Lζ 〉 =
∑
{ �γ }

�̂(u,Lζ , �γ )σ ( �γ )X �γ (ζ ) , (1.1)

which was first studied in [1], that makes manifest this connection with localization computation. 
The left-hand side of (1.1) denotes vev of a line operator wrapping along S1 ⊂ R

3 × S1, which 
can be computed exactly using localization techniques [3]. While the summation on the right-
hand side contains two important physical quantities in the study of wall-crossing: framed BPS 
degeneracy �̂(u, Lζ , �γ ) and Darboux coordinate X �γ (ζ ). We will review all these ingredients 
entering (1.1) in some detail in Section 2.

In Section 3, we will show that once we specify the asymptotic electromagnetic charge �γ , 
the functional form of classical and perturbative contributions to the line operator vev as given 
by the localization computation can be captured by just the ‘electric’ (as in W-bosons, quarks, 
etc.) contributions to the Darboux coordinates X �γ (ζ ). The values of { �γ } in the above summation 
for a given line operator Lζ will also be made precise there. To match the Darboux coordinate 
expansion with the complete localization computation, which include the so-called “monopole 
bubbling” effect, the contributions from W-bosons & quarks is not enough as one might expect. 
This can be attributed to the fact that such a truncated form of Darboux coordinates is a good 
approximation in case of SYM without any line operator insertion (see [4]) but in the presence 
of such insertion, there can exist smooth monopoles that screen the ’t Hooft line operator. This 
means that there are additional BPS particles in the spectrum that can ‘interact’ with W-bosons 
without changing the overall line operator charge, resulting in modification of the expressions 
for the Darboux coordinates. This modification turns out to be the required piece to obtain a 
perfect match with the localization results and will be obtained via D-brane realization of the 
line operators.

In Section 4, we will first review the D-brane configurations realizing the line operators in 
4d N = 4 SYM following [5]. Then, by reducing supersymmetry to N = 2, we will obtain a 
generalization of the Darboux coordinates including the factors due to this monopole bubbling 
effect. We will perform the match in the limit where the fugacity parameter for simultaneous 
spatial and R-symmetry rotations λ vanishes, which is analogous to the limit of deformation 
parameters ε1,2 → 0 in the Nekrasov instanton partitions defined on � background [6,7] in order 
to recover the underlying Seiberg–Witten curves. In this limit, the D-brane configurations offer 
simple geometric pictures for computing the values of { �γ } and �̂(u, Lζ , �γ ) in (1.1). Finally, in 
Section 5, we use our general construction to give some illustrative examples.
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Furthermore, the vevs of these line operators on R3 × S1 can be regarded as the building 
blocks for those on other four-manifolds such as S1 × S3 [8], S4 [9] and its deformation 4d 
ellipsoid S4

b [10], which implies we can express those vevs in terms of �̂(u, Lζ , �γ ) and Xγ (ζ )

too. It would also be interesting to generalize the pure super Yang–Mills (SYM) formula (4.19) to 
include other matter fields in various representations using the relevant D-brane constructions (or 
even an M-theoretic approach [11]) and verify against the results from localization computations.

2. Review of basic ingredients

We will study 4d N = 2 supersymmetric gauge theories on R3 × S1, parameterized by Carte-
sian coordinates: xμ = (xi, τ), (μ = 1, 2, 3, 4, i = 1, 2, 3) with τ ∼ τ +2πR. Following [9,3,12]
(for recent surveys, see also [13,10,14]), we review here the relevant details about the line opera-
tors and BPS states in such compactified theories. We will also review the Darboux coordinates, 
which give the metric on their Coulomb branch. This will serve to fix the notations and terminol-
ogy used in the rest of the note.

2.1. Line operators and framed BPS states

On R3 ×S1, a half BPS line operator can wrap around S1 and appear as a point in the remain-
ing R3. The most basic example is the half BPS Wilson line operator defined by the following 
operator, which can be inserted directly in the path integral:

Ww = TrRP exp

⎡
⎢⎣∮

S1

(− iAτ + Re(
)
)
dτ

⎤
⎥⎦, (2.1)

where Aμ and 
 are the gauge field and complex scalar in the N = 2 vector multiplet. The trace 
here is taken over the irreducible representation R of gauge algebra g and gauge group G, so that 
the Wilson line is classified by the highest weight w ∈ �w/W of R, where �w denotes the weight 
lattice and W is the Weyl group.2 We can regard Wilson line as the world line of an infinitely 
massive electrically charged BPS particle labeled by highest weight w.

The magnetic dual of a Wilson line which again wraps along S1 and remains BPS, is called 
’t Hooft line operator TB. It is defined instead within the path integral by configurations contain-
ing the following Dirac monopole-like singularities for gauge and scalar fields [15]:

Aμdxμ =
(

iϑ
g2

16π2

B

r
+ A(∞)

τ

)
dτ + B

2
cos θdϕ, 
 = τ̄

g2

8π

B

r
+ 
(∞). (2.2)

Here B ∈ �cw/W is a co-weight labeling the magnetic charge of Dirac monopole in the trans-
verse R3, τ = 4πi

g2 + ϑ
2π

is the 4d complex gauge coupling, A(∞)
τ and 
(∞) denotes the asymptotic 

values of Aτ and 
 at spatial infinity r → ∞. We have expressed R3 in terms of polar coordinates 
(r, θ, ϕ). We can therefore view ’t Hooft line as transforming under irreducible representation of 

2 We denote the Cartan sub-algebra of g as t and its dual as t∗ which is the Cartan sub-algebra of g∗ . The (simple) roots 
and (fundamental) weights of g then take values in t∗ and span out respectively the root lattice �r and weight lattice �w, 
such that �r ⊂ �w. Using the Killing form, we can also define co-roots and co-weights which take values in t and they 
span respectively the co-root lattice �cr and the co-weight lattice �cw, such that �cr ⊂ �cw. �cw is the weight lattice 
of g∗ and shares the same Weyl group W.
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g∗ with the highest weight B, in complete parallel with the Wilson line. Notice that there is a 
U(1)R symmetry rotating the phase of 
 and parameterizing the residual supersymmetry pre-
served by the line operator. In addition, we can also have dyonic line operators D(w,B) which 
carry both electric and magnetic charges (w, B) ∈ �w/W ⊕ �cw/W. They are constructed by 
inserting into the path integral not only the ’t Hooft line operator TB but also an additional Wil-
son line operator transforming under the subgroup of G preserved by B with a highest weight 
of w. Here we also introduce a universal notation �γ = ( �γe, �γm) ∈ �w/W ⊕�cw/W to denote the 
electromagnetic charge of the BPS line operator L and other smooth BPS states. We consider the 
charges related by simultaneous Weyl transformation on �w and �cw as physically equivalent.

The vevs of various line operators L = {Ww, TB, D(w,B)} in 4d N = 2 gauge theories can be 
expressed as the following twisted supersymmetric index:

〈L〉 = TrHL
(−1)F e−2πRH(−y)2(J3+I3)e2πiμf Ff , y = −eiπλ. (2.3)

Here S1 is taken to be the compactified time direction and R3 is non-trivially fibered over it, as 
indicated by (−y)2(J3+I3), where J3 = i(x2∂1 − x1∂2) denotes rotation about 3-axis and I3 is 
the Cartan generator of SU(2)R . We can regard this index as a twisted partition function on 
R

3 ×y S1. While we have inserted the usual Hamiltonian H and flavor symmetry generators Ff

in (2.3), the trace is, however, taken over the Hilbert space HL that forms the representation 
space of osp(4∗|2) ⊂ su(2, 2|2) sub-superalgebra preserved by the BPS line operator L. We can 
further decompose HL into sub-spaces graded by individual electromagnetic charge �γ :

HL =
⊕
�γ∈�L

HL, �γ , (2.4)

where �L = � + �γL, with � and �γL denoting the BPS charge lattice without L insertion and 
the electromagnetic charge of L, respectively. The point is that the residual supercharges form 
linear combinations which satisfy a modified anti-commutation relation, which alters the BPS 
shortening condition and hence the spectrum when compared to the original theory. The states 
saturating the modified condition are referred to as “framed BPS states” [1]. They satisfy the 

modified energy bound E = −Re
(

Z �γ
ζ

)
, where ζ is a complex phase factor arising from the 

(complexified) U(1)R and parameterizes the supercharges preserved by the line operators. This 
BPS bound differs from the usual one without L insertion: E = |Z �γ | satisfied by the “unframed” 
or “vanilla” BPS states. We can thus refine the notations L, HL and osp(4∗|2) into Lζ , HLζ

and 
osp(4∗|2)ζ to encode this parameterization.

2.2. Localization computation involving line operators

The vev of a Wilson line operator is relatively easy to summarize:

〈Ww〉 = TrR

(
e2πia

)
, a= R

(
A(∞)

τ + iRe
(

(∞)

)) ∈ tC , (2.5)

where the trace here is again taken over the representation R with highest weight w. For the vev 
of an ’t Hooft line operator, we first note that TB is defined through singular boundary condi-
tions (2.2), which render the classical action divergent. It is necessary to introduce a space–time 
cutoff at r = δ around its insertion point and regularize the boundary terms to obtain finite ex-
pressions. However, there is a further subtle non-perturbative phenomenon in the localization 
computation of (2.3) for TB or D(w,B), which is known as “monopole bubbling”.
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In computing the vev of TB, authors of [3] show that the saddle point equation can be identi-
fied with the Bogomolny equation in R3:

∗3F = D[Im(
)] , (2.6)

where D is the covariant derivative and one needs to integrate over all of its possible solutions 
with additional prescribed singularities (2.2). Notice that the Bogomolny equation (2.6) can also 
admit smooth magnetic monopole solutions when B = 0, whose magnetic charges are labeled 
by a simple or composite co-root HI ∈ �cr, for fundamental or composite smooth monopoles. 
When B �= 0, these smooth monopoles can freely move in the transverse three spatial dimensions 
and surround the insertion point of the singular ’t Hooft line operator. The magnetic charge B is 
now screened by integer multiples of HI . The asymptotic magnetic charge of this combined con-
figuration is then given by the co-weight vector v ∈ �cr + B ⊂ �cw of smaller norm ||v|| ≤ ||B||. 
The allowed values of {v} are precisely the weights appearing in the irreducible representations 
of GL, the Langland dual of G, whose highest weight is given by B and the rest are generated by 
lowering operators associated with the co-roots {HI }.

It was further shown in [9,3] that the only contributing solutions of Bogomolny equation to the 
path integral in the localization computation are restricted to take the singular Dirac form (2.2). 
This was deduced from the invariance under U(1)J+I × T symmetries, where U(1)J+I is the 
diagonal combination of spatial rotation and R-symmetry generated by J3 + I3, and T ⊂ G is the 
maximal torus of gauge group G. We can still shift the coefficient B into v in (2.2) to encode the 
monopole bubbling effect and the final result includes the fluctuation determinant around each 
U(1)J+I × T fixed point within M(B, v). Here M(B, v) denotes the moduli space of solutions 
to (2.6), which takes the form of (2.2) near the insertion point of ’t Hooft line with B being 
replaced by the screened magnetic charge v. We can therefore package these contributions into:

Z1-loop(v)Zmono(B, v) ≡
∑

{fp}∈M(B,v)

∏
i

w
ci

i , (2.7)

where wj and cj are the combined weights for U(1)J+I × T symmetry and the multiplicity 
factor associated with each fixed point of M(B, v) (denoted by {fp}), respectively. We have also 
separated the purely perturbative one-loop contribution Z1-loop(v), which only depends on v.

To compute these sub-leading contributions, one can invoke a beautiful correspondence pro-
posed by Kronheimer [16]. It relates the moduli space of singular SU(2) monopole on R3, 
M(B, v) and the moduli space of SU(2) self-dual instanton on a multi-Taub-NUT or ALF space, 
invariant under certain U(1)K action. The U(1)K action can be parameterized by the circular 
fiber coordinate of Taub-NUT metric, and the locations where the fiber degenerates precisely en-
code the singularities of the corresponding singular monopole configuration in R3. Moreover, as 
the monopole bubbling phenomenon occurs only at the singularities in Taub-NUT space where 
the metric reduces to C2, we can simplify the construction of the moduli space M(B, v) by con-
sidering the ADHM data of C2 instantons instead. To identify the fixed points in M(B, v), we 
first consider the usual fixed points of C2 instanton ADHM moduli space under the combined 
U(1)ε1 × U(1)ε2 × T rotational and gauge symmetries, which are labeled by a set of Young dia-
grams { �Y }. We then embed the U(1)J+I ×U(1)K action into U(1)ε1 ×U(1)ε2 ×T by identifying 
their equivariant parameters as t1 = e−2πiν+iπλ and t2 = e2πiν+iπλ, where t1,2 and e2πiν are the 
fugacity parameters for U(1)ε1,2 and U(1)K symmetry, respectively.3 The U(1)K fixed points are 

3 The action of t1,2 on the complex coordinates (z1, z2) of C2 is given by (z1, z2) → (t1z1, t2z2).
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labeled by a restricted subset of the Young diagrams { �YK} ⊂ { �Y } satisfying certain constraints, 
which by construction also correspond to U(1)J+I fixed points. These fixed points in M(B, v)

are responsible for monopole bubbling effects [3,9]. Thus, in contrast to the relatively simple 
form of 〈Ww〉 in (2.5), 〈TB〉 now depends on asymptotic screened charges v and includes extra 
contributions due to monopole bubbling effect. We can schematically express it as:

〈TB〉 =
∑
{v}

e2πiv·bZ1-loop(a,μf ,λ;v)Zmono(a,μf ,λ;B, v), (2.8)

b= �

2π
− 4πiR

g2 Im
(

(∞)

)+ ϑ

2π
a ∈ t∗

C
, (2.9)

where � denotes the vev of the “dual photon” that arises from the infra-red (IR) Coulomb branch 
of the compactified theory and ϑ is the usual gauge theory theta angle. Notice that the last term 
in (2.9) arises from the boundary regularization term as discussed in [3]. We can regard it as a 
manifestation of the Witten effect, which shifts the magnetic charge of the ’t Hooft line operator 
in the presence of a ϑ angle.

2.3. Wall-crossing and Darboux coordinates

The vevs of line operators on R3 ×y S1 reviewed above also feature prominently in the study 
of “wall-crossing” phenomena in 4d N = 2 supersymmetric gauge theories [4,12,1], which con-
cerns with the degeneracies of BPS spectra on the IR Coulomb branch. There are two essential 
quantities in this context which we will focus on here. The first one is the Darboux coordi-
nate X �γ (ζ ) associated to a BPS state with charge �γ , which gives the twistorial construction of 
the Coulomb branch metric of the compactified theories. The second important quantity is the 
“framed protected spin character” �̂(u, Lζ , �γ ; y) given by:

�̂(u,Lζ , �γ ;y) = TrHLζ , �γ y2J3(−y)2I3 , (2.10)

which counts the degeneracies of framed BPS states with charge �γ , while taking into account 
their spin information too. It reduces to “framed BPS degeneracy” �̂(u, Lζ , �γ ) in the limit 
y = −1. The framed wall-crossing phenomenon occurs precisely when the degeneracies of the 
BPS states given by (2.10) change discontinuously across certain co-dimension one loci in the 
Coulomb branch, known as the “walls of marginal stability”. Across the walls of marginal sta-
bility, it is energetically favorable for the framed BPS states to emit or absorb unframed BPS 
state(s).

Analogously, we can define (unframed) protected spin character without any line operator 
insertion:

�(u, �γ ;y) = Trhs
y2J3(−y)2I3 , (2.11)

where the trace is now taken over a finite dimensional representation hs of so(3) ⊕ su(2)R mas-
sive little supergroup. This can be understood by decomposing the short representations of N = 2
into the tensor product of so-called half-hypermultiplet ρhh and the representation hs . In the 
limit y = −1, (2.11) can be shown to be equivalent to the definition of second helicity supertrace 
�(u, �γ ) = 1

2 TrHBPS
�γ ,u

(2J3)
2(−1)2J3 in [4], which counts the degeneracies of vanilla BPS states 

with charge �γ .
Moreover, the authors of [1] proposed a striking relation between 〈Lζ 〉 on R3 ×y S1 reviewed 

earlier, and the two quantities arising from the studies of wall-crossing phenomena we just dis-
cussed:
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〈Lζ 〉 =
∑
�γ∈�L

�̂(u,Lζ , �γ )σ ( �γ )X �γ (ζ ), (2.12)

where σ( �γ ) = (−1)〈 �γe, �γm〉 is referred to as “quadratic refinement”. As reviewed in the previous 
section, left-hand side of (2.12) can be computed by explicitly introducing the line operator L into 
the UV Lagrangian and then applying the localization technique. So 〈Lζ 〉 gives the vev of a UV 
line operator. However, since localization computations are typically exact along the RG flow, 
we expect 〈Lζ 〉 to be also expressible in terms of certain IR quantities and this is provided by the 
summation on the right-hand side.4 In particular, if we compare the expression for the vev 〈TB〉
in (2.8) with (2.12), the natural interpretation for Darboux coordinate X �γ (ζ ) is that of the vev of 
a BPS line operator with charge �γ on the IR Abelian Coulomb branch of the compactified theory, 
weighted by �̂(u, TB, �γ ). We would also need to identify the various parameters involved and 
include the monopole bubbling factors in terms of the Darboux coordinates for this interpretation 
to hold. We will do precisely that in the following sections and as a result, show that the linear 
expansion (2.12) needs to be refined to include the monopole bubbling contributions in order to 
completely match with (2.8).

Let us now discuss the Darboux coordinate X �γ (ζ ) in more detail [4]. We will begin with 
G = SU(2) which has rank one so we can drop the vector “� ” symbol on charges and scalars. 
The Darboux coordinate associated to a BPS state is given by the following integral equation:

Xγ (ζ ) =X sf
γ (ζ ) exp

⎡
⎣ i

4π

∑
γ ′∈�

�γ ′ 〈γ, γ ′〉Iγ ′(ζ )

⎤
⎦, (2.13)

Iγ ′(ζ ) =
∫
lγ ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1 − σ(γ ′)Xγ ′(ζ ′)

)
, lγ ′ :=

{
ζ : Zγ ′

ζ
∈ R

−} . (2.14)

The various quantities appearing above are defined as follows: the second helicity supertrace 

�γ ′ ≡ �(u, γ ′), lγ ′ is the BPS ray pointing at an angle −e
iφγ ′ = − Zγ ′

|Zγ ′ | specifying the integration 

contour, the symplectic product 〈γ, γ ′〉 = Tr(γmγ ′
e − γeγ

′
m) = (γm · γ ′

e) − (γe · γ ′
m),5 and X sf

γ (ζ )

is the so-called semi-flat piece of the Darboux coordinate:

X sf
γ (ζ ) = exp

[
πRZγ

ζ
+ i(θγ + ψγ ) + πRZγ ζ

]
,

Zγ = Tr(γea + γmaD) +
Nf∑
i=1

siμi , ψγ = 2πR

Nf∑
i=1

siμ̃i .

(2.15)

Here (a, aD) = (a(u), aD(u)
)≡ ( a

2 H, aD

2 α) are the complex electric and magnetic coordinates 
on the Coulomb branch of 4d N = 2 theories with α and H denoting the root and co-root of 
SU(2). Similarly θγ = Tr(γeθe + γmθm), where 

(
θe, θm

)≡ ( θe

2 H, θm

2 α
)

are the Wilson line and 
dual photon taking real values. Altogether (a, aD, θe, θm) form the electromagnetic coordinates 

4 This decomposition of single UV line operator in terms of a sum over the IR ones was made more precise in [17], 
where the authors constructed bijective renormalization group flow map relating them at least when the phenomenon of 
magnetic charge screening reviewed earlier does not occur.

5 We have defined the inner product A · B = Tr(AB). The trace arises when we express (γe, γm) in a matrix basis of 
�w/W ⊕ �cw/W depending on the representation of the BPS state γ .
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on the Coulomb branch of the compactified theory on R3 × S1. When the theory contains matter 
fields in the representation R, we can also introduce complex mass parameters μi , flavor charges 
si for the hypermultiplets, and the flavor Wilson lines 2πRμ̃i such that μ̃i becomes the so-called 
“real mass” in 3d limit.

Before we proceed further, we should state clearly here that the Darboux coordinates intro-
duced in (2.13) are originally defined for the smooth BPS states with finite mass, i.e., |Zγ | is 
finite, as opposed to line operators, which can have infinite mass and are localized in spatial 
directions. However, in Section 4, we will use D-brane configurations to obtain singular line 
operators from such smooth BPS states. The net effect on Darboux coordinate Xγ (ζ ) will be 
to replace various charges γ and scalars (a, aD, θe, θm) with the appropriate “projected” values, 
see (4.2), (4.9), (4.10), (4.11), while the integral definition remains unchanged. This replacement 
will not affect the mathematical manipulations we perform on Xγ (ζ ) in the next section. In fact, 
we will already recover the functional forms of classical and one loop contributions to the line 
operator vevs computed from localization, but it is important to keep this distinction in mind.

From the abelian nature of the Darboux coordinate Xγ (ζ ) (2.13), we can decompose it as 
follows:

Xγ (ζ ) =Xγe (ζ )Xγm(ζ )

Nf∏
i=1

[
Xfi

(ζ )
]si , (2.16)

where Xγe (ζ ), Xγm(ζ ) and Xfi
(ζ ) are defined to be:

Xγe (ζ ) =X sf
γe

(ζ ) exp

⎡
⎣ i

4π

∑
γ ′∈�

�γ ′ 〈γe, γ
′
m〉Iγ ′(ζ )

⎤
⎦ , (2.17)

Xγm(ζ ) =X sf
γm

(ζ ) exp

⎡
⎣ i

4π

∑
γ ′∈�

�γ ′ 〈γm,γ ′
e〉Iγ ′(ζ )

⎤
⎦ , (2.18)

Xfi
(ζ ) = exp

[
πRμi

ζ
+ i2πRμ̃i + πRμ̄iζ

]
. (2.19)

Here the electric and magnetic semi-flat pieces are simply read off from (2.15):

X sf
γe

(ζ ) = exp

[
γe ·
(

πRa

ζ
+ iθe + πRāζ

)]
,

X sf
γm

(ζ ) = exp

[
γm ·
(

πRaD

ζ
+ iθm + πRāDζ

)]
. (2.20)

We now proceed to recast these expressions and obtain localization results as discussed above.

3. Building line operators from Darboux coordinates

We now systematically expand Xγ (ζ ) in the weak 4d coupling limit g2 → 0, which is also the 
same limit in localization computation, while keeping the S1 radius R fixed and arbitrary [18,19]. 
This introduces a hierarchy for masses of the BPS particles in an ascending order of 1

g2 , such that 
a magnetically charged particle whose mass is proportional to |aD| ≈ |τa| � |a| � 1 becomes 
very massive. Based on this expansion, let us further split Xγe(ζ ) and Xγm(ζ ) into perturbative 
and non-perturbative contributions:
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Xγe (ζ ) =X (0)
γe

(ζ )X (np)
γe (ζ ) , Xγm(ζ ) =X (0)

γm
(ζ )X (np)

γm (ζ ) , (3.1)

where

X (0)
γe

(ζ ) =X sf
γe

(ζ ) , X (0)
γm

(ζ ) =X sf
γm

(ζ )Dγm(ζ ). (3.2)

The factor Dγm(ζ ) includes all the perturbative corrections to Xγm(ζ ) originating due to inte-
grating out electrically charged BPS particles, such as W-bosons in vector multiplet, quarks in 
hypermultiplet or matter fields in other representation in general. Explicitly, we have:

Dγm(ζ ) = exp

⎡
⎢⎣ i

4π

∑
γ ′∈pert.

�γ ′ 〈γm,γ ′〉
∫
lγ ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1 − σ(γ ′)X sf

γ ′(ζ ′)
)⎤⎥⎦, (3.3)

where “pert.” denotes all the electrically charged BPS states in the theory. The remaining non-
perturbative parts come from the corrections due to heavy magnetic BPS particles:

X (np)
γe (ζ ) = exp

⎡
⎣ i

4π

∑
γ ′∈�̃

�γ ′ 〈γe, γ
′
m〉I(0)

γ ′ (ζ )

⎤
⎦,

X (np)
γm (ζ ) = exp

⎡
⎣ i

4π

∑
γ ′∈�̃

�γ ′ 〈γm,γ ′
e〉I(0)

γ ′ (ζ )

⎤
⎦, (3.4)

where �̃ indicates the removal of all the electrically charged BPS states from � and I(0)

γ ′ (ζ ) is 

basically (2.14) with Xγ ′(ζ ′) replaced by X (0)

γ ′ (ζ ′) in the integrand. In the weak coupling limit, 

X (0)
γm ∼ exp

[
−|γm·a|

g2

]
� 1 so the integrals in the exponents of these non-perturbative contribu-

tions effectively vanish, allowing us to ignore them altogether in our analysis.
To convince ourselves that we are on the right track with such an expansion when comparing 

with the vevs of line operators, we set ζ = −eiφ with |ζ | = 1 as we only have real rather than 
complexified U(1)R in localization computation. Substituting this into X sf

γe
(ζ ) and X sf

γm
(ζ ), we 

obtain:

X sf
γe

(−eiφ) = e−2πR|γe ·a| cos(φγe−φ)+iγe·θe , X sf
γm

(−eiφ) = e−2πR|γm·aD | cos(φγm−φ)+iγm·θm.

(3.5)

Comparing these with the classical actions of the respective line operators computed in (2.5) and 
(2.8), we get the following parameter matching (identifying (w, v) = (γe, γm) with the under-
standing that v = B if no magnetic charge screening occurs):

a= R
(
A(∞)

τ + iRe(
(∞))
)= R

(
θe

2πR
+ i|a| cos(φγe − φ)

)
, (3.6)

b= �

2π
− 4πiR

g2 Im(
(∞)) + ϑ

2π
a=

(
θm

2π
+ ϑ

2π

θe

2π

)
+ iR|τ||a| cos(φγm − φ) . (3.7)

We have included the shifted dual photon θm → θm + ϑ
2π

θe as explained in [4,18] to facili-
tate matching both sides in (3.7). In the weakly coupled limit, Zγm ∝ aD ≈ τa ≈ 4πi

g2 a, so 
φγm − φγe = π

2 . Later, we will need to set φ = φγm , which implies that we need to restrict 
our comparison with the vev of line operator to the origin of Coulomb branch 
(∞) = a = 0. 
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Otherwise, the U(1)R symmetry allowing us to pick the phase of ζ is spontaneously broken. 
Moreover, we can justify this choice by recalling that electromagnetic duality exchanges Wil-
son and ’t Hooft line operators, hence a and b, so they both need to be either real or complex. 
It is crucial to understand that while our order by order expansion clearly requires |a| > 0 for 
the series convergence, we will perform Poisson resummation soon, which allows us to take the 
|a| → 0 limit smoothly. Summarizing, this parameter identification implies a and b are both real:

θe = 2πRA(∞)
τ = 2πa, θm = � = 2πb. (3.8)

We immediately see that the functional form of the vev of Wilson line Ww is precisely repro-
duced by X (0)

γe (−eiφγm ), while for the ’t Hooft line TB we match only the exponential factor.

Let us next focus on various electric contributions Dγm(ζ ) to X (0)
γm (ζ ) as defined above in (3.3). 

We can further split Dγm(ζ ) into:

Dγm(ζ ) =
∏

γ ′∈pert.

[
Dγ ′(ζ )

]〈γm,γ ′〉
, (3.9)

where “pert.” = {W±, q, q̄} in the cases we discuss here. The individual contributions can now 
be captured by the following general expression:

logDγ ′(ζ ) = i�γ ′

4π

⎡
⎢⎣∫

l+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1 −X sf+ (ζ ′)

)− ∫
l−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1 −X sf− (ζ ′)

)
⎤
⎥⎦,

(3.10)

where we have used σ(γ ) = 1 for purely electric (anti-)particles, and the subscripts ± correspond 
to BPS particle +γ ′ and its anti-particle −γ ′, respectively. The fact that we include both particle 
and anti-particle contributions in Dγ ′ explains the absolute value of the power in (3.9). We also 
have �γ ′ = −2 for W±, and �γ ′ = +1 for a (half-)hypermultiplet q and q̄ .

To perform the integrals and facilitate comparison with the vevs of line operators later, we 
need to massage the above expression (3.10) a little. First, we follow the “ε-prescription” [20,21]
to split the positive and negative powers of ζ and also use the series expansion of log(1 − x) =
− 
∑∞

n=1
xn

n

(|x| < 1
)

to get the following double series:

logDγ ′(ζ ) = i�γ ′

4π

∞∑
n=1

∞∑
m=0

⎡
⎢⎣−
∫
l+

dζ ′

ζ ′

(
ζ ′ m+1

ζm+1 − ζm+1

ζ ′ m+1

) (X sf+ (ζ ′)
)n

n

+
∫
l−

dζ ′

ζ ′

(
ζ ′ m+1

ζm+1 − ζm+1

ζ ′ m+1

) (X sf− (ζ ′)
)n

n

⎤
⎥⎦. (3.11)

Second, we choose the BPS ray along Zγ ′ such that ζ ′ = −y′eiφγ ′ for l+ and ζ ′ = +y′eiφγ ′

for l−. Keeping in mind that we are calculating corrections to magnetic coordinate, we also write 
ζ = −yeiφγm , which provides dramatic simplification of the infinite summation over m because 
we can use φγm − φγe = π

2 as discussed below (3.7). Now, using the following Bessel function 
identities:

∞∫
dy′

y′ m+2 e
−|X|

(
1
y′ +y′

)
=

∞∫
dy′ y′ m e

−|X|
(

1
y′ +y′

)
= 2Km+1

(
2|X|) ,
0 0
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we can express (3.11) into:

logDγ ′(ζ ) = i�γ ′

2π

∞∑
n=1
m=0

[{
(i y)m+1 −

(−i

y

)m+1
}

e
inθγ ′

n
Km+1

(
2πnR|Zγ ′ |)

+
{

(i y)m+1 −
(−i

y

)m+1
}

e
−inθγ ′

n
Km+1

(
2πnR|Zγ ′ |)

]
. (3.12)

To compare with the results in [3], we further restrict y = 1 as discussed above (3.5) and we see 
that only the odd Bessel functions survive:

logDγ ′(ζ ) = �γ ′

π

∞∑
n�=0

∞∑
m=0

(−1)m+1 e
inθγ ′

|n| K2m+1
(
2πR|nZγ ′ |). (3.13)

Third, we perform Poisson resummation6 of this expression (in order to obtain a finite answer in 
|a| → 0 limit) by using the “DPI” (Differentiate, Poisson resum, then Integrate back) trick:

I:
�γ ′

π

∑
n�=0

∞∑
m=0

(−1)m+1 e
inθγ ′

|n| K2m+1
(
2πR|nZγ ′ |) ∂

∂|Z
γ ′ |−−−→

�γ ′R
∑
n�=0

e
inθγ ′ K0

(
2πR|nZγ ′ |),

II: �γ ′R
∑
n�=0

e
inθγ ′ K0

(
2πR|nZγ ′ |) Poisson resum−−−−−−−−→

�γ ′πR

∞∑
k=−∞

1√
(2πR|Zγ ′ |)2 + (2πk − θγ ′)2

,

III:
∞∑

k=−∞

�γ ′πR√
(2πR|Zγ ′ |)2 + (2πk − θγ ′)2

∫
d|Zγ ′ |−−−−−→

�γ ′

2
log

[ ∞∏
k=−∞

(
2πR|Zγ ′ | +

√
(2πR|Zγ ′ |)2 + (2πk − θγ ′)2

)]
.

In Step I, we used the identity ∂Kν(x)
∂x

= − 1
2

(
Kν−1(x) + Kν+1(x)

)
, which simplifies the sum-

mation over m drastically because other than the m = 0 term, all other terms cancel pairwise. 
In Step II, we suppress the regularization term but it should be understood to be regulated for 
the final expression to make sense below. Now, using the infinite product formula for sin(x), the 
Poisson resummed expression of Step III can be rewritten as

6 Poisson resummation works as follows:

∞∑
n=−∞

f (n) =
∞∑

k=−∞
f̂ (k) , f̂ (k) =

∞∫
−∞

dx e−2πikxf (x) .
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�γ ′

2
log

[ ∞∏
k=−∞

(
2πR|Zγ ′ | +

√
(2πR|Zγ ′ |)2 + (2πk − θγ ′)2

)]

= �γ ′

2

[
log

∣∣∣∣sin
Aγ ′

2

∣∣∣∣+∑
k∈Z

log

(
1 + Im(Aγ ′)

|Aγ ′ − 2πk|
)

+ const.

]
, (3.14)

where Aγ ′ = θγ ′ + 2πiR|Zγ ′ | and “const.” denotes the regularization constant. We can now take 
the |a| → 0 or Im(Aγ ′) → 0 limit to compare with the vevs of line operators, consistent with the 
parameter matching in (3.8). After exponentiation, we obtain the contribution of γ ′:

Dγ ′(−eiφγm ) =
∣∣∣∣sin

θγ ′

2

∣∣∣∣
�

γ ′
2

. (3.15)

Combining together all such contributions we have the one-loop fluctuation determinant due to 
the magnetic BPS state γm:

Dγm(−eiφγm ) =
∏

γ ′∈pert.

∣∣∣∣sin
θγ ′

2

∣∣∣∣
�

γ ′
2 〈γm,γ ′〉

=
∏

γ ′∈pert.

∣∣∣∣sin
γ ′ · θe

2

∣∣∣∣
�

γ ′
2 〈γm,γ ′〉

. (3.16)

Notice that for γ ′ charged under flavor symmetry, such as quarks q, q̄ in (half-)hypermultiplets, 
we need to shift γ ′ · θe to (γ ′ · θe + ψγ ′) as given in (2.15). We can repeat the above analysis for 
higher-rank gauge groups by using the explicit definitions of the Darboux coordinates in (4.5), 
(4.6) and (4.7) and the end result can be obtained just by replacement of (γe, γm) → ( �γe, �γm), 
(a, aD) → (�a, �aD) and (θe, θm) → (�θe, �θm) defined on the root/co-root lattice. The one loop 
determinant for a general higher rank theory is then given by:

D �γm
(−eiφ �γm ) =

∏
�γ ′∈pert.

∣∣∣∣∣sin
�γ ′ · �θe

2

∣∣∣∣∣
� �γ ′

2 〈 �γm, �γ ′〉
, (3.17)

with appropriate modifications to incorporate the flavor symmetries. We will discuss more about 
the higher rank case in the next section. We should comment here that the inner product 〈 �γm, �γ ′〉
determines the overall power of the sine factors above, and for definiteness we should restrict �γm

to be in a Weyl chamber that enforces ( �γm · �α) > 0 for all positive roots �α ∈ �+ associated with 
BPS W-bosons contributions. We should also perform Weyl reflections such that ( �γm · w) > 0
for all the weights w ∈ R for other matter fields. To enforce this choice from now on, we will use 
modulus |〈 , 〉| as the power in (3.17).

Finally, if we set �γm = B, the above results reproduce the one-loop determinants obtained 
from the localization computations in λ → 0 limit [3] for a ’t Hooft line operator with magnetic 
charge B:

Zvm
1-loop(a;B) = lim

λ→0

∏
�α∈�+

|�α·B|−1∏
k=0

∏
±

sin− 1
2

[
π

(
�α · a±

( |�α · B|
2

− k

)
λ

)]

=
∏

�α∈�+

[
sinπ (�α · a)]−|�α·B|

, (3.18)
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Zhm
1-loop(a;B) = lim

λ→0

Nf∏
f =1

∏
w∈R

|w·B|−1∏
k=0

sin
1
2

[
π

(
w · a− mf +

( |w · B| − 1

2
− k

)
λ

)]

=
Nf∏
f =1

∏
w∈R

[
sinπ

(
w · a− mf

)] |w·B|
2 . (3.19)

While for the screened magnetic charge v which descend from B and is due to monopole bub-
bling effect to be discussed next, we simply replace B with v in the expressions above. We 
see that by using the parameter identifications (3.8) in the weak coupling limit, the functional 
form of one-loop determinants for the ’t Hooft line operators can be exactly reproduced by the 
perturbative contributions due to electrically charged particles in the magnetic Darboux coordi-
nate (3.17). However, we end this section by emphasizing again that in reproducing the classical 
and one-loop perturbative pieces of 〈L〉, we have ignored the fact that the parameters entering 
into X �γ (ζ ) such as �γ , (�a, �aD) and (�θe, �θm) are defined for smooth BPS states only. In the next 
section we “project” out these quantities appropriately to obtain correct results for the singular 
line operators, including the crucial contributions from monopole bubbling effect.

4. Taking monopole bubbling into account

As mentioned in the introduction, one might expect that the contributions from W-bosons & 
quarks might not be enough for the relevant Darboux coordinates in the presence of a line opera-
tor to account for its vev, which turns out to be true due to the phenomenon of monopole bubbling. 
This extra contribution modifies the ‘1-loop’ expression of Darboux coordinates derived above 
and turns out to be the required piece to match with localization calculations.

In this section, we will use explicit D-brane configurations to realize singular monopoles 
corresponding to ’t Hooft line operators from the smooth ones. This will yield the desired 
modification of the Darboux coordinate: X �γm

(ζ ) → X�( �γm)(ζ ), where �( �γm) is the asymp-
totic magnetic charge of the line operators obtained from smooth BPS monopoles of magnetic 
charge �γm.7 We will then also be able to obtain the additional monopole bubbling contributions 
in λ → 0 limit by understanding how this effect is realized from the D-branes point of view.

4.1. Line operators from D-brane configurations

Let us begin by briefly reviewing the D-brane construction in [5] (see also [22–24] for earlier 
discussion), which involves a supersymmetric configuration of intersecting D3 and D1 branes 
in Type IIB string theory. The D3 world volume theory is four dimensional N = 4 SYM. The 
smooth BPS fundamental monopole configurations are represented by finite length D1 branes 
stretching between the adjacent D3 branes. We can also have composite smooth monopoles, 
which are built from D1 branes stretching across multiple D3 branes. Specifically, we consider 
N = 4 SYM with gauge group SU(N + 1) on its Coulomb branch. The D1 branes stretching 
between I -th and I +1-th D3 branes represent the smooth fundamental monopole charged under 
I -th simple co-root �HI ,8 while the D1 branes stretching from I -th to J + 1-th D3 branes cor-
respond to the smooth composite monopole charged under the positive root �HIJ =∑J

K=I
�HK , 

7 For completeness, we also realize Wilson lines from electrically charged W-bosons.
8 We choose the basis for simple roots {�αI } and co-roots { �HI } such that �αI · �HJ = Tr(�αI

�HJ ) = CIJ , where CIJ is 
the Cartan matrix of SU(N + 1).
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Fig. 1. (a) A smooth monopole configuration with asymptotic magnetic charge �H2. (b) A composite monopole configu-
ration with magnetic charge �H13 = �H1 + �H2 + �H3. Here we align D3 branes along x0,1,2,3 and D1 branes along x0,4.

Fig. 2. The diagram (a) illustrates the transition of a smooth composite monopole of charge �H2N in SU(N + 1) to a 
singular ’t Hooft line operator of magnetic charge �( �H2N ) in PSU(N). The diagram (b) illustrates the transition from 
smooth fundamental and composite monopoles in SU(N + 1) to a combination of a ’t Hooft line operator and a smooth 
fundamental monopole in PSU(N).

which can be formed as the bound state of fundamental monopoles. The D-brane configurations 
for these different smooth monopoles are given in Fig. 1.

To obtain singular ’t Hooft lines from the smooth monopole configurations, we recall that it 
can be regarded as the world line of the infinitely heavy monopole and the length of D1 branes 
is proportional to the smooth monopole mass. This naturally leads to the systematic construc-
tion in [5,22], where the singular ’t Hooft lines are identified with the semi-infinite D1 branes. 
We can realize these by having one end of the D1 branes ending on the leftmost N + 1-th D3 
brane that is subsequently moved to x4 = −∞. In other words, we can construct N distinct 
semi-infinite ’t Hooft lines from the N distinct smooth monopoles charged under the co-roots 
�HIN =∑N

J=I
�HJ , I = 1, · · · , N . More generally, as D1 branes with same orientation are mu-

tually supersymmetric, we can also construct systems involving multiple singular and smooth 
monopoles of arbitrary charges through this decoupling procedure of moving a D3 brane to in-
finity. We illustrate these different singular D-brane configurations in Fig. 2.
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Removing the leftmost N + 1-th D3 brane also corresponds to higgsing the four dimensional 
SU(N + 1) gauge group to PSU(N) = SU(N)/ZN . This requires us to project the SU(N + 1)

magnetic charges for the initial smooth monopole configurations into the PSU(N) magnetic 
charges for the resultant singular ’t Hooft line plus smooth monopole configurations. This has 
been done in [5] and we briefly review the procedure here. The SU(N + 1) magnetic charge of 
a generic smooth monopole configuration is represented in the following way:

�γm =
N∑

I=1

pI
�HIN +

N−1∑
Ĭ=1

k
Ĭ

�H
Ĭ
, pI , kI = 0,1,2,3, · · · , (4.1)

where “ ˘ ” highlights the quantities in the resultant PSU(N) gauge theory, i.e., Ĭ = 1, · · · ,

N − 1. The first sum in (4.1) corresponds to the SU(N + 1) smooth monopole configuration that 
will yield singular ’t Hooft lines as the N + 1-th D3 brane is moved to x4 = −∞, so we regard 
the integers pI as the number of the semi-infinite D1 branes ending on I -th D3 brane. While 
the second sum corresponds to the remaining smooth fundamental monopoles which are not 
charged under the last simple co-root �HN . Notice that the traceless condition TrSU(N+1)( �γm) = 0
is automatically imposed.

The projected electromagnetic charge under the reduced PSU(N) gauge group after decou-
pling the N + 1-th D3 brane is given by:

�( �γm) =
N∑

I=1

pI�( �HIN) +
N−1∑
Ĭ=1

k
Ĭ
�( �H

Ĭ
) =

N−1∑
Ĭ=1

(p
Ĭ
− p̄) �H

Ĭ(N−1)
+

N−1∑
Ĭ=1

k
Ĭ

�H
Ĭ
, (4.2)

where �(·) denotes the projection from SU(N + 1) to PSU(N), p̄ = 1
N

∑N
I=1 pI , and we used 

the following projection rules:

�( �HI ) = �H
Ĭ
, �( �HIN) = �H

Ĭ(N−1)
− 1

N

N−1∑
Ĭ=1

�H
Ĭ
, for I ≡ Ĭ = 1,2, · · · ,N − 1,

�( �HN) ≡ �( �HNN) = − 1

N

N−1∑
Ĭ=1

�H
Ĭ
.

(4.3)

We see that pI semi-infinite D1 branes ending on I -th D3 brane carry PSU(N) magnetic charge 
of pI�( �HIN), while the smooth SU(N + 1) monopoles neutral under �HN remain unchanged.

It is also useful to mention that the dimension of the moduli space for this smooth monopole 
plus singular ’t Hooft line configuration has been computed in [25,5] and it is given by:

dimMk
Ĭ
,p

Ĭ
= 4

N−1∑
Ĭ=1

k
Ĭ
+ 2

N−1∑
J̆=1

N−1∑
K̆=J̆

(
p

J̆
− p

K̆+1 + |p
J̆

− p
K̆+1|

)
. (4.4)

Notice that when p
K̆+1 ≥ p

J̆
, contribution of the second summation to the moduli space dimen-

sion vanishes. The physical interpretation is that the segment of D1 branes stretching between 
J̆ -th and K̆ + 1-th D3 branes cannot move freely in x1,2,3 directions, i.e., they are stuck. Con-
versely, this contribution is nonvanishing when p

K̆+1 < p
J̆

and is equal to 4(p
J̆

−p
K̆+1), which 

implies that D1 segments are mobile and can now move away from the insertion point of ’t Hooft 
line operators.
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Fig. 3. The diagram (a) illustrates monopole bubbling effect, when a mobile smooth monopole of magnetic charge �H
J̆ K̆

approaches a singular ’t Hooft line operator and forms a bound state with screened magnetic charge (p
J̆

+ 1)�( �H
J̆N

) +
(p

K̆+1 − 1)�( �H
K̆+1N

). We can also have the reverse process where smooth monopole of magnetic charge �H
J̆K̆

is 
emitted by the same operator as illustrated in diagram (b).

Now, we are in a position to understand the monopole bubbling effect. Let us begin with 
a ’t Hooft line configuration with p

J̆
≤ p

K̆+1 while pI = 0 if I �= J̆ , K̆ + 1 (a more genetic 
configuration would not affect our current discussion), which has vanishing moduli space di-
mension as given by (4.4). Next, let a mobile smooth monopole with magnetic charge H

J̆K̆

approach the insertion point of the singular ’t Hooft line and eventually get absorbed. The resul-
tant ’t Hooft line configuration now carries a shifted PSU(N) magnetic charge (p

J̆
, p

K̆+1) →
(p

J̆
+ 1, p

K̆+1 − 1). For this new configuration to be a genuine bound state, the dimension for-
mula (4.4) tells us that we need p

K̆+1 − 1 ≥ p
J̆

+ 1 or p
J̆

+ 2 ≤ p
K̆+1. This describes the 

usual picture of monopole bubbling effect in the literature [8,5] as illustrated in the top dia-
gram of Fig. 3. This process can be repeated further by absorbing another smooth monopole 
charged under H

J̆K̆
and so on. It is interesting to note that in transitioning between these two 

configurations, the dimension of the moduli space changed from 0 to 4, indicating a jump to a 
different moduli space. However, while the charge of ’t Hooft line operator changed, the total 
asymptotic magnetic charge remained the same, which means that there is no change in regu-
larized energy and the absorption process described above should be reversible. Basically, the 
formation of genuine bound states after absorption stops when p

J̆
< p

K̆+1 < p
J̆

+ 2 holds and 
we now only have marginally bound states since even after the absorption, these extra D1 seg-
ments can move off the insertion point without any energy cost. We can view this as a smooth 
monopole being emitted by the ’t Hooft line after its absorption. More generally, when we have 
p

K̆+1 < p
J̆

to start with, this ’t Hooft line configuration can emit a smooth monopole charged 
under H

J̆K̆
or “bubble away”. The resultant charge of the ’t Hooft line operator changes from 

(p
J̆
, p

K̆+1) → (p
J̆

− 1, p
K̆+1 + 1) as illustrated in the bottom diagram of Fig. 3. This emission 

process continues until p
K̆+1 < p

J̆
< p

K̆+1 + 2 is violated and then the process of absorption 
starts. From this discussion, it is clear that under a Weyl reflection that exchanges p

J̆
and p

K̆+1, 
we can exchange the absorption and emission processes or vice-versa.

Having reviewed the D-brane construction of smooth monopoles and singular ’t Hooft line 
operators in N = 4 SYM with gauge group PSU(N), we would now like to implement a simi-
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Fig. 4. The D-brane realization of the 4d N = 2 ’t Hooft line operators. We use the standard intersecting D4-NS5 setup 
here: Two NS5 branes (indicated by the gray shaded plane) are placed along x0,1,2,3,4,5 and separated by a finite interval 
�x6 in x6 direction (perpendicular to the gray plane). The N = 2 SU(N + 1) SYM is realized through the N + 1 D4 
branes placed along x0,1,2,3 and the finite interval �x6. The smooth BPS monopole configurations are realized through 
the D2 branes whose world volume stretches along x0,4 and �x6, thus intersecting both D4 and NS5 branes. The S1

compactification is along x0 direction and we can obtain the intersecting D1-D3-NS5 configuration via T-duality.

lar decoupling procedure described above into the Darboux coordinates Xγ (ζ ) for BPS states in 
N = 2 gauge theories. The corresponding D-brane construction for realizing ’t Hooft line oper-
ators is given in Fig. 4, where we generalize to the intersecting D2-D4-NS5 brane configuration. 
The D4 branes are mobile in the x4,5 directions and we have restricted the D2 branes represent-
ing the smooth monopoles to be along x4 directions for simplicity. However, they can be oriented 
holomorphically along the complex plane x4,5, in general. If we now follow similar steps as in 
the D1-D3 configuration by moving the leftmost D4 brane in various smooth monopole configu-
rations to x4 = −∞, the resultant semi-infinite D2 branes now describe an ’t Hooft line operator 
in pure N = 2 SYM. We will see in the next subsection that this simple generalization is suffi-
cient for reproducing the monopole bubbling contributions to the ’t Hooft line operators in λ → 0
limit. One can also add D6 branes along x0,1,2,3,7,8,9 to introduce flavors or other matter fields, 
however, we will only focus on the simplest case of pure SYM.

4.2. Darboux coordinates revisited

Let us focus again on the definition of Darboux coordinates for the electric and magnetic BPS 
states in pure SYM with gauge group SU(N + 1) [26]. For our purposes, we will only need the 
classical and one-loop perturbative pieces as in the previous section:

X (0)

�γe
(ζ ) = exp

[
�γe ·
( �a

ζ
+ i �θe + �̄aζ

)]
, (4.5)

X (0)

�γm
(ζ ) = exp

[
�γm ·

( �aD

ζ
+ i �θm + �̄aDζ

)] ∏
+
[DA(ζ )]|〈 �γm,�αA〉| , (4.6)
A∈�
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DA(ζ ) = exp

⎡
⎢⎣�WA

2πi

∑
±

⎛
⎜⎝±

∫
l±

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1 −X (0)

W±
A

(ζ ′)
)
⎞
⎟⎠
⎤
⎥⎦. (4.7)

The vector quantities above are expanded in the roots/co-roots basis as follows:

�γe =
N∑

I=1

qI �αIN , �a =
N∑

I=1

aI
�HIN , �γm =

N∑
I=1

pI
�HIN , �aD =

N∑
I=1

aI
D �αIN . (4.8)

Analogously, �θe and �θm are also expanded. The {W±
A } are N(N+1)

2 W-bosons and their anti-

particles, charged under the N(N+1)
2 positive roots {�αA} of SU(N + 1) gauge group. A nice basis 

for {�αA} is �αJK =∑K
I=J �αI and J, K = 1, 2, · · ·N , so we replace the index A with the double 

index “JK”, 1 ≤ J ≤ K ≤ N . We will use a similar double index notation J̆ K̆ when considering 
the PSU(N) quantities.

Let us now discuss the crucial modifications of 
(
X �γe

(ζ ), X �γm
(ζ )
)

arising from the decoupling 
procedure of one D-brane, such that they can be identified with the vevs of Wilson and ’t Hooft 
line operators. In short, all the quantities in root/co-root lattice appearing in (4.5)–(4.7) need to 
be projected from SU(N + 1) to PSU(N) following what was done for the magnetic charge �γm

in (4.2)–(4.3). So, the root vectors get projected analogously to (4.3):

�(�αI ) = �α
Ĭ
, �(�αIN) = �α

Ĭ(N−1)
− 1

N

N−1∑
Ĭ=1

�α
Ĭ
, for I ≡ Ĭ = 1,2, · · · ,N − 1,

�(�αN) ≡ �(�αNN) = − 1

N

N−1∑
Ĭ=1

�α
Ĭ
.

(4.9)

This gives the projected electric charge to be �( �γe) = ∑N−1
Ĭ=1

(q
Ĭ

− q̄)�α
Ĭ(N−1)

, with q̄ =
1
N

∑N
I=1 qI . Similarly, the projection of electric and magnetic coordinates follows:

�(�a) =
N−1∑
Ĭ=1

(aI − ā) �H
Ĭ(N−1)

, �(�aD) =
N−1∑
Ĭ=1

(aĬ
D − āD)�α

Ĭ(N−1)
, (4.10)

�(�θe) =
N−1∑
Ĭ=1

(θeI − θ̄e) �H
Ĭ(N−1)

, �(�θm) =
N−1∑
Ĭ=1

(θ Ĭ
m − θ̄m)�α

Ĭ(N−1)
, (4.11)

where the barred quantities are averages defined similarly to q̄ above.
The electric charge projection condition (4.9) is also needed when we realize Wilson lines 

from the semi-infinite F1 strings ending on D4 branes, which come from N out of N(N+1)
2

W-bosons charged under roots �αIN , when we move the N + 1-th D4 brane to x4 = −∞. This 
also implies that we need to project out these N now infinitely heavy electrically charged BPS 
states from the summation in (4.7), and we are left only with the N(N−1)

2 light W-bosons {W
J̆K̆

}
charged under {�α

J̆K̆
}, 1 ≤ J̆ ≤ K̆ ≤ N − 1 of the residual PSU(N) gauge group. Finally, we 

also need to compute the inner product between the PSU(N) magnetic charge of the singular 
’t Hooft lines �( �γm) =∑N

I=1 pI�( �HIN) =∑N−1
Ĭ=1

(p
Ĭ

− p̄) �H
Ĭ(N−1)

and �α
J̆ K̆

corresponding 
to a particular W-boson, which governs the overall power of the sine factors, as we saw in the 
previous section. This has actually been computed in [5]:

〈�( �γm), �α ˘ ˘ 〉 = �( �γm) · �α ˘ ˘ = p ˘ − p ˘ . (4.12)

JK JK J K+1
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Collecting all the results of these projections, we can once more write the expressions for Dar-
boux coordinates but now, these are full-fledged expressions relevant for us as they correspond 
to the line operators with asymptotic PSU(N) electric and magnetic charges, �( �γe) and �( �γm), 
respectively:

X (0)

�( �γe)
(ζ ) = exp

[
�( �γe) · �

( �a
ζ

+ i �θe + �̄aζ

)]
, (4.13)

X (0)

�( �γm)
(ζ ) = exp

[
�( �γm) · �

( �aD

ζ
+ i �θm + �̄aDζ

)] N−1∏
J̆≤K̆

[D
J̆ K̆

(ζ )]|pJ̆
−p

K̆+1| , (4.14)

D
J̆ K̆

(ζ ) = exp

⎡
⎢⎣�W

J̆K̆

2πi

∑
±

⎛
⎜⎝±

∫
l±

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1 −X (0)

W±
J̆ K̆

(ζ ′)
)
⎞
⎟⎠
⎤
⎥⎦. (4.15)

It is useful to note that identities such as 
∑N−1

Ĭ=1
(q

Ĭ
− qN)(a

Ĭ
− ā) =∑N

I qI aI and 
∑N−1

Ĭ=1
(q

Ĭ
−

qN)(θ
eĬ

− θ̄e) =∑N
I qI θeI where 

∑N
I=1 aI =∑N

I=1 θeI = 0 so that we can use the same scalars 
{aI , aI

D, θeI , θI
m} to express the final results.

Let us pause here and peek at the localization results for the ’t Hooft line of magnetic charge 
�( �γm) in [3] to realize that we actually need p

J̆
+ p

K̆+1 instead of p
J̆

− p
K̆+1 in (4.14) if the 

linear expansion (1.1) is to hold. One may worry whether the two expressions are calculating dif-
ferent quantities but comparing their fundamental definitions given in [1] and [3], we expect them 
to compute the same physical quantity. Moreover, as we are matching the two expressions at the 
origin of the Coulomb branch as discussed in previous section, one may worry about the conver-
gence of the expansion of Darboux coordinates. However, the Poisson resummation allows us to 
take the |a| → 0 limit smoothly so we could formally consider the Darboux coordinate expansion 
to hold even at this point of the moduli space. Finally, one may suspect that the mismatch could 
be compensated by the omitted contributions X (np)

�γ (ζ ) coming from dyonic BPS states in (3.4)
when we performed the systematic expansion of X �γ (ζ ) for pure magnetically charged line oper-
ators. However, if we perform similar Poisson resummation for these, they yield sine functions 
with both θe and θm in the argument, rather than the desired terms that contain only θe. Con-
cluding from these observations, we proceed to resolve the mismatch by applying the description 
of the monopole bubbling effect in terms of the D-brane construction discussed above. In fact, 
we are going to match the Darboux expansion and localization results term by term because the 
D’s we have calculated are very suggestive that it might work. The mismatch right now is of the 
power of sin functions but as we mentioned before, including the contribution to Darboux coor-
dinates of W-bosons with smooth monopoles is expected as there is no reason to expect ‘pure’ 
Darboux coordinates would be sufficient in the presence of line operators. So let us show this in 
a concrete case.

To understand better the effect monopole bubbling can have on (4.14), we again set pI = 0, 
I �= J̆ , K̆ + 1. This simplified configuration can be engineered from a single ’t Hooft line with 
PSU(N) magnetic charge (pJ̆

+ p
K̆+1)�( �H

J̆N
) and p

J̆
> p

K̆+1, which can systematically 
emit p

K̆+1 smooth monopoles charged under H
J̆K̆

. These emitted smooth monopoles would 

give additional one-loop factors [D
J̆ K̆

(ζ )]|〈pK̆+1HJ̆K̆
,α

J̆ K̆
〉| = [D

J̆ K̆
(ζ )]2p

K̆+1 because they can 
still interact with the electrically charged W-bosons, even though they no longer contribute to the 
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Fig. 5. The diagram (a) illustrates smooth monopole of magnetic charge p
J̆

�H
J̆K̆

approaching a singular ’t Hooft line and 
forming a bound state with screened magnetic charge p

J̆
�( �H

J̆N
) + p

K̆+1�( �H
K̆+1N

). We can also have the reverse 
process where smooth monopole of magnetic charge p

J̆
�H
J̆K̆

is emitted by the ’t Hooft line as illustrated in diagram (b).

magnetic charge of the resultant ’t Hooft line operator. Returning to the general configuration, 
we can start with a configuration with PSU(N) magnetic charge P�( �H1N) and P =∑N

I=1 pI

and allow it to emit various smooth monopoles step by step to obtain other desired ’t Hooft line 
configurations. We can regard this emission process as acting on the highest weight represen-
tation with the lowering operators. An alternative but Weyl equivalent construction is to start 
instead from a ’t Hooft line with charge (p

J̆
+p

K̆+1)�( �H
K̆+1N

) and p
J̆

≤ p
K̆+1 and allow it to 

absorb p
J̆

mobile monopoles charged under �H
J̆K̆

. They contribute an additional one loop factor 
[D

J̆ K̆
(ζ )]2p

J̆ , as before. For general configuration, we can start from ’t Hooft line with PSU(N)

magnetic charge P�( �HNN) and systematically allow it to absorb smooth monopoles. We can 
again regard this process as acting on the lowest weight representation with the raising operators. 
We illustrate both the absorption and emission processes in Fig. 5.

From these two cases, we can summarize the bubbling contributions coming from the emis-
sion/absorption of the smooth monopoles charged under �H

J̆K̆
as:

B
J̆ K̆ (ζ ;�( �γm)) =

{
[D

J̆ K̆
(ζ )]2p

K̆+1 for p
J̆

> p
K̆+1

[D
J̆ K̆

(ζ )]2p
J̆ for p

J̆
≤ p

K̆+1 .
(4.16)

Combining all the possible contributions from smooth monopoles charged under the positive 
co-roots {H

J̆K̆
}, the total bubbling contribution is given by:

B(ζ ;�( �γm)) = C�( �γm)

∏
J̆≤K̆

B
J̆ K̆ (ζ ;�( �γm)) , (4.17)

where C�( �γm) is the combinatorial factor denoting the number of equivalent ways to engineer such 
a configuration with the asymptotic magnetic charge �( �γm). We can readily compute C�( �γm) for 
the highest weight P�( �H1N) from the corresponding D-brane configuration and the answer is:

C�( �γm) = P!∏N
. (4.18)
I=1 pI !
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Comparing with the explicit monopole bubbling contributions in [3] (see also [9]) obtained from 
counting the allowed Young diagrams, we find that C�( �γm) computes the number of such Young 
diagrams for the same highest weight P�( �H1N) and asymptotic magnetic charges �( �γm). How-
ever, the information about the shape of these Young diagrams is lost upon taking the limit λ → 0
and we are only left with the overall powers 2p

J̆
and 2p

K̆+1 in (4.16).
Putting everything together, we can express the vev of an ’t Hooft line operator transforming 

in PSU(N) representation with the highest weight B = P�( �H1N) in terms of the following sum:

〈TB〉λ→0 =
∑

{�( �γm)}
X (0)

�( �γm)
(ζ )B(ζ ;�( �γm))

=
∑

{�( �γm)}
C�( �γm)X sf

�( �γm)(ζ )
∏
J̆≤K̆

[D
J̆ K̆

(ζ )](pJ̆
+p

K̆+1), (4.19)

where the summation {�( �γm)} consists of �( �γm) labeled by all possible partitions of P into N
non-negative integers {pI }. In other words, the same as {v} in (2.8)9 containing all the possible 
roots that can be reached from the highest weight state P�( �H1N) by the action of the lowering 
operators including the lowest weight state P�( �HNN) ≡ P�( �HN). As we derived in Section 3, 
the above expression is understood to be evaluated at ζ = −eiφ�( �γm) (along with all the parameter 
matching we already discussed) to obtain the expected sine factors from localization. If we now 
compare with the proposed linear expansion in (1.1), we see that the second line of (4.19) takes 
an identical form once we include the bubbling factor B along with the D’s of electrically charge 
BPS particles in X sf

�γ to get X �γ and the expansion coefficients C�( �γm) are identified with the 

framed BPS degeneracies �̂(u, TB, �( �γm)). It would be very interesting to verify them using 
the localization calculation of Witten index for the corresponding quiver quantum mechanics 
[27,28].

Finally, we propose a generalization of (4.19) for any line operator as a rewriting of (1.1), 
which makes the bubbling factor explicit (but hides the BPS degeneracy):

〈Lζ 〉λ→0 =
∑

{�( �γ )}
σ( �γ )X (0)

�( �γ )
(ζ )B

(
ζ ;�( �γ )

)
, (4.20)

where �( �γ ) can even be dyonic. We can realize such a configuration by having both F1 strings 
and D2 branes ending on N + 1-th D4 branes, and then performing the decoupling procedure as 
described above. The analogous monopole bubbling terms included in B(ζ, �( �γ )) can now be 
straightforwardly computed, which only depend on �γm ∈ �γ and its descendant magnetic charges. 
One may wonder why it is so in the presence of semi-infinite electrically charged lines (as in 
Wilson and Dyonic line operators) as there can still be interactions between them and the mobile 
monopoles. We believe these to be captured by the X (np)

�γe
(ζ ) factor in (3.4), which we argued 

to not contribute in the weak coupling limit and the comparison with the localization results 
seems to corroborate that. Another non-trivial factor that requires some effort to compute is 
the combinatorial factor C�( �γ ) included in B(ζ, �( �γ )), which would give us the framed BPS 
degeneracies.

9 We emphasize here that we have not derived this summation. We have only derived the summands and observe that 
the same sum produces a match for these two different ways of writing down the vevs of line operators.
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5. Examples

To further verify our proposal, we compare the general expression in (4.19) with a few explicit 
examples of vevs of ’t Hooft line operators computed from localization [3] in λ → 0 limit. Notice 
that since the localization results are invariant under ZN of SU(N) gauge group, we can readily 
compare with the PSU(N) = SU(N)/ZN expressions obtained above.

G = SU(2), B = 2�(H12)

This is the simplest case with monopole bubbling contribution. We have P = 2 and (p1, p2) =
{(2, 0), (1, 1), (0, 2)}. After we project out the heavy root, the descendant charges are γp1,p2 =
�(p1H12 +p2H22) = p1−p2

2 H1. Their one loop contributions to the sum in (4.19) are as follows:

Xγ2,0 = e4πib

sin2(2πa)
, Xγ1,1 = 1 , Xγ0,2 = e−4πib

sin2(2πa)
· (5.1)

The monopole bubbling contribution is non-trivial only in one case:

B(γ1,1) = 2

sin2(2πa)
· (5.2)

Along with parameter identifications (3.8), we have also imposed the traceless conditions 
a1 = −a2 = a and b1 = −b2 = b. Summing over these three contributions, we recover the corre-
sponding localization result:

〈T2�(H12)〉 = 1

sin2(2πa)

(
e4πib + 2 + e−4πib

)
. (5.3)

G = SU(3), B = 3�(H13)

In this case, monopole bubbling contributions from composite monopoles start to appear. 
The charges are γp1,p2,p3 = �(p1H13 + p2H23 + p3H33) = (p1 − p

3 )H1 + (p1 + p2 − p
3 )H2, 

where p = p1 + p2 + p3. We list all ten different one loop contributions labeled by (p1, p2, p3)

below:

Xγ3,0,0 = e3iθ1
m

sin3 θe12
2 sin3 θe13

2

, Xγ0,3,0 = e3iθ2
m

sin3 θe12
2 sin3 θe23

2

, Xγ0,0,3 = e3iθ3
m

sin3 θe13
2 sin3 θe23

2

,

Xγ2,1,0 = ei(2θ1
m+θ2

m)

sin θe12
2 sin θe23

2 sin2 θe13
2

, Xγ1,2,0 = ei(θ1
m+2θ2

m)

sin θe12
2 sin2 θe23

2 sin θe13
2

,

Xγ0,2,1 = ei(2θ2
m+θ3

m)

sin2 θe12
2 sin θe23

2 sin θe13
2

, Xγ0,1,2 = ei(θ2
m+2θ3

m)

sin θe12
2 sin θe23

2 sin2 θe13
2

,

Xγ2,0,1 = ei(2θ1
m+θ3

m)

sin2 θe12
2 sin θe23

2 sin θe13
2

, Xγ1,0,2 = ei(θ1
m+2θ3

m)

sin θe12
2 sin2 θe23

2 sin θe13
2

,

Xγ1,1,1 = 1 .

(5.4)

The corresponding monopole bubbling contributions are as follows:
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B(γ3,0,0) = 1 , B(γ0,3,0) = 1 , B(γ0,0,3) = 1 ,

B(γ2,1,0) = 3

sin2 θe12
2

, B(γ1,2,0) = 3

sin2 θe12
2

,

B(γ0,2,1) = 3

sin2 θe23
2

, B(γ0,1,2) = 3

sin2 θe23
2

,

B(γ2,0,1) = 3

sin2 θe13
2

, B(γ1,0,2) = 3

sin2 θe13
2

,

B(γ1,1,1) = 6

sin2 θe12
2 sin2 θe13

2 sin2 θe23
2

·

(5.5)

After combining both one loop contributions and monopole bubbling factors as in (4.19), we 
obtain the ’t Hooft line operator vev 〈T3�(H13)〉. Substituting θeIJ

2 = πaIJ , we again recover the 
corresponding vev computed using localization in λ → 0 limit, including the monopole bubbling 
contributions computed from Young diagrams.

G = SU(N), B =PPP�(H1N)

Finally, we consider the vev of a generic ’t Hooft line operator with SU(N) gauge group. 
It should be clear from the previous examples that the number of contributions in localization 
calculations escalate rapidly as the rank of gauge group increases. Nevertheless, the authors 
in [3] proposed and verified explicitly form their localization computation that the line operator 
vevs can be constructed from a set of “minimal” building blocks, i.e.,

〈L1 ×L2 ...... ×Ln〉 = 〈L1〉 ∗ 〈L2〉 ...... ∗ 〈Ln〉 . (5.6)

Here × denotes composition of elementary line operators that do not exhibit monopole bubbling 
and ∗ operation is the Moyal product defined for two functions f (a, b) and g(a, b) depending on 
electromagnetic coordinates (a, b) as

(f ∗ g)(a,b) ≡ ei λ
4π

(∂b∂a′−∂a∂b′ )f (a,b)g(a′,b′)|a′=a,b′=b . (5.7)

Since we are interested in the λ → 0 limit, Moyal product reduces to ordinary product. So fol-
lowing this proposal, we can construct the vev for ’t Hooft line operator labeled by P�( �H1N)

in terms of P minimal ’t Hooft line operators labeled by �( �H1N) and we obtain the following 
decomposition:〈

T
P�( �H1N)

〉
=
〈
T

�( �H1N)

〉P
. (5.8)

One can easily check that this is consistent with our previous examples for SU(2) and SU(3)

theories. Expanding (5.8) for the general SU(N) theory:

〈
T
P�( �H1N)

〉
=
[

N∑
J=1

e2πibJ∏
I �=J | sinπaIJ |

]P
=
∑
{ �p}

P!∏N
L=1 pL!

N∏
J=1

[
e2πibJ∏

I �=J | sinπaIJ |

]pJ

.

(5.9)

The summation over { �p} runs through all possible N-dimensional vectors �p = (p1, p2, · · · , pN)

satisfying 
∑N

I=1 pI = P with all pI ≥ 0, which means the numerical factor above is same as the 
coefficient C � given in (4.18). As a result, we get the explicit formula:
P�(H1N)
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〈
T
P�( �H1N)

〉
=
∑
{ �p}

P!∏N
L=1 pL!e

2πi
∑N

I=1 pIbI

N∏
J<K

1

| sinπaJK |pJ +pK
. (5.10)

But we do expect this result to be given by (4.19) so we recast the above expression in order to 
make the match explicit:

〈
T
P�( �H1N)

〉
=
∑
{ �p}

C
P�( �H1N )

X sf
P�( �H1N)

(ζ )

N−1∏
J̆≤K̆

[
sin

�α
J̆ K̆

· �θe

2

]−(p
J̆
+p

K̆+1)

. (5.11)

We used the fact that the summation given by {�( �γm)} in (4.19) is equivalent to { �p} here, 
along with other obvious identifications using (4.14) and (3.17). Note that the product over JK

in (5.10) is anti-symmetric and that over J̆ K̆ in (5.11) is symmetric, thus both expressions gen-
erate the same N(N−1)

2 terms.
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