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Abstract The solutions of U (1) gauge-gravity coupling is
one of the interesting models for analyzing the semi-classical
nature of spacetime. In this regard, different well-known sin-
gular and nonsingular solutions have been taken into account.
The paper at hand investigates the geometrical properties of
the magnetic solutions by considering Maxwell and power
Maxwell invariant (PMI) nonlinear electromagnetic fields
in the context of massive gravity. These solutions are free
of curvature singularity, but have a conic one which leads
to presence of deficit/surplus angle. The emphasize is on
modifications that these generalizations impose on deficit
angle which determine the total geometrical structure of the
solutions, hence, physical/gravitational properties. It will be
shown that depending on the background spacetime [being
anti de Sitter (AdS) or de Sitter (dS)], these generalizations
present different effects and modify the total structure of the
solutions differently.

1 Introduction

Existence of topological defects have been reported in var-
ious aspects of the physics and their important roles in
physical properties of the systems have been highlighted.
From gravitational/cosmological point of view, the effects
and importance of the topological defects could be related
to their role as a possible dark matter source [1,2], their role
in large scale structure of the universe [3–5] anisotropy in
the Cosmic Microwave Background (CMB) [6,7] and their
lensing properties [8] (which are due to existence of deficit
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angle). Essentially, the topological defects in cosmology are
produced due to symmetries that are broken in phase transi-
tion that has taken place in the early universe [3–5]. Depend-
ing on the number and type of the symmetries that are broken,
these topological defects are categorized into domain walls
(a discrete symmetry is broken and it divides the universe
into blocks), cosmic strings (axial or cylindrical symmetry is
broken and have applications in regard to grand unified parti-
cle physics models/electroweak scale), monopoles (a spher-
ical symmetry is broken) and textures (several symmetries
are broken). Since these topological defects may be formed
during the early universe, they may also carry valuable infor-
mation of this era which highlights yet another importance
of studying them. The topological defects are located at the
boundaries of regions which have chosen different minima
during the early universe phase transition. So far, these topo-
logical defects have inspired a large number of publications
which among them one can point out; cosmic strings in the
presence of Maxwell theory [9,10], their superconducting
property in the presence of different models of gravity (such
as Einstein [11], Brans–Dicke [12] and dilaton gravity [13]),
the QCD [14] and quantum [15] applications of the mag-
netic strings, limits on the cosmic string tension using CMB
temperature anisotropy maps [16], gravitational waves pro-
duced by cosmic strings [17] and decaying domain walls [18]
and localization of fields and chiral spinor on domain walls
[19]. (For further studies regarding topological defects, we
refer the reader to an incomplete list of Refs. [20–25]). Moti-
vated by these studies and their interesting results, here we
investigate a type of topological defects which are known as
magnetic branes (generalization of magnetic string), in the
presence of two generalizations; massive gravity and nonlin-
ear electromagnetic field which are generalizations in gravi-
tational and matter field sectors, respectively.
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Although the Maxwell electrodynamics (linear electrody-
namics) is one of the most successful theories in the history
of physical science, it does not provide very precise results in
some scales. On the other hand, due to the fact that the most
physical systems are nonlinear in the nature, the generaliza-
tion of linear electrodynamics to nonlinear ones seems to be
logical. In addition, owing to specific properties of nonlinear
electrodynamics in the gauge/gravity coupling, the relations
between the general relativity (GR) and nonlinear electro-
dynamics attract significant attention. Nonlinear electrody-
namic theories have some interesting results and predictions,
and therefore, various nonlinear models of electrodynamics
have been introduced by many authors. For typical examples,
one may look at the Born-Infeld theory [26], logarithmic form
[27], exponential Lagrangian [28], arcsin nonlinear electro-
dynamics [29,30] and etc. Black hole and magnetic solutions
by considering these nonlinear electrodynamics have been
investigated in Refs [31–52]. Also, other aspects of these
nonlinear models have been studied in the context of quan-
tum level [53–56] and astrophysical area [57–59] as well.
The extensive usages of these nonlinear theories provide the
validity of their authenticity.

Taking into account the conformal invariance, one may
find that it plays an important role in the structure of the some
interesting models of string theory. In other words, conformal
invariance is a kind of criterion for obtaining covariant equa-
tions of motion for the on-shell classical background in the
low energy effective of string theory [60,61]. Regarding the
equations of motion in the classical Einstein gravity, one finds
the conformal invariance is equivalent to the existence of a
traceless stress-energy tensor. It is evident that the Maxwell
theory enjoys the conformal invariance only in 4-dimensions.
But in three or higher dimensional spacetime, the conformal
symmetry will be broken. In other words, the stress-energy
tensor of Maxwell theory is traceless only for 4-dimensions.
In order to keep the conformal invariance symmetry in arbi-
trary dimensions, one should generalize the Maxwell field
to the so-called power Maxwell invariant (PMI) theory. PMI
theory is one of the interesting branches of nonlinear elec-
trodynamics in which its Lagrangian is an arbitrary power
of Maxwell Lagrangian (LPMI (F) ∝ F s , where F is the
Maxwell invariant) [62–65]. This theory of nonlinear elec-
trodynamics has more interesting properties with regard to
linear electrodynamics (Maxwell case), and for the case of
s = 1, it reduces to the Maxwell theory. Another attrac-
tive property is related to conformal invariance property. In
other words, when the power of the Maxwell invariant is
a quarter of spacetime dimensions (s = d/4, where d is
dimensions), this theory enjoys conformal invariance, and
therefore, its energy-momentum tensor will be traceless. In
this case one may obtain the Reissner-Nordström like solu-
tions in higher dimensions [62]. The effects of considering
PMI source for the classical black hole solutions in vari-

ous gravities have been studied in literature, for example;
Lovelock and Lifshitz black holes with PMI field have been
investigated in [65–68], BTZ black holes in the Einstein and
F(R) gravities with this nonlinear electrodynamic model
have been studied in Refs. [42,69,70], the effects of PMI
for BTZ black hole with a scalar hair in the Einstein gravity
are reported in [71]. Thermodynamics of topological black
holes in the Brans–Dicke theory in the presence PMI field
has been studied before [72]. Geometrical thermodynamics
and the van der Waals like phase transition of black holes in
higher dimensional spacetimes with PMI theory have been
evaluated in Einstein and dilaton gravity [73–76]. Moreover,
holographic superconductors and magnetic branes (string)
supported by PMI source have been investigated in Refs.
[77–79].

Although most of physicists believe that we should respect
to conformal invariance symmetry, they believe that Lorentz
invariance symmetry should be broken in high energy
regimes. Considering a nonzero mass for the gravitons may
leads to such breaking symmetry. Recent observations of
gravitational waves from a binary black hole merger pro-
vided a firmly evidence of Einstein theory [80]. However,
graviton in Einstein gravity is a massless particle, whereas
there are several arguments that state graviton may be a mas-
sive object [80]. Therefore, GR can be generalized to include
massive gravitons. The first attempt for such generalization
was done by Fierz and Pauli [81] by using a linear the-
ory. However, propagators of this theory do not reduce to
those of GR in limit of vanishing graviton mass, m = 0
(van Dam, Veltman and Zakharov discontinuity). In order
to remove this substantial problem, Vainshtein introduced a
mechanism which requires the system to be considered in
a nonlinear regime [82]. Nonetheless, we encounter with
Boulware–Deser ghost in the generalization of Fierz and
Pauli massive theory to the nonlinear regime [83]. To solve
such problem, another class of massive gravity was proposed
by de Rham, Gabadadze and Tolley (dRGT) [84,85]. dRGT
massive theory is free of Boulware–Deser ghost and it can be
used in higher dimensions with admissible validity [86,87].
It is noteworthy that, in order to obtain exact solutions with
massive terms, an additional metric (called the reference met-
ric) is invariably needed. The reference metric is required
due to the fact that the interaction terms that can be formed
from the metric alone, cannot be used to construct a mass
term. In addition, this is an unphysical metric that does not
have a direct influence on the geometrical nature of space-
time and it just helps us to find exact solutions and get rid of
Boulware–Deser ghost instability. Considering the suitable
reference metric, one finds various interesting publications
in the context of dRGT massive gravity. Relativistic stars and
black object solutions in dRGT massive gravity with inter-
esting results have been investigated in [88–92]. On the other
hand, it was shown that massive gravity can be expressible
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on an arbitrary reference metric [87]. Therefore, a modifica-
tion on the reference metric could lead to another dRGT like
massive theory. In this respect, Vegh has introduced a new
reference metric with broken translational symmetry prop-
erty [93]. In this massive gravity, similar to dRGT theory,
massive terms are built by using this kind of reference met-
ric which have an additional property. Also, in this theory,
graviton may behave like a lattice and exhibits a Drude peak
[93], and it is stable and free of ghost [94]. Neutron stars
have been studied in this theory and it was found that the
maximum mass of the neutron stars can be more than 3M�
(M� is mass of the Sun) [95]. Black hole solutions and their
thermodynamic properties have been investigated in Refs.
[96–98]. Besides, the generalizations of this massive theory
to include higher derivative gravity [99], and gravity’s rain-
bow extension [100] have been studied as well. In addition,
black hole and magnetic solutions with (non)linear electrody-
namics have been explored in the context of massive gravity
[101,102].

In this paper, we want to study the magnetic solutions
of Einstein-massive gravity with linear and nonlinear elec-
trodynamics in four and higher dimensions. This paper is
one of interesting papers for considering the effects of mas-
sive gravitons on the horizonless solutions of nonsingular
spacetime. Before proceeding, we provide some brief moti-
vations for considering arbitrary higher dimensional space-
times. In the 20th century, Kaluza and Klein introduced
a new theory of gravity in five dimensions which uni-
fied gravitation and electromagnetism [103,104]. In addi-
tion, development of string and M-theories led to further
progresses in higher dimensional gravity. Another motiva-
tion originates from the anti de Sitter/conformal field the-
ory (AdS/CFT) correspondence which relates the properties
of d-dimensional black holes with quantum field theory in
(d − 1 )-dimensional hypersurface [105]. On the other hand,
with respect to gravitational researches, one often consid-
ers the number of spacetime dimensions as a free param-
eter of the theory and investigates its effects. Studying the
effects of this parameter on various aspects of each theory,
may lead to new insights (for example we refer the reader
to the effects of various dimensions in PMI theory [62–
65]).

The outline of the paper is as follow; in Sect. 2, we intro-
duce the massive gravity with Maxwell and PMI theories
and related field equations, briefly. In Sect. 3, we obtain the
solutions in Einstein-Maxwell-massive gravity and show that
these solutions are not black holes, but they contain a conic
singularity. Then, we investigate the effects of all parame-
ters on the deficit angle. In the next section, we extend the
Maxwell source to nonlinear PMI theory and study the prop-
erties of the obtained solutions in this case, extensively. The
last section is devoted to some closing remarks.

2 Basic field equations

The d-dimensional action in Einstein-massive gravity cou-
pled to electromagnetic field is given by

IG = − 1

16π

∫
M

dd x
√−g

[
R − 2�

+L(F) + m2
4∑

i=1

ciUi (g, f )

]
, (1)

where R is the scalar curvature, � = ±(d − 1)(d − 2)/2l2

is the negative/positive cosmological constant for asymptoti-
cally AdS/dS solutions, and L(F) is an arbitrary Lagrangian
of electrodynamics. In addition, f is a fixed symmetric ten-
sor, ci ’s are massive coefficients, and Ui ’s are symmetric
polynomials of the eigenvalues of matrix Kμ

ν = √
gμα fαν

U1 = [K] , U2 = [K]2 −
[
K2
]
,

U3 = [K]3 − 3 [K]
[
K2
]

+ 2
[
K3
]
,

U4 = [K]4 − 6
[
K2
]

[K]2

+8
[
K3
]

[K] + 3
[
K2
]2 − 6

[
K4
]
.

Now, we can obtain the field equations by using variational
principle. Varying the action (1) with respect to both metric
tensor and gauge potential, one can obtain the following field
equations

Rμν − 1

2
gμν (R − 2�) + m2χμν = Tμν, (2)

∂μ

(√−gLF Fμν
) = 0, (3)

where LF = dL(F)/dF and F = FμνFμν is the Maxwell
invariant in which Fμν = ∂μAν −∂ν Aμ is the Faraday tensor
and Aμ is the gauge potential. In addition, χμν is the massive
term with the following form

χμν = −c1

2

(U1gμν − Kμν

)

−c2

2

(
U2gμν − 2U1Kμν + 2K2

μν

)

−c3

2
(U3gμν − 3U2Kμν

+6U1K2
μν − 6K3

μν) − c4

2
(U4gμν − 4U3Kμν

+12U2K2
μν − 24U1K3

μν + 24K4
μν). (4)

and the energy-momentum tensor of electromagnetic source
in Eq. (2) can be introduced as

Tμν = 1

2
gμνL(F) − 2LF FμλF

λ
ν . (5)
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3 Magnetic solutions in Einstein-massive gravity with
Maxwell field

Here, we are going to study the magnetic solutions of Eqs.
(2) and (3) by considering the Maxwell electromagnetic field,
namely L(F) = −F . To do so, we consider the metric of
d-dimensional spacetime in the following explicit form

ds2 = −ρ2

l2
dt2 + dρ2

g(ρ)
+ l2g(ρ)dϕ2

+ρ2

l2
hi j dxi dx j , i, j = 1, 2, 3, . . . , n, (6)

where g(ρ) is an arbitrary function of radial coordinate ρ

which should be determined, hi j dxi dx j is the Euclidean
metric on the (d − 3)-dimensional submanifold, and the
scale length factor l is related to the cosmological con-
stant �. In addition, the angular coordinate ϕ is dimen-
sionless and ranges in 0 ≤ ϕ ≤ 2π while xi ’s range is
(−∞,+∞). The motivation of considering the metric gauge
[gtt ∝ −ρ2 and

(
gρρ

)−1 ∝ gϕϕ] instead of the usual

Schwarzschild like gauge [
(
gρρ

)−1 ∝ gtt and gϕϕ ∝ ρ2]
comes from the fact that we are looking for the magnetic
solutions instead of electric ones. In addition, one can obtain
such magnetic metric with local transformations of t → ilϕ
and ϕ → i t/ l in the horizon flat Schwarzschild like met-

ric, ds2 = −g(ρ)dt2 + dρ2

g(ρ)
+ ρ2dϕ2 + ρ2

l2
hi j dxi dx j . In

other words, using such transformation, the metric (6) can
be mapped to d-dimensional Schwarzschild like spacetime
locally, but not globally, and therefore, both spacetimes are
distinct.

In order to obtain exact solutions, we should make a suit-
able choice for the reference metric. Regarding the mentioned
local transformation, we consider the following ansatz for the
reference metric

fμν = diag(−c2

l2
, 0, 0,

c2

l2
hi j ), (7)

where c in the above equation is a positive constant. Before
we go on, we discuss the reason for considering such a ref-
erence metric (7 ). In case of d dimensional black holes, the
metric with (−,+, . . . ,+) signature is given by

ds2 = −g(ρ)dt2 + dρ2

g(ρ)
+ ρ2dϕ2

+ρ2

l2
hi j dxi dx j , i, j = 1, 2, 3, . . . , n. (8)

The black hole solutions in massive gravity are obtained
using the ansatz metric fμν = diag(0, 0, c2, c2

l2
hi j ) for ref-

erence metric. In electrical black hole solutions, the met-
ric function, g(ρ), is coupled with radial and temporal
coordinates whereas in magnetic spacetime metric (Eq. 6), it

is coupled with radial and spatial coordinates. Therefore, to
obtain exact solutions in an axially symmetric spacetime with
the form (6), reference metric fμν = diag(0, 0, c2, c2

l2
hi j )

should be modified into fμν = diag(−c2

l2
, 0, 0, c2

l2
hi j ). It

should be noted that using the reference metric ( fμν =
diag(−c2

l2
, 0, 0, c2

l2
hi j )), results into a new class of nontriv-

ial solutions. In addition, it is worth mentioning that this
choice for reference metric, first, cannot produce any infi-
nite value for the bulk action, since the bulk action contains
non-negative powers of fμν , and second, it does not preserve
general covariance in the transverse coordinates t, x1, x2, . . . .

Using the metric ansatz (7), Ui ’s can be calculated in the
following forms

U1 = d2c

ρ
, U2 = d2d3c2

ρ2 ,

U3 = d2d3d4c3

ρ3 ,

U4 = d2d3d4d5c4

ρ4 , (9)

where di = d − i . Due to our interest to investigate the mag-
netic solutions, we should assume a suitable gauge potential
which leads to consistent field equations

Aμ = h(ρ)δϕ
μ. (10)

Using the Maxwell equation (3) with L(F) = −F , and
the metric (6), one finds the following differential equation

d2Fϕρ + ρF ′
ϕρ = 0, (11)

where Fϕρ = h′(ρ) and “prime” denotes differentiation with
respect to ρ. The solution of Eq. (11) is

Fϕρ = q

ρd2
, (12)

where q is an integration constant which may be related to
electric charge. Substituting Eqs. (6) and (10) in the field Eq.
(2), one can obtain

l2

2
g′(ρ) + ρ

d2
F2

ϕρ − d3l2

2

⎧⎨
⎩m2

(
cc1

d3
+ c2c2

ρ
+ d4c3c3

ρ2

+d4d5c4c4

ρ3

)
−
(
g(ρ) + 2�ρ2

d2d3

)

ρ

⎫⎬
⎭ = 0, (13)
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l2

2
g′′(ρ) + d3l2

ρ
g′(ρ)

−F2
ϕρ − d3l2

2

{
m2
(
cc1

ρ
+ d4c2c2

ρ2 + d4d5c3c3

ρ3

+d4d5d6c4c4

ρ4

)
− d4g(ρ)

ρ2 − 2�

d3

}
= 0. (14)

Using the above equations, one can calculate the metric
function g(ρ) as

g(ρ) = m0

ρd3
− 2�ρ2

d1d2

+ 2d3q2

d2ρ2d3
+ m2

(
c2c

2 + cc1ρ

d2

+d3c3c3

ρ
+ d3d4c4c4

ρ2

)
, (15)

which m0 is an integration constant related to the mass. It is
worthwhile to mention that in the absence of massive param-
eter (m = 0), the metric function (15) reduces to the Einstein-
standard Maxwell [10].

3.1 Geometric properties

In order to discuss the geometric properties of spacetime, we
should focus on special points of spacetime (such as roots of
the metric function) and boundary of radial coordinate (both
ρ → 0 and ρ → ∞) as well.

Since the second term (� term) of the metric function is
dominant for large values of ρ, the asymptotical behavior of
the solution (15) is adS or dS provided � < 0 or � > 0.

In order to find the location of curvature singularities (6),
one can calculate the Kretschmann scalar as

Rμνλκ R
μνλκ =

(
d2g(ρ)

dρ2

)2

+2d2

(
1

ρ

dg(ρ)

dρ

)2

+ 2d2d3

(
g(ρ)

ρ2

)2

.

(16)

Using the metric function (15), it is easy to show that the
Kretschmann scalar (16) diverges at ρ = 0, and therefore,
one may guess that there is a curvature singularity located at
ρ = 0, but as we will show, the spacetime will never achieve
ρ = 0. There are two possible cases for the metric function:
first, the metric function has no root which is interpreted as
naked singularity, and second, the metric function has one
or more roots. We assume that r+ is the largest real positive
root of the metric function g(ρ). Therefore the metric func-
tion g(ρ) will be negative for ρ < r+ and positive for ρ > r+.
This indicates that signature of the metric at this root changes

from (−,+,+,+, . . . ,+) change to (−,−,−,+, . . . ,+).
In general relativity and gravity, although the field equations
are metric dependent, they must not depend on the signature
of metric [106–109]. The mentioned change in the signa-
ture of metric indicates that field equations for ρ > r+ and
ρ < r+ are different resulting into two sets of different met-
ric functions. To avoid such inconsistency, the possibility of
extending the spacetime to ρ < r+ must be removed. To do
so, we introduce a new radial coordinate r as

r2 = ρ2 − r2+ 	⇒ dρ2 = r2

r2 + r2+
dr2, (17)

where ρ ≥ r+ leads to r ≥ 0. Applying this coordinate
transformation, the metric (6) should be written as

ds2 = −r2 + r2+
l2

dt2

+ r2(
r2 + r2+

)
g(r)

dr2 + l2g(r)dϕ2

+r2 + r2+
l2

dX2, (18)

in which the coordinate ϕ assumes the value 0 ≤ ϕ < 2π ,
as usual. The metric function g(r) (Eq. (15)) is now given by

g(r) = m0

rd3
− 2�

(
r2 + r2+

)
d1d2

+ 2d3q2

d2r2d3

+m2

⎛
⎝c2c

2 +
cc1

√
r2 + r2+
d2

+ d3c3c3√
r2 + r2+

+ d3d4c4c4(
r2 + r2+

)
)

, (19)

The nonzero component of the electromagnetic field in
the new coordinates can be given by

Fϕr = q(
r2 + r2+

)d2/2 . (20)

One can show that all curvature invariants are functions of
g′′, g′/r , and g/r2. Since these terms do not diverge in the
range 0 ≤ r < ∞, one finds that all curvature invariants are
finite. Therefore, this spacetime has no curvature singularity
and no horizon. However, the spacetime (18) has a conic
geometry with a conical singularity at r = 0, because the
limit of the ratio “circumference/radius” is not 2π ,

lim
r−→0

1

r

√
gϕϕ

grr
�= 1. (21)
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The conical singularity can be removed if one exchanges
the coordinate ϕ with the following period

Periodϕ = 2π

(
lim
r−→0

1

r

√
gϕϕ

grr

)−1

= 2π (1 − 4μ) , (22)

where μ is given by

μ = 1

4

[
1 − 1

2lr0 g′′(r)|r=0

]
, (23)

in which g(r)|r=0 = g′(r)
∣∣
r=0 = 0, and g′′(r)

∣∣
r=0 is

g′′(r)
∣∣
r=0 = −2�

d2
− 2(d3)

2q2

d2r
d1+

+ m2

(
cc1

r+
+ d3c2c2

r2+
+ d3d4c3c3

r3+
+ d3d4d5c4c4

r4+

)
,

(24)

where shows that the metric (18) describes a spacetime which
is locally flat, but has a conical singularity at r = 0 with a
deficit angle as

δφ = 8πμ. (25)

Here, we skip investigation of physical properties of the
obtained results. After obtaining the consequences of non-
linear case, we give a detailed discussion with comparison.

4 Magnetic solutions in the Einstein-massive gravity
with PMI field

In this section, we are going to obtain d-dimensional mag-
netic brane solutions in the presence of PMI field. Therefore,
we consider the PMI Lagrangian with the following form

LPMI (F) = (−κF)s, (26)

where κ and s are coupling and positive arbitrary constants,
respectively. Since the Maxwell invariant is negative in static
spacetimes, hereafter, we set κ = 1 without loss of generality
to obtain real solutions. Also, it is easy to show that when s
goes to 1, the PMI Lagrangian (26) reduces to the standard
Maxwell Lagrangian (LMaxwell(F) = −F) which we have
investigated in the previous section. It is easy to show that
for the case of power = dimension/4 , one can obtain
Tμ

μ = 0 in PMI theory, which is confirmation of its conformal
invariance properties in this case.

Considering Eq. (26), the electromagnetic field equation
(3) reduces to

(2s − 1)ρh′′(ρ) + d2h
′(ρ) = 0, (27)

with the following solutions

Fϕρ = h′(ρ) =
{ q

ρ
, s = d1/2

(2s−d1)q
(2s−1)ρd2/(2s−1) , otherwise

. (28)

where q is an integration constant. Using Eqs. (6) and (28),
one can show that the gravitational field equation (2) reduces
to

d3d4g(ρ)

ρ2 + 2d3g′(ρ)

ρ
+ g′′(ρ) + 2�

+
(

2F2
ϕρ

)s − d3m2

ρ4

(
c1cρ

3 + d4c2c
2ρ2 + d4d5c3c

3ρ

+d4d5d6c4c
4
)

= 0, (29)

d2d3g(ρ)

ρ2 + d2g′(ρ)

ρ

+2� + (1 − 2s)
(

2F2
ϕρ

)s − d2m2

ρ4

(
c1cρ

3

+d3c2c
2ρ2 + d3d4c3c

3ρ + d3d4d5c4c
4
)

= 0. (30)

Substituting Eq. (28) in the above equations, it is straight-
forward to show that the metric function g(ρ) has the fol-
lowing form

g(ρ) = m0

ρd3
− 2�ρ2

d1d2
+ m2

(
c2c

2 + cc1ρ

d2

+d3c3c3

ρ
+ d3d4c4c4

ρ2

)
+ A, (31)

in which

A =

⎧⎪⎨
⎪⎩

(√
2q
)d1

ρd3
ln
(

ρ
l

)
, s = d1/2

2sρ2(2s−1)2

d2(2s−d1)

(
(2s−d1)q

(2s−1)ρd2/(2s−1)

)2s
, otherwise

.

It is worthwhile to mention that in the absence of massive
parameter (m = 0 ), the metric function (31) is just like the
metric function which was obtained before in Ref. [110].

Considering the Kretschmann scalar (16), one can show
that the metric (6) with the metric function (31), like the
Maxwell case, has a singularity at ρ = 0. However, as we
mentioned before, it is not possible to extend the spacetime
to ρ < r+ because of signature changing (see Ref. [79], for
more details). Also, one can apply the coordinate transfor-
mation (17) to the metric (6) and find the metric function
as
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g(r) = m0

rd3
− 2�

(
r2 + r2+

)
d1d2

+m2

⎛
⎝c2c

2 +
cc1

√
r2 + r2+
d2

+ d3c3c3√
r2 + r2+

+ d3d4c4c4(
r2 + r2+

)
)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(√
2q
)d1

(√
r2+r2+

)d3
ln

(√
r2+r2+
l

)
, s = d1/2

2s
(
r2+r2+

)
(2s−1)2

d2(2s−d1)

⎛
⎜⎝ (2s−d1)q

(2s−1)

(√
r2+r2+

)d2/(2s−1)

⎞
⎟⎠

2s

, otherwise,

(32)

and the electromagnetic field in the new coordinate is

Fϕr =

⎧⎪⎪⎨
⎪⎪⎩

q√
r2+r2+

, s = (d − 1)/2

(2s−d1)q

(2s−1)

(√
r2+r2+

)d2/(2s−1) , otherwise . (33)

In this case, like the Maxwell case, this spacetime has a
conical singularity at r = 0 with the deficit angle δ (φ) =
8πμ where μ is modified due to the nonlinear electrodynam-
ics with the following form

g′′(r)
∣∣
r=0 = −2�

d2
+ m2

(
cc1

r+

+d3c
2c2

r2+
+ d3d4c3c

3

r3+
+ d3d4d5c4c

4

r4+

)

+

⎧⎪⎪⎨
⎪⎪⎩

2d1/2qd1

r
d1+

, s = d1/2

2s (2s−1)
d2

(
q2(d1−2s)2

(2s−1)2r
d2/(2s−1)
+

)s
, otherwise

.

(34)

Due to complexity of obtained relation in Eq. (34), it is
not possible to calculate the root and divergence points of
deficit angle analytically, therefore, we study them in some
graphs.

Before starting, we should point it out that we have an
upper limit of −∞ < δφ ≤ 2π on the values that deficit
angle can acquire. This limit is marked with a horizontal
dotted line in plotted diagrams. The value of deficit angle
determines the geometrical structure of solutions. Depend-
ing on geometrical properties, gravitational effects and lens-
ing properties of the magnetic solutions, hence topological
defects will be different. Here, we see that depending on
choices of different parameters, deficit angle could be posi-
tive/negative and it may have roots and divergence points. In
order to highlight the effects of background spacetime, we
have plotted two series of diagrams for AdS (left panels of
Figs. 1, 2, 3, 4, 5) and dS (right panels of Figs. 1, 2, 3, 4, 5).

Evidently, for AdS case, depending on the choices of dif-
ferent parameters, deficit angle could have: (1) two roots
in which between roots, the deficit angle negative valued
whereas before smaller and after larger roots, it is positive.
(2) one extreme root in which the deficit angle is always posi-
tive valued. (3) two roots with one divergency where between
smaller/larger root and divergency the deficit angle is neg-
ative and everywhere else, it is positive valued. (4) finally,
two roots with two divergencies in which the divergencies
are located between the roots. In this case, between smaller
(larger) root and smaller (larger) divergency, the deficit angle
is negative valued. Between divergencies, it is positive but its
values are not in permitted area. Only before (after) smaller
(larger) root, the deficit angle is positive valued and within
permitted area.

Fig. 1 PMI solutions: δ (φ) versus r+ for q = 0.1, c = c1 = c2 = c3 = c4 = l = 1, d = 5 , s = 0.9, m = 0 (continuous line), m = 0.4 (dotted
line), m = 0.8 (dashed line) and m = 1 (dashed-dotted line). Left diagram: � = −1; Right diagram: � = 1
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Fig. 2 PMI solutions: δ (φ) versus r+ for c = c1 = c2 = c3 = c4 = m = l = 1, d = 5, s = 0.9, q = 0 (continuous line), q = 0.007 (dotted
line), q = 0.0122 (dashed line) and q = 0.1 (dashed-dotted line). Left diagram: � = −1; right diagram: � = 1

Fig. 3 PMI solutions: δ (φ) versus r+ for q = 0.1, c = c2 = c3 = c4 = m = l = 1, d = 5, s = 0.9, c1 = −10 (continuous line), c1 = −7.87
(dotted line), c1 = −6.5 (dashed line), c1 = −5.855 (dashed-dotted line) and c1 = −5 (bold line). Left diagram: � = −1; right diagram: � = 1

On contrary, for dS case, plotted diagrams show exis-
tence of a root and a divergency for deficit angle. Before
root and after divergency, the deficit angle is positive where
only before root, permitted values of the deficit angle exists
whereas after divergency its values are not within permitted
ones.

The number of roots are a decreasing function of mass of
graviton (m) (left panel of Fig. 1), electric charge (left panel
of Fig. 2), c1 (left panel of Fig. 3), nonlinearity parameter
(left panel of Fig. 4) and dimensions (left panel of Fig. 5 ) for
AdS case. On the other hand, for dS case, the places of root

and divergency are increasing functions of m (right panel of
Fig. 1), q (right panel of Fig. 2), c1 (right panel of Fig. 3 ), s
(right panel of Fig. 4) and dimensions (right panel of Fig. 5).

The existence of positive valued deficit angle results into
conic like geometrical structure for our astrophysical objects,
hence topological defects are known as horizonless mag-
netic solutions. On contrary, the existence of negative val-
ues of deficit angle leads to a saddle-like cone structure for
the solutions. These two different structures for magnetic
solutions could be related to different second fundamental
form of spacetime. On the other hand, it was argued that
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Fig. 4 PMI solutions: δ (φ) versus r+ for q = 0.1, c = c1 = c2 = c3 = c4 = m = l = 1, d = 5, s = 0.8 (continuous line), s = 1 (dotted line)
and s = 1.1 (dashed line). Left diagram: � = −1; right diagram: � = 1

Fig. 5 PMI solutions: δ (φ) versus r+ for q = 0.1, c = c1 = c2 = c3 = c4 = m = l = 1, s = 0.9, d = 5 (continuous line), d = 6 (dotted line),
d = 7 (dashed line) and d = 8 (dashed-dotted line). Left diagram: � = −1; right diagram: � = 1

positivty/negativity of the deficit angle results into attractive-
type/repulsive-type gravitational potentials (furthers details
could be found in Refs. [111–114]).

Considering different geometrical structure depending on
the sign of deficit angle, one can conclude that the root
of deficit angle is where magnetic solutions have phase
transition-like behavior. In other words, since there is a
change of sign at the root of deficit angle, magnetic solutions
go under a typical topological phase transition in these points.
It could be pointed out that there are cases in which roots are
extreme ones. In these cases, although no change of sign
takes place, the total geometrical structure of the solutions

presents diverse different comparing to the non-zero deficit
angle (absence of conic like singularity for zero deficit angle).
Therefore, it could be stated that extreme roots are also mark-
ing phase transition points. Another point which carries the
properties of phase transition for magnetic solutions is diver-
gency of the deficit angle. In other words, divergencies of the
deficit angle could be interpreted as places in which magnetic
solutions go under a phase transition. This is due to the fact
that deficit angle has smooth behavior everywhere except
at divergencies which are discontinuities. Usually, around
these divergence points, the sign of deficit angle is changed.
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In other words, there is a change in the sign of deficit angle
before and after divergence point.

Although different parameters have specific contributions
in existence/absence of root and divergency for deficit angle,
the highest effects belong to the � term, hence structure of
the background spacetime.

For dS spacetime (positive �), existence of both points
(root and divergence) irrespective of different parameters is
evident. Before the divergency, the values of deficit angle
are within permitted area while after it, the values are in
forbidden region. The root of deficit angle in this case is
located at the permitted area. Therefore, one can state that
for dS case, the existence of deficit angle is limited to region
before its divergency and in this region, deficit angle enjoys
a phase transition related to the existence of root. The length
of permitted region for deficit angle is a function of mas-
sive parameters, electric charge, dimensions and nonlinearity
parameter.

For AdS spacetime, the situation is different. Existence
of divergency depends on positivity and negativity of mas-
sive coefficient c1 and it is found for sufficiently small and
negative values of this parameter. Interestingly, contrary to
dS case, AdS spacetime could enjoy the existence of up to
two divergencies in its deficit angle (for sufficiently small
and negative c1). In the case of one divergence point, the
divergency exists between two roots and signature of the
deficit angle around it is the same (it is negative). In this
case, the deficit angle enjoys two roots and one divergency.
For the case of two divergencies, the divergence points are
between two roots. Around divergencies the sign of deficit
angle changes. Between the divergencies, the deficit angle is
positive valued but within prohibited region. Therefore, the
magnetic solutions have phase transition over a region which
is marked with divergencies. This shows that in this case, the
deficit angle has two roots and one divergency with a pro-
hibited region. The study here showed that generalization to
massive gravity introduces some new phase transitions into
magnetic solutions. This highlights the effects of the massive
gravity in geometrical structure of the solutions, hence their
physical properties.

5 Conclusions

The paper was dedicated to study the nonlinearly charged
magnetic brane solutions in the presence of massive gravity.
The exact solutions were obtained and the absence of black
hole solutions was confirmed. The existence of conic like
singularity was shown and it was pointed out that geometri-
cal, hence, physical/gravitational properties of the solutions
depend on a value known as deficit angle.

This property of the solutions (deficit angle) determines
the total structure of magnetic branes. It was shown that there
is a diverse difference in the geometrical properties of the
solutions with positive deficit angle comparing to negative
ones. These geometrical properties are providing guidelines
for how phenomena such as lensing property would be differ-
ent. That being said, roots and divergencies could be inter-
preted as topological phase transition points. In roots, the
transition is being done smoothly while in the divergencies,
system jumps between different deficit angles, hence geo-
metrical structure.

In general, it was shown that existence of the divergen-
cies for deficit angle were the background spacetime and
massive gravity dependent. If the massive coefficients are
positive valued, only for dS background, deficit angle could
acquire divergency whereas, the AdS case enjoys only root
in its deficit angle. On the contrary, if the massive coeffi-
cients could be negative, for both AdS and dS backgrounds,
it is possible to introduce multi geometrical phase transition
and a prohibited region. Existence of the prohibited regions
indicates that our magnetic solutions are bounded by spe-
cific limits. These limited areas and the conditions for them
are rooted in massive gravity and its coefficients. Despite the
effects of other parameters on limiting areas and the condi-
tions, in the absence of massive coefficients, these limited
areas would rather vanish or significantly be modified. The
effect of nonlinearity nature of the solutions in the case of
AdS spacetime was in level of modifying the number of roots.
Whereas for dS spacetime, it was only in level of modifying
the prohibited/permitted region for deficit angle.

The obtained solutions here contain magnetic brane ones.
Considering the AdS nature of the solutions and their phase
transitions, it is possible to conduct studies in the context
of AdS/CFT correspondence. Furthermore, one can investi-
gate trajectory of the particles and lensing properties of these
solutions in more details to understand the effects of massive
gravity and nonlinear electromagnetic fields. In addition, it is
notable that our solutions are static and independent of time.
One may modify these solutions in the case of dynamic time
dependent for investigating the “self-acceleration” properties
[115,116]. We leave these subjects for the future works.
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