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We present the first analytic scheme-independent series calculations of anomalous dimensions of several
types of baryon operators at an infrared fixed point (IRFP) in an asymptotically free SU(3) gauge theory
with N, fermions. Separately, for an asymptotically free gauge theory with a gauge group G and Ny
fermions in a representation R of G, we consider physical quantities at an IRFP, including the anomalous
dimension of gauge-invariant fermion bilinears and the derivative of the beta function. These quantities
have been calculated in series expansions whose coefficients have been proved to be scheme-independent
at each order. We illustrate the scheme independence using a variety of schemes, including the RT" scheme

and several types of momentum subtraction schemes.
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I. INTRODUCTION

In conformal field theories, quantities of particular
interest are the scaling dimensions, Dy, of gauge-invariant
operators, O. In general, we write

(1.1)

where Dy ;. is the classical (free-field) dimension of O,
and yp is the anomalous dimension of O due to inter-
actions. We shall focus on the determination of y» in
perturbation theory at a fixed point of the renormalization
group (RG). An important example of such a fixed point is
encountered in the case of an asymptotically free non-
Abelian gauge theory with gauge group G and sufficiently
many massless fermions in a representation R of G. We
denote the running gauge coupling at a Euclidean scale u as
g = g(u) and denote a = ¢*>/(4r) and a = ¢*/(167°). In
this theory, the gauge coupling evolves from small values in
the ultraviolet (UV) at large y to an infrared fixed point
(IRFP) at a value denoted o as u — 0. At this value, the
theory is scale-invariant and is inferred to be conformally
invariant [1,2]. This infrared behavior is commonly
denoted the non-Abelian Coulomb phase (NACP) or

Do = Do =70,
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conformal window. The RG evolution of the gauge
coupling is described by the beta function,

PR = 2a b, (1.2)
=1

" dlny

where b, is the Z-loop coefficient. At the two-loop (2£)
level [3-7], the IR zero of f, function occurs at

4ﬂb1
AR2 = — by
2

(1.3)

If Ny is only slightly smaller than the upper limit,

_11C,
4T,

N, (1.4)

implied by the property of asymptotic freedom [5,6], then
arRr 2¢ 1s small and can be analyzed perturbatively [4,7]. As
N decreases, the value of the coupling at the infrared zero
of the beta function increases, motivating calculation of this
IRFP value of a to higher-loop order. This was carried out
to the four-loop level for general gauge group G and
fermion representation R in [8—10], using b5 [11] and b,
[12] computed in the modified minimal subtraction scheme
[13] for regularization and renormalization, denoted MS.
(The minimal subtraction scheme was originally presented
in [14].) Subsequently, the IRFP was calculated to the
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five-loop level [15], using bs in the MS scheme [16,17].
Effects of scheme dependence were studied in [18-25].

The anomalous dimension of a gauge-invariant operator
O, evaluated at a zero of the beta function (hence an RG
fixed point), is, in principle, measurable, and hence cannot
depend on the scheme used for regularization and renorm-
alization. However, this property is not maintained in a
conventional finite-order perturbative calculation of the
anomalous dimension of such an operator as a power series
in the coupling «a,

vo=> cord. (1.5)
=1

Once the perturbative expansion for y is truncated at a
finite order, scheme dependence is induced in the result for
7o. Only if one had the entire perturbative series available
would the final result be guaranteed to be scheme-
independent. Explicitly, to evaluate y» to finite order at
an IRFP using Egs. (1.2) and (1.5), one solves for the
relevant zero of the n-loop beta function to obtain the n-loop
value of a at this IRFP, denoted ag ,,» and then substitutes
this into Eq. (1.5) to obtain the value at the IRFP, y¢ r.
However, beyond the lowest orders, the result is scheme-
dependent, because of scheme dependence in both the
higher-order b, and the c , coefficients. The calculations
of 4, 1r to four-loop order in [8,9] and to five-loop order in
[15] used the four-loop and five-loop coefficients ¢y, 4 [26]
and cy,, 5 [27], respectively, calculated in the MS scheme.
This scheme dependence of higher-order perturbative cal-
culations is, of course, not limited to these quantities, but is a
generic property of higher-order calculations. For example,
itis well known that higher-order calculations of differential
and total cross sections in quantum chromodynamics (QCD)
are also scheme-dependent.

Intuitively, one expects that as one increases the order
of the perturbative computation, there is more scheme-
independent information contained in y. This expectation
is justified by the fact that higher-order QCD calculations
used, e.g., to analyze data from the Fermilab Tevatron and
CERN Large Hadron Collider showed less dependence
on the scheme/scale than lower-order calculations [28].
Indeed, for many years there has been work on the
construction and application of schemes in QCD designed
to reduce the scheme and scale dependence in higher-order
QCD calculations (e.g., [29-31]).

Ideally, one would use a method of perturbative calcu-
lation of physical quantities that manifestly preserves the
scheme independence at each finite order in the series
expansion. That is, one would like to extract the scheme-
independent information that is contained in the scheme-
dependent higher-order coefficients b, and cp,. A key
property of the IRFP in an asymptotically free gauge theory
is that ag — 0 as N (considered to be generalized to real

numbers [6]) approaches the upper limit, N, allowed by
asymptotic freedom. It follows that one can reexpress a
physical quantity such as y, at the IRFP as a series
expansion in powers of the difference

1.€.,

Yo = ZKO,nA;l" (17)
n=1

Since A is obviously scheme-independent and so is yo,
each coefficient x», is also scheme-independent. Some
early work based on this was in [7,32].

Recently, extensive scheme-independent expansions for
anomalous dimensions of a number of physical quantities
have been calculated and analyzed in [33—42]. For asymp-
totically free vectorial gauge theories with gauge group G
and N, fermions transforming according to a representation
R of G, physical quantities of interest include the fermion
bilinears yy and 7 iy, where we suppress the sum over
fermion flavor indices and 7 ; denotes a generator of the
Lie algebra of SU(N,). These have the same anomalous
dimension [43]. We denote this anomalous dimension as
Yy and its evaluation at the IRFP as y;,, r. The scheme-
independent series expansion of y,, g is written as

YowiR = KAl (1.8)
n=1

In general, the calculation of the coefficient «, in Eq. (1.8)
requires, as inputs, the values of the b, for 1 < <n+1
and the ¢, for 1 <7 < n.

The derivative of the beta function evaluated at the IRFP,

ap,
Pr=—

o , (1.9)

aA=QaR

is also a physical quantity and hence is scheme-independent
[44]. Indeed, from the trace anomaly [45] T,’j =
1B/ (4a)|F;, F, where FY, is the field-strength tensor, it
follows that the full scaling dimension of F? = Tr(F,, F*),
satisfies the relation [46]

dfa 2

Dp =4 —Z B
F +da aﬁa

(1.10)

so that, at the IRFP, with , = 0, y2 g = —fg. i.€., P is
equivalent to the anomalous dimension of 2 evaluated at the
IRFP. The scheme-independent series expansion of Sy is
written as

Pr=>_ d,Al (1.11)
n=2
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(Note that d; = 0 for all G and R.) In general, the calculation
of the coefficientd; in Eq. (1.11) requires, as inputs, the values
of the b, for 1 < < j. In addition to these calculations for
vectorial gauge theories, Ref. [41] carried out scheme-
independent calculations of g for chiral gauge theories.

The results of the scheme-independent series expansions
in [33-40] are useful for several reasons, which are also
motivations for the present study. First, they give new
information about fundamental properties of conformal
field theories, namely anomalous dimensions at an IRFP in
the non-Abelian Coulomb phase of an asymptotically free
gauge theory. A second important use of these calculations
pertains to the determination of the size of the NACP. The
upper end of the NACP, as a function of N, is known and is
equal to N,,. However, for nonsupersymmetric theories, the
lower end, at a value that we denote as N .., is not known,
and there is an intensive ongoing effort to determine N .,
by means of lattice simulations [47,48]. Applying scheme-
independent calculations of yy, r, Refs. [34-38,40]
obtained estimates of N .. in a manner complementary
to lattice gauge simulations. This was done using the
monotonic increase of yg, r With decreasing N, that
was shown by the scheme-independent calculations, in
conjunction with the rigorous upper limit on yg, r from
conformal invariance, namely yg, r <2 [49]. A third
application follows from the second, namely that a knowl-
edge of Ny, (for a given gauge group G and fermion
representation R) is necessary for the construction and
study of quasiconformal theories of physics beyond the
Standard Model (BSM), since these require N, to be
slightly less than N ., in order to achieve the slow running
of the gauge coupling and associated quasiconformal
behavior. In turn, the dynamical breaking of the approxi-
mate dilatation invariance in these theories leads to
a light approximate Nambu-Goldstone boson, the dilaton
[47,48,50-52]. These vectorial BSM theories can naturally
arise from the sequential breaking of asymptotically free
chiral gauge theories [53]. This is relevant to the inves-
tigation of the Higgs boson; although its production and
decay properties are consistent with the predictions of
the Standard Model, there is the continuing question of
whether it might be a composite, dilaton-like state resulting
from a quasiconformal BSM theory [51].

The accuracy of the scheme-independent series expan-
sions of yg, r and P was studied in several ways in
[33-42]. One way was to evaluate the stability of these
quantities as higher-order terms in powers of A, were
added in the series. It was shown that the finite-order
scheme-independent series calculations were most accurate
at the upper end of the NACP, and remained reasonably
accurate over a substantial portion of the NACP extending
to lower values of N.

For the gauge group G = SU(3), a baryon operator
has the form of a product of three fermion fields, each

transforming as the fundamental (triplet) representation of
G, with their gauge indices a, b, ¢ contracted with the €,
tensor to form a color singlet. Relevant previous studies of
anomalous dimensions of baryon operators in QCD include
[54-61]. In particular, the anomalous dimensions of baryon
operators have been calculated to one-loop [54], two-loop
[55,57], and three-loop order [58,59] as powers series in
and related studies have been presented in [60,61].

In this paper we shall present, for the first time, analytic
scheme-independent series calculations to order O(A}) of
anomalous dimensions of several types of baryon operators
at an infrared fixed point of an asymptotically free SU(3)
gauge theory with N, fermions in the fundamental repre-
sentation. An assessment of the accuracy of these calcu-
lations will also be given. As was discussed previously
[33-35], the procedure for the calculation of scheme-
independent series expansions requires that the IRFP be
exact, and this is only the case in the non-Abelian Coulomb
phase, in which the chiral flavor symmetry is exact [62].
Since we thus necessarily restrict our analysis to the NACP,
where there is no confinement, we use the term “baryon” to
refer only to the property that the baryon operators that we
consider are singlets under the SU(3) gauge symmetry. We
note that there is actually some irony in using the term
“baryon” here, since it is derived from the Greek word
Papog, meaning “heavy.” However, a gauge-singlet state
produced by the operation of a baryon creation operator on
the vacuum in the non-Abelian Coulomb phase is massless,
as are all physical states in this phase.

As a second part of our paper, we shall present, for
general gauge group G and fermion representation R,
an explicit illustration of the scheme independence of
the earlier calculations of A, expansions of yg, r and

Pir [33-38,40]. These calculations naturally used the MS
scheme because the n-loop coefficients in the beta function
and in y;,, had been calculated to the highest loop order in
this scheme, and these coefficients have the simplest form
in this scheme. Since a rigorous proof was already given in
these earlier works of the scheme independence of the
coefficients in these A, expansions, it is not necessary
to carry out the calculations in schemes other than the
simplest one. However, it is, nevertheless, quite instructive
to see how the considerably more complicated higher-order
coefficients in the beta function and anomalous dimensions
in these more complicated schemes combine to reproduce
exactly the results of the MS scheme for the coefficients in
the various A; series expansions. For the purpose of
these illustrations, we shall consider a variety of different
schemes, including the RI' scheme [63,64] and several
varieties of momentum (MOM) subtraction schemes
[29,65-70] (see also [71]).

It should be mentioned that this program of explicitly
demonstrating scheme independence of the coefficients in
the A, expansions of anomalous dimensions of various
operators was previously carried out for the A =1
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supersymmetric gauge theories in [33,35,36,39], where it
was shown that the use of two different schemes, namely
the DR scheme [72] and the Novikov-Shifman-Vainshtein-
Zakharov (NSVZ) scheme [73] yield the same scheme-
independent results for the anomalous dimension of
a holomorphic composite product of chiral superfields,
Y @y IR which, order by order are in precise agreement
with the corresponding series expansion of the exactly
known expression [74]. In addition to demonstrating
explicitly that different schemes yield the same values of
coefficients in the scheme-independent expansion of
Y ®eomp IR of the form (1.7), this work showed that (i) the
series (1.7) converges to the exact expression everywhere
where the latter applies, i.e., in the NACEP, (ii) for a fixed N
in the NACP, a finite truncation of the series (1.7) to order
O(Aff- ) approaches the exact expression exponentially
rapidly, and (iii) throughout the entire NACP, one achieves
excellent accuracy of a few percent even with a series
calculated to a modest order of n = 4, i.e., O(A;). These
scheme-independent calculations of anomalous dimensions
in an V' = 1 supersymmetric gauge theory thus improved
upon conventional scheme-dependent series expansions in
powers of ar [75-76] (see also [77]).

II. BARYON OPERATORS

In this section we consider a theory with gauge group
G = SU(3) and N fermions in the fundamental (triplet)
representation, R = F. Since the fermions are massless, the
ultraviolet theory is invariant under the global flavor (f/.)
symmetry group

Gy =SU(Ns), @ SUNNf)r @ U(1)y.  (2.1)
This symmetry is unbroken in the non-Abelian Coulomb
phase. Hence, the baryon operators that we consider trans-
form according to definite representations of this group. Each
fermion field can be decomposed into its left- and right-
handed chiral componentsasy = (P, + Pg)y =y + wk,
where Pr; = (1/2)(1 £y5) and we suppress color and
flavor indices here. Showing these latter indices explicitly,
each fermion field can thus be written formally as
wip +wig where a is an SU(3) color gauge index. Here,
the flavor index i on y¢; refers to the fundamental repre-
sentation of SU(N ), , while the flavor index i on y/{ , refers
to the fundamental representation of SU(N ;). This will be
understood implicitly below. The chiral components y{'; and
i transformas (N, 1) and (1, N ;) under the chiral part of

Gy, SU(Ny), ® SU(Ny)g. The bilinear operator yy =

Zjv:fl (Wirwir + Wigw,r) thus corresponds to what would
be the flavor-singlet in the confined phase, where the chiral
part of Gy,.. is broken to the diagonal SU(N ), subgroup,
while the operator 7 ;ys corresponds to what would be the

flavor-adjoint in the confined phase. In our present work we
will use the symbols S;; and A;; to denote the k-fold
symmetric and k-fold antisymmetric representations of
SU(Ny);, and similarly with S x and Ay x with SU(N ).

Clearly, all of our baryon operators have unit baryonic
charge under the U(1),, factor group [which is equivalent to
U(1), here] so we leave this implicit henceforth. Although
we are in an NACP without any confinement of color, it is
nonetheless convenient to deal with gauge-singlet opera-
tors, since they are gauge-invariant. The invariance of the
baryon operator under the SU(3) gauge group is guaranteed
by the contraction of the color indices a, b, ¢ on the three
fermion fields with the €, tensor, so that the color part of
the baryon wavefunction is totally antisymmetric. The
other parts of the baryon operator depend on the chirality,
spin contractions, and flavor structure of the three-fermion
operator. These are constrained by the requirement that the
full wavefunction must be totally antisymmetric under
interchange of any two of the fermions.

As is well known, relevant representations of the Lorentz
group SO(3,1) are specified by two spins, (j;,/j»). It is
convenient to construct a subset of baryon operators by
combining two of the three fermions in a Majorana-type
bilinear operator product, since this has spin 0 and is
Lorentz-invariant. A Majorana-type bilinear links left-
handed to left-handed chiral components of a fermion,
and right-handed to right-handed chiral components. There
are thus two of these, namely y¢7 Cy% ; and y¢Zy/” ;. Here,
C is the Dirac charge conjugation matrix defined by
Cy,C™' = -y, and satisfying the properties C' = -C
and C~' = CT. The full baryon operator product is then
obtained by combining each of these Majorana-type
bilinears with the left-handed or right-handed chiral
fermion. One thus has the operators

Orrr = €abcWiR [W%CV/E,L] (2.2)

Orrr = eabcl//gL[W?IQCWICc,R} (2.3)

Oggrr = eabcsz[l/]?,Tl;CWi,R] (2-4)
and

O = EabcWiL [W?,{CWE.L}‘ (2.5)

To distinguish the chirality of the unpaired fermion, one
could use a subscript L or R, but we shall follow the
notational conventions of [55,58], according to which

ot =0f) (2.6)

and
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1

ok ORLL (2.7)

As is evident, in the Lorentz (j,j,) labeling, the
j1 = 1/2 refers to the fermion field that is not a member
of the Majorana fermion bilinear, and j, = O refers to the
spin-0 transformation property of this Majorana fermion
bilinear. These operators have anomalous dimensions

(30).+ (3:0).— -
denoted y andyy ", respectively. Because the theory

at the IRFP in the non-Abelian phase preserves the full

(3:0).+

flavor symmetry (2.1), the anomalous dimension y for

1
O(LZ’LOL) is equal to the anomalous dimension for the corre-
sponding operator with all L indices switched to R, namely

(1,0)’_

L0 . .
O%,'g ,)e, and, separately, the anomalous dimension yz" " for

O%LOL) is equal to the anomalous dimension for the corre-
sponding operator with L and R indices interchanged,
(30)
namely Oz
One part of the classification of baryon operators entails
the analysis of the combination of the three spin 1/2
representations of angular momentum SU(2). In general,
one has

o+ (2.8)

N[ =
N[ =
N[ =
N =
N[ =
N W

(e, 2x2x2=2+2+4 in terms of the dimensions
2s + 1 of the representations). We have considered above
the cases in which two of the spins are contracted to
produce spin 0, corresponding to one of the two spin-1/2
terms on the right-hand side of Eq. (2.8). There are two
remaining cases to consider, in which one combines two of
the spins to produce a spin-1 state and then combines this
with the third spin 1/2 to yield a net spin 1/2 or spin 3/2.
We recall that the spin wavefunction in the case of spin 3/2
is totally symmetric, i.e., S3 under the SU(2) of spin. In the
analysis of baryon operators in QCD, it has proved useful to
introduce a vector A, that is lightlike, i.e., has the property

=0, and consider the operators (leaving the flavor
indices implicit)

1 47 1

18 27
16094 1706 20
+ K— MG+

&+

36
5 Nf—ENz)CO (
200 71 1 2, (5
+<_3ﬂ+ﬁ 324 f)C (648 27§3>

37 25 1
- —__ 4= 3 4

30 p .
OFL) = ancdt f s (2.9)
Ol 2.10
RRR = Cabc AW RAWRAY R (2.10)
14 p .
Ofik = Canchvri Ay s (2.11)
and
14 ; .
O, = eanc sy b (2.12)
In the notation of [55,58],
3.0
OS& )= OrLL (2.13)
and
ol = ol (2.14)

The anomalous dimensions of these operators are
denoted y( 0)+ and y(12 2= , respectively. Again, owing to
the exact chiral symmetry (2.1), the anomalous dimension

3
y@0+ of (’)(LZ’LOL) is equal to the anomalous dimension of

30 . . 1_ L3 .
O%R,)e, and the anomalous dimension y('2~ of (’),ELZIZ is
. . 14 .
equal to the anomalous dimension of (9;e R2L). The normali-
zation of these anomalous dimensions is fixed by the basic

relation (1.1).

III. SCHEME-INDEPENDENT SERIES
EXPANSION FOR ANOMALOUS DIMENSION
OF GENERAL BARYON OPERATOR

A general expression, calculated to the two-loop level,
was given for the anomalous dimension of a general baryon
operator Op in [57] and extended to the three-loop level in
[58,59]. This depends on certain coefficients C;, which are
listed in Table I. With the definition (1.1) (which sets the
absolute normalization of the anomalous dimension), and
noting that the sign convention in (1.1) is opposite to that in
[58], we have

36

5873 433 71 40 13 5
Tw‘l—g@‘(ﬁ*?@)”‘g—ﬁ)@

91 29 7
(72 P 324Nf)034

5
GG

(3.1)
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TABLE I. Values of C; coefficients.

(J1-J2) chirality Co G Cy Caaa
(3.0) + 1 12 72 0
(%,0) - 1 12 -24 0
(3.0) + 1 -12 72 0
(1,%) - 1 —4 -24 0

We list the values of the C; coefficients for various
specific baryon operators in Table I.

We denote the anomalous dimension of the general baryon
operator O as y, and write the scheme-independent series
expansion for this as

VB = ZKBJIA?" (32)
n=1

291892 272
B3 =

35 . (107)4 - 33 . (107)3 £3>CO + (

352124197

For this SU(3) gauge theory with N, fermions in the
fundamental representation, N, = 33/2, so the general
expression for A, in Eq. (1.6) yields Ay = (33/2) — Ny.

We calculate the following coefficients in this scheme-
independent series expansion for the general baryon
operator:

2
=——C,, 3.3
Kp.1 32.(107) 2 (3.3)
8 + 27083
Kpy = —
B2 73107270 T 2.3 (107)3 7
1 2
— 4

and

238124

22.30.(107)° 3% (107)% §3> e

16525 58

47365 568
_ c2 - C
+< 2.37-(107)4+36-(107)3§3> 2+(2-36-(107)4 34-(107)3&) !

5 8 ;
+ <37 -(107)3 36.(107)3 C3>CZ + <

1 16
_ Cuus,
+< 3 (1077 3 - (107)° §3> .

where {; = ) *  n™* is the Riemann zeta function. In
Eqgs. (3.3)—(3.5) we have indicated the simple factorizations
of the denominators. The numerators do not, in general,
have such simple factorizations.

In floating-point format, to the indicated precision,

kg1 = (2.076843 x 1073)C,, (3.6)
kg = —(2.329170 x 107)C, + (1.364679 x 1074)C,
+ (1078319 x 1076)C2 — (5.391597 x 107°)C,,

(3.7)

and

kg3 = —(0.721139 x 107%)C,, — (0.376693 x 107%)C,
+ (0.681918 x 107°)C3 — (0.616147 x 107°)C,
—(0.890178 x 107%)C3 + (2.975975 x 1078)C,C,
+ (0.343749 x 1077)Cyay. (3.8)

"33 (1077 2.3 (107)

37 25

34’3)@2@4

(3.5)

IV. SCHEME-INDEPENDENT
SERIES EXPANSIONS FOR
ANOMALOUS DIMENSIONS OF
SPECIFIC BARYON OPERATORS

In this section we present results for coefficients in
scheme-independent series expansions for the anomalous
dimensions of specific baryon operators. These analytic
results are new here. The anomalous dimension of the
baryon operator O/ is denoted yg‘ )% We express the
scheme-independent series expansion for this anomalous

dimension as

]/gl'j2>¢ _ ZKE;jl’h)iA? (4.1)

n=1

The truncation of this infinite series to maximal power
(J1:2).
B.AY

results for the A, series expansions for two of the four

. 10) . . .
specific operators, namely, O, were given previously in

[60]. Since they were based on the results of [58], they
should be multiplied by a factor of 2 [59].

(order) A’f’ is denoted y * We note that numerical
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We calculate the following:

(5 -2
= —2492212x 10 4.2
i 3. (107) x (42)
. 38758
e = 20— 10171780 x 1072 (4.3)
33.(107)
g0 _ 314021060 97792
K = -
3 3510705 33-(107)*°°
= 5.892227 x 103 (4.4)
(3.0).~ -2
= = 2492212 % 10 45
. 3. (107) x (45)
Go- 18626 _3
P T 1689374 % 10 4.6
2 T3 o7y * (4.6)
o _ 40784885 70400
K = -
3 33.(107)5 3% (107)*°°
= 0.837892 x 107* (4.7)
(30).+ 8 w
= = (2492212x 10 4.8
Ky 3-(107) ( X ) (4.8)
3.0).+ 69574 ) 3
= = _(2.103448 x 10 4.9
KZ 33 . (107)3 ( X ) ( )
Go 32245429 1169920
K =-
3 33.(107)° " 3% (107)*°°
=4.730261 x 10~ (4.10)
(13).~ 8 2
= =—(0.830737 x 10 4.11
K 37 (107) ( X ) ( )
(1.4).- 62726 6 4
= = (6321370 x 10 4.12
(- _ 314714420 178688
K =-
3 36.(107)5 ' 3% (107)*°?
=2.991050 x 1075. (4.13)

As 1s evident from these results, all of the scheme-

. . 10), 10).—
independent coefficients Kf{ )+ and K'S,Z ) that have been

calculated, namely those for n = 1, 2, 3, are positive. In
contrast, we find mixed signs for the scheme-independent

. 30).+ . 3.0),+ 3.0).4 .
coefficients KE,Z ) ; while K(f ) and K% ) are negative,

30),4 . .. .. . 1.4),
ng )+ is positive, and similarly with the K,(1 )

2, 3.
In Figs. 1-4 we show curves of these anomalous
dimensions, and in Tables II-V we list values of these

" forn =1,

0.4
0.3
S 02
-2
01
0.0
8 10 12 14 16
N
1
FIG. 1. Plotof y%‘o)‘+, as calculated in the scheme-independent

series expansion to O(AJ‘?) with 1 < p <3, as a function of N.
The curves refer to the calculation to O(A ) (red); O(AJ%) (green);
and O(A}) (blue), with colors online.

0.4
0.3
2 02
ta
0.1
0.0
8 10 12 14 16
Ny

FIG. 2. Plot of yg’o)'_, as calculated in the scheme-independent
series expansion to O(A}’) with 1 < p <3, as a function of N.
The curves refer to the calculation to O(Ay) (red); O(A?}) (green);
and O(A3}) (blue), with colors online.

anomalous dimensions, as calculated to the various orders
in As in our scheme-independent expansions.
We comment further on the results for the coefficients

(3:0).+ 0).—

1 . . .
Ky and Kff' in the respective scheme-independent

series expansions for y%’o)’i. It will be recalled that an
important property of the scheme-independent calculations
of 7,1k 10 [33-39] is that (a) the coefficients x; and k, are
manifestly positive, and (b) for all groups and representa-
tions considered, k3 and x, were also found to be positive.
This result implied several monotonicity properties, namely
that (i) for a fixed truncation order p, the scheme-
independent series expansion for yy, g is @ monotonically
increasing function of Ay, i.e., it increases monotonically

with decreasing N £ and (ii) for a fixed value of N Iz the
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0.0

-0.1

202
-

-0.3

-04

8 10 12 14 16
N
FIG. 3. Plot of yg’o)‘+, as calculated in the scheme-independent

series expansion to O(A}’ ) with 1 < p <3, as a function of N.
The curves refer to the calculation to O(A ) (red); O(A_%) (green);
and O(A}) (blue), with colors online.

0.00

-0.02

-0.04

S _0.06
<@

-0.08

-0.10

-0.12
8

FIG. 4. Plotof yg ’9’7, as calculated in the scheme-independent
series expansion to O(Aﬁ ) with 1 < p <3, as a function of N .
The curves refer to the calculation to O(A) (red); O(A_)%) (green);
and O(A}) (blue), with colors online.

series calculation to O(A’; ) is a monotonically increasing

function of p. Indeed, as was noted in several of these
works, and was studied in detail in [39], the coefficients in
the corresponding scheme-independent expansions of
anomalous dimensions of composite holomorphic products
of chiral superfields in A =1 supersymmetric gauge
theories are all positive.

In view of these previous positivity findings, it is of

considerable interest that all of the KS,%'O) " and Kfl%'O)’_ that

have been calculated, namely those for j =1, 2, 3, are
positive, so the corresponding monotonicity results apply
1

for y%‘o)’i. These calculations to finite order in O(A) are
expected to be most accurate for small A 2 1e., for N [

TABLE 1L Values of 72% " with 1 < p <3.

1 1 1
Ny Toar pa bat
8 0.212 0.296 0333
9 0.187 0.253 0.278
10 0.162 0.212 0.228
11 0.137 0.173 0.182
12 0.112 0.136 0.141
13 0.0872 0.102 0.104
14 0.0623 0.0696 0.0705
15 0.0374 0.0400 0.0402
16 0.0125 0.0128 0.0128
TABLE IIL  Values of 755 with 1 < p <3.

1 1 1
Ny tuat fa L
8 0.212 0.334 0.385
9 0.187 0.282 0317
10 0.162 0.233 0.256
11 0.137 0.188 0.202
12 0.112 0.146 0.154
13 0.0872 0.108 0.112
14 0.0623 0.0729 0.0742
15 0.0374 0.0412 0.0415
16 0.0125 0.0129 0.0129

G0+ .

TABLE IV. Values of yz,» with 1 <p <3.

3 3 3
Ny Voal Yo y30:+
8 ~0.212 ~0.364 ~0.335
9 ~0.187 ~0.305 ~0.285
10 ~0.162 ~0.251 ~0.238
11 ~0.137 ~0.201 ~0.193
12 ~0.112 ~0.155 ~0.150
13 ~0.0872 ~0.113 ~0.111
14 ~0.0623 ~0.0755 ~0.0747
15 ~0.0374 ~0.0421 ~0.0420
16 ~0.0125 ~0.0130 ~0.0130
TABLE V. Values of 7%~ with 1 < p <3.
N (13- (19~ (19).-

f VB Al Y p.A Vg A3

8 ~0.0706 ~0.117 —0.0979
9 ~0.0623 ~0.0979 ~0.0852
10 ~0.0540 ~0.0807 ~0.0725
11 ~0.0457 ~0.0648 ~0.0598
12 ~0.0374 ~0.0502 ~0.0475
13 ~0.0291 ~0.0368 ~0.0355
14 ~0.0208 ~0.0247 ~0.0243
15 ~0.0125 ~0.0139 ~0.0138
16 ~0.00415 ~0.00431 ~0.00431
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slightly below N, = 16.5, while higher-order corrections
become progressively larger as N, decreases toward the
lower end of the NACP. In [34-37] these scheme-
independent calculations were used to derive estimates
of the value of N, at the lower end of the NACP. The
method was to use the unitarity lower bound D > 1 for a
Lorentz-scalar operator O in a conformal field theory [49].
From the basic definition (1.1), taking into account that the
free-field (classical) dimension of yy is Dy, ., = 3, there
follows the upper bound y,, g < 2. Combining this with
the above-mentioned monotonicity results for the scheme-
independent calculation of yg, g yielded the estimate
[34-37] that the conformal non-Abelian Coulomb phase
extends from N, = 16.5 down to slightly above N, = 8, so
the maximal value of A, in this NACP, is (Af) . = 8.
As was done for yy, r and S in previous works
[33-35,37], we may estimate the accuracy of these

1 10).—
O(A?) series calculations of y%’o)’Jr and y%’o)’ in several

ways. The first is to plot the various truncations to O(Af)
with p =1, 2, 3 as functions of A, or equivalently, N in
the conformal regime (non-Abelian Coulomb phase) and

ascertain how close the curves are to each other. As

expected, the curves of y§'0>’+, calculated to the higher

two orders, O(A%) and O(A7), remain close to each other
over a larger range, extending to lower Ny, than the
corresponding curves calculated to the lower two orders,
O(Ay) and O(A%). A similar comment applies to the
corresponding curves of y}(é.o),—.

We recall that if a function f(z) is analytic at z = 0 and
thus has a Taylor series f(z) =) %, s,2", then the ratio
test states that the series converges to the function f(z) if
|z| < zp, where

2= lim ! (4.14)

poe Js|

Of course, even if these series expansions in powers of A,
were Taylor series, it would not be possible to actually
calculate the limit (4.14), since we have only the first few
coefficients. Furthermore, the A, expansion is not generi-
cally expected to be a Taylor series, because the properties
of the theory change qualitatively as N increases through
N, and the theory becomes IR-free instead of UV-free.
Nevertheless, a calculation of the first few ratios can give a
rough idea of the accuracy of a truncation of the series to a
given order. Accordingly, this was carried out for y g, r and
Pir in [33-38]. It was found that the series expansions for
Yow.r to O(A}) and fig to O(A}) were reasonably accurate
over a substantial portion of the NACP.

It is thus worthwhile to carry out the analogous calcu-

1
lation of ratios here for y](_.,?'o)’i. We find

K(g.o).+
L —2127 (4.15)
(:0).+
Ky
(3:0).+
2 —
0T = 19.89 (4.16)
K3
(0=
(1_1 — = 1475 (4.17)
Ky
and
K;%m,—
3
These ratios are all substantially larger than (A) ., ~8,

indicating that the scheme-independent series expansions

1
for 71(32,0),1 to O(A}) may be reasonably accurate over a
substantial part of the NACP for this SU(3) theory.

V. UNITARITY BOUNDS ON ANOMALOUS
DIMENSIONS OF BARYONIC OPERATORS

Since our scheme-independent series expansions for
baryon operators apply at an infrared fixed point in the
non-Abelian Coulomb phase, where the theory is confor-
mally invariant, it is of interest to study how the resultant
anomalous dimensions compare with the unitarity bounds
on a conformal field theory. In general [49], for an operator
O characterized by Lorentz spins (j;,j»), unitarity in a
conformal field theory requires that the full scaling dimen-
sion Dy is bounded below according to

Dp>ji+j,+ 1. (5.1)
For our case of SU(3), the free-field dimension of a baryon
operator i8 Dp .. = 3(3/2) = 9/2, so, with Eq. (1.1), the
lower bound (5.1) implies the upper bound on the anoma-
lous dimension

SUB): 1§ < 5= (i + jn)- (5.2)

[NSHEEN]

Specifically, for the various operators considered here
(suppressing =),

G0 <3 (5.3)
60 <9 (5.4)

and
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/47 <2, (5.5)

For the present theory with gauge group SU(3) and Nj
fermions in the fundamental representation, the previous
work in [34-37] led to the inference that the lower end of
the NACP occurs at N ., around 8-9. In Fig. 1 and Fig. 2,
one can see that our scheme-independent calculations of

y§,0)+ and yg'o)_ to O(A}) are well below the upper bound

of 3 in (5.3). Our results for yg’O)Jr and yg’i)_ are negative,

so they obviously also satisfy the respective upper bounds
(5.4) and (5.5).

The fact that these baryon anomalous dimensions, as
calculated to O(A}), do not saturate their respective
unitarity upper bounds as N, decreases toward the lower
end of the non-Abelian Coulomb phase is reminiscent of
the situation for an A/ = 1 supersymmetric gauge theory
with gauge group SU(N,) and N pairs of chiral super-
fields, transforming respectively as the representations R
and R of SU(N,), as studied in [39]. For this super-
symmetric gauge theory, the only composite chiral super-
field for which the anomalous dimension saturates its
unitarity upper bound from conformal invariance as N
approaches the lower end of the NACP from above is the
gauge-invariant quadratic chiral superfield, which contains
the yy component field product. In contrast [aside from the
pseudoreal case of SU(2)], a baryonic chiral superfield does
not saturate its unitarity upper bound from conformal
invariance at the lower end of the NACP [39].

VI. SCHEMES FOR ILLUSTRATIVE
CALCULATIONS

In this section we review some background and methods
relevant for our calculations illustrating the scheme inde-
pendence of the A, series expansions for y;,, g and fiz. We
consider several schemes for regularization and renormal-
ization. We first discuss these schemes. Recall that a
common expression that one obtains from loop integrals
performed in d-dimensional spacetime is

r2-(d/) 1
(4ﬂ)d/2 A(d/2)—2 ’

(6.1)

where T'(z) is the Euler gamma function, and A is
a denominator depending on some external momenta.
Defining ¢ =4 —d and expanding about € = 0, using
the Taylor-Laurent expansion of I'(z) about a pole at z = 0,

1

I'z) = - ve + 0(2), (6.2)

Eq. (6.1) becomes

1
(47)

E —yg +1In(47) —InA + 0(6)} . (6.3)

where

n

1
ye = lim (Zk —1In n) ~0.5772157.  (6.4)
k=1

In the minimal subtraction scheme MS [14], one subtracts
the pole term, 2/e. In the modified minimal subtraction
scheme MS [13], one subtracts the pole term and also
the two following terms, namely the combination
2/e —yg + In(4x). Both the MS and MS schemes are
mass-independent and have the appeal that the beta
function and anomalous dimensions of gauge-invariant
operators are gauge-invariant. As was noted above, the
calculations of [33-38,40,41] used this scheme, although
the resulting A, expansions were proved to be scheme-
independent.
In addition to the MS scheme used in the previous work
[34-38,40], the schemes that we use for our present
illustrative demonstrations of scheme independence of
A expansions are the following:
(1) the modified renormalization-invariant scheme (RI’)
[63,64],

(2) the momentum subtraction scheme MOMggg de-
fined by focusing on the triple-gluon vertex [29,70],

(3) the momentum subtraction scheme MOMh defined
by focusing on the gluon-ghost-ghost vertex [29,70],

(4) the momentum subtraction scheme MOM(q defined by
focusing on the gluon-fermion-fermion vertex [29,70]
(indicated with the subscript ¢ for “quark™), and

(5) the minimal momentum subtraction (MMOM)
scheme [65,68].

We write the conventional expansion of y;,, as

00
— 4
yl/_ll// - Zcfa s
=1

where the ¢, are the ¢-loop coefficients and, where no
confusion will result, we set ¢, = ¢y, ». The one-loop
coefficient, ¢; = 6Cy, is scheme-independent, while the ¢,
with £ > 2 are scheme-dependent [44]. The evaluation of
the n-loop truncation of (6.5) at the IRFP is obtained by
substituting & = ayr ,,» and is denoted yg ..

Concerning the beta function (1.2), the one-loop coef-
ficient, b, [3], is scheme-independent. In mass-independent
schemes, the two-loop coefficient, b, [4], is also indepen-
dent of the specific scheme [44]. We have mentioned above
the calculations of b5 [11], by [12], and b5 [16,17] in the
MS scheme. As noted, the ¢, were calculated to four-loop
order [26] and to five-loop order in [27], in the MS
scheme [78].

(6.5)
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The b, and ¢, have been calculated to four-loop order in
the RI' scheme [64] and the minimial MOM (mMOM)
scheme [68]. Additional calculations in generalized MOM
schemes were presented in [70]. A comparison of conven-
tional calculations of ayg ,» and yg ,» Was given up to the
four-loop order in [20,21,23,25]. An important aspect in
which the RI' and MOM schemes differ with the MS
scheme is that beyond the lowest orders, the b, and c, are
gauge-dependent. We consider a covariant gauge-fixing
term so that the gauge part of the Lagrangian is [with our
(+———) metric]

L

1 1
gauge — _ZFzyFW’a - 2—5 ((:)”Az)z + FE.P., (66)

where

a __ a a abc Ab Ac

F, = 8”A,, - 6,,A/, + gf e AAY (6.7)
is the field-strength tensor, with @ = 1, .., o(G) is the group
index, o(G) is the order of the gauge group, f*° are the
structure constants of the Lie algebra of G, and F.P. denote
Faddeev-Popov terms. The gauge field propagator is thus

i k;Akb
_5 b[gpw - (1 _é:) 12 ]
k2

Agy (k) =

. (6.8)

The Landau gauge corresponds to & =0, where this
propagator is transverse, i.e., k”AZ,’,’(k) = 0. In these other
schemes, the gauge parameter ¢ also depends on the
Euclidean scale p, and so there is an associated function
that measures this dependence, namely

_ %
Cdlnp’

P (6.9)

We write the series expansion for this in powers of the
coupling as

Pe=—28> b;.a. (6.10)
=1

Evidently, the situation is the simplest in Landau gauge,
since in this gauge, f = 0 and the gauge parameter is
independent of the Euclidean scale. The value of a at the IR
zero of f, and the resultant value of y;,, g were calculated
in Landau gauge at the three-loop level in the RI scheme in
[20] and in the mMOM scheme in [21], and at the four-loop
level in [23]. We recall the procedure for this calculation.
One looks for a physically acceptable simultaneous sol-
ution to the two coupled equations

ﬁa(a7 g) =0,

pe(a.&) =0, (6.11)

where we have explicitly indicated the dependence of f,,
and f: on the variables a and &. Because f3; is proportional

to &, one is always guaranteed to find a solution with & = 0.
That is, if £ = 0 at some value ¢ = p, then & = 0 for all p.
This was the basis for the choice of Landau gauge in
Refs. [20,21,23]. As was discussed in [23], there also exist
fixed points for which & # 0, but these solutions are on a
different footing from the £ = 0 solution. As was noted in
[20], at the two-loop level in the mMOM scheme, there is
also an IRFP with &,, = —3, and calculations at the three-
loop level exhibit an IRFP with &5, near to this value (see
also [79]). A list of the by, b 4, and ¢, for general &, with
1 <7 <3 in the mMOM scheme was given in [20] and
a list of the by, b; ¢, and ¢, for & = 0, i.e., Landau gauge,
with 1 < ¢ < 4 was given in [23] for the RI' and mMOM
schemes. We will also remark on the general case in which
£ is not necessarily zero. The corresponding expressions for
the b,, ¢, and b, are too long and complicated to include
here; they have been given, for example, as external files
with the arXiv version of [70]. An important difference
between the ¢, in the RI' scheme and the b, and ¢, in the
MOM schemes, as contrasted with the b, and ¢, in the MS
scheme is that in the non-MS schemes, these coefficients
depend on a number of additional mathematical functions
and constants. For example, as was discussed in [25], at the
four-loop level, in addition to the dependence on the group
invariants Cy, Cy, and T, the b, and ¢, in the MS, RT, and
mMOM schemes contain dependence on the quantities

{Q. &. &) (6.12)

For the following, note that {,, with even m = 2r are
proportional to 7%’

(=1)"*'B,,(27)*"

bor = 2(2r)! :

(6.13)

where the B, are the Bernoulli numbers, defined by

t - "
el —1 :ZB"n_!’

n=0

(6.14)

so listing 2 is equivalent to listing {,, etc. In contrast to
Eq. (6.12), even at the lower, three-loop level, b, and ¢, in
the other MOM schemes have a considerably more com-
plicated form, since they depend on the following set of
mathematical functions and constants:

{Q,ﬂz,é’3,7r4,1//(1/3),1//”’(1/3),sz(ﬂ/k),s3(7r/k),
z1n(3) zlIn(3)? ﬂ_3}
where here k takes the values k = 2 and k = 6; y/(s) is the

Euler y function, y(s)=dIn[[(s)]/ds, w'(s) = dy(s)/ds;
and s,(z) is defined as

(6.15)
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1 elz
s,(z2) =——=Im|Li,( — | |, 6.16
o meel) e
where Li,(z) is the polylogarithm function,
Li
Lin(z)z/””%(z)dr (6.17)
0

with Lig(z) =z/(1 —z) and Li;(z) = —1In(1 —z). For
|z] <1, this function has the series representation

~.

Liy(2) =) =.n=2.3, ...

; (6.18)

J=1

As noted above, the calculation of the coefficient d, in
Eq. (1.11) requires, as input, the #-loop coefficients b, with
1 <Z<n. The calculation of the coefficient «, in Eq. (1.8)
requires, as inputs, the values of the b, for 1 <7 <n+1,
and the Z-loop coefficients ¢, in Eq. (6.5) with 1 < 7 < n.

In addition to our explicit demonstration that different
schemes yield the same values for the coefficients d,, and x, in
the scheme-independent expansions (1.11) and (1.8), our
work shows that the full physical content of these scheme-
independent coefficients is derived from the use of the
simplest scheme, namely MS. Thus, there is a huge cancella-
tion of the additional mathematical functions and quantities in
(6.15) in the scheme-independent coefficients d,, and «,. On
the one hand, one may take the view that this had to be true,
since a rigorous proof was given already that these coef-
ficients are scheme-independent and their values were there-
fore already completely determined from the calculations in
[33-37] in the MS scheme. But nevertheless, our explicit
demonstration of the cancellation is quite a striking result.

VII. SCHEME-INDEPENDENT

The coefficients «,, in the scheme-independent expansion
of ¥4, 1r in powers of Ag, Eq. (1.8), were calculated for a
gauge group G with N, fermions in a representation R up to
n =3 1in [33] and up to n = 4 in [36,37]. [The coefficient
k, was calculated for G = SU(3) and R = F in [34].] For
example, the first two of these coefficients are

8C, T,
CA(7C4 + 11Cy)

K|y =

(7.1)

and

4C;TH(5C, +88C,)(TC, +4C;)
2= 3C3(1C, + 11C,)?

(7.2)

For the present work we have explicitly verified that we
obtain the same results for these x, using the RI', mMOM,
and other MOM schemes. We have carried out this check to
the highest order possible with existing inputs available in
these schemes, i.e., to order n = 3.

VIIL. SCHEME-INDEPENDENT
EXPANSION OF g,

The derivative fj; is an important physical quantity
characterizing the conformal field theory at oy . For general
gauge group G with N fermions in a general representa-
tion R, the scheme-independent coefficients d, were
calculated up to n =4 in [35] and up to n =75 in
[36,37]. The first two nonzero coefficients are

2572
dy = 8.1
27320, (7C, + 11Cy) (8.1)

and

2'T3(5C,4 + 3C

- BC(7C, + 11C5)

We have explicitly verified that we obtain the same results
for d,, with the RI', mMOM, and other MOM schemes. We
have carried out this check to the highest order possible
with existing inputs available in these schemes, i.e., to
order n = 4.

IX. CONCLUSIONS

In conclusion, in this paper we have presented the first
analytic scheme-independent expansions to O(A;-) for the
anomalous dimensions of a variety of (gauge-invariant)
baryon operators at an infrared fixed point of an asymp-
totically free SU(3) gauge theory with N fermions in the
fundamental (triplet) representation. Furthermore, for an
asymptotically free theory with a general gauge group G
and N, fermions in a general representation R of G, we
have given explicit illustrative demonstrations of the
scheme independence of yy,r and fj at an IRFP.
Although this scheme independence had been proved
rigorously earlier, it is worthwhile to see how different
schemes yield identical results for the coefficients in the
scheme-independent expansions. We have carried out these
calculations for the RI' and several MOM schemes.
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