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We report results on the quark spectral function in the Landau gauge at finite temperature, determined
from its Dyson-Schwinger equation. Compared to earlier quenched results, this study encompasses
unquenched Nf ¼ 2þ 1 fermion flavors in the medium. For the computation of real-time spectra, we
deploy the recent Bayesian Reconstruction (BR) method and develop a new prior in order to better assess
the inherent systematic uncertainties. We identify the quark quasiparticle spectrum and analyze the (non)
appearance of zero modes at or around the pseudocritical temperature. In both, the fully unquenched system
and a simpler truncation, using a model for the gluon propagator, we observe a characteristic two-peak
structure at zero three-momentum. The temperature dependence of these structures, in case of the gluon
propagator model, is different than observed in previous studies. For the back-coupled and unquenched
case, we find interesting modifications at and around the pseudocritical transition temperature.
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I. INTRODUCTION

The wealth of data produced in heavy ion collision
experiments at the Relativistic Heavy-Ion Collider and the
LHC has lead to interesting insights about the nature of the
quark-gluon plasma (QGP) in various temperature regimes
(see e.g., Refs. [1–5] and references therein). Thermal and
transport properties of the QGP are encoded in the
correlation functions of QCD. In particular, they can be
assessed from real-time properties of QCD’s most basic
correlation functions, the quark [6–14] and gluon propa-
gators [15–19]. A prominent example is the dilepton
production in a heavy ion collision. It can been related
to the spectral properties of thermalized quasiparticles and
specifically to the dispersion relation of quarks [20–24].
Another important example is QCD transport coefficients,
that have been expressed in terms of single particle spectral
functions of the fundamental fields, the quarks and gluons
[16,17]. In summary, a detailed understanding of a potential

quasiparticle spectrum in the QGP, in particular close to the
chiral phase transition, is highly desirable.
In this work, we focus on the quark spectral function

encoding the quark dispersion relation anddecaywidth in the
medium. At large temperatures, reliable results have been
obtained in the hard-thermal loop (HTL) expansion [25–27].
In this regime, the quark spectral function shows two
excitations in the dispersion relation, the ordinary quark
with a positive ratio of chirality to helicity and a collective
“plasmino” mode with a corresponding negative ratio. Both
have thermal masses of the order gT and decay widths of the
order g2T, where g is the coupling constant and T is the
temperature. The two excitations are accompanied by a
continuum contribution from a branch cut in the quark
propagator due to Landau damping, i.e., the absorption of
a spacelike quark by a hard gluon or hard antiquark.
Beyond systematic weak-coupling expansions, there is

no straightforward approach for the determination of the
spectral function. Model calculations offer qualitative
insights [8,28–30] which, however, need to be corroborated
in more fundamental approaches. Models for quark spectral
functions constructed along the lines of the HTL results
have been fitted to data from quenched lattice QCD [10,11]
and quenched Dyson-Schwinger calculations [6]. Again,
such an approach offers qualitative insights but suffers from
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potential biases involved in the model building. This holds
in particular for temperatures around the (pseudo)critical
one, where HTL is not expected to be reliable.
In principle, functional approaches like Dyson-Schwinger

equations (DSE) and the functional renormalization group
offer the possibility to determine the two-point correlators in
the complex momentum plane, thus allowing for a direct
extraction of the corresponding spectral function. This has
been performed successfully for the gluon propagator at zero
temperature in Ref. [15]. At finite temperatures, direct
computations in the complex frequency plane have been
carried out in matter systems; see e.g., Refs. [31–34].
However, the additional conceptual and numerical chal-
lenges have delayed similar direct analyses in QCD so far.
There are, however, approaches that allow us to extract

spectral functions from numerical data in the spatial
Euclidean momentum region. These approaches utilize
the fact that the spectrum is related to the Euclidean
correlator via an integral transform, which needs to be
inverted. This is a classic ill-posed inverse problem, and
Bayesian inference can be used to give meaning to it, by
systematically incorporating additional prior information
available. Among the different implementations of the
Bayesian reconstruction strategy is the popular Maximum
Entropy Method (MEM) [35–37], which originates in
two-dimensional image reconstruction. It has been
deployed for the study of quarks in cold and dense matter
[7] and quarks at and around the (pseudo)critical temper-
ature [12–14]. A method similar in spirit as the MEM but
instead using a quadratic regulator has been applied to
study gluon spectra in Ref. [18].
As has been discussed e.g., in Ref. [38], the MEM based

approaches have to deal with several issues. The main
difficulty is that of flat directions in the regulator functional
in case of positive definite spectra. In practice, this leads to
very slow convergence in case that a large number of data
points is supplied. The second point is related to the
weighting of data and prior information, which conven-
tionally is implemented via computing the so-called evi-
dence probability distribution. This step relies on a
Gaussian approximation, which in practice is difficult to
justify; see also Appendix C.
In order to overcome these and further difficulties, a

novel implementation of the Bayesian strategy has been
recently developed [38]. It is specifically designed for the
solution of one-dimensional inverse problems. Its gener-
alization to arbitrary spectra [39] has been applied for
extracting spectral properties of gluons at finite temperature
[19] in lattice QCD. In this study, we both deploy the
original BR method and develop in addition a new “low-
ringing” BR-type prior functional, which allows us to
unambiguously distinguish between peaked structures
present in the underlying correlator data and numerical
ringing artifacts (see e.g., the discussion in Ref. [40])
common to inverse problems (cf. the Gibbs phenomenon).

We apply our newmethod to temperature dependent quark
propagators obtained from two different truncation schemes
for the quark and gluonDSEs.On the one hand,we reanalyze
a model truncation for the gluon propagator and compare to
previous results [12–14]. In these works, a frequency zero
mode in the spectral function at zero spatial momentum has
been identified in addition to the two conventional symmetric
peaks at finite frequency. Due to the symmetry of the spectral
function, wewill nevertheless refer to such a constellation of
spectral features in the following as a two-peak structure and
plot spectra only in the positive frequency regime.
Since a zero mode does not appear in HTL studies, it

has been attributed to the strong interaction physics
governing the transition around the (pseudo)critical tem-
perature and signaling the formation of the quark-gluon
plasma. While the appearance of this low frequency
structure has been found to be robust under variations
within a class of truncation schemes using models for the
gluon [14], it remains to be seen whether this is also true
for the fully unquenched system. In this article, we
therefore study in addition a truncation based on
Refs. [6,41] to include results for the unquenched quark
propagator with Nf ¼ 2þ 1. This truncation offers direct
control over the Yang-Mills sector by explicitly taking
quark loop effects in the gluon propagator into account.
The resulting prediction for the unquenched gluon propa-
gator at finite temperature [41] has been shown to agree
with corresponding lattice results of Ref. [42].
Furthermore, the temperature dependence of the chiral
condensate evaluated on the lattice [43] has been repro-
duced. We therefore may expect realistic and quantitative
results for the spectral functions as well.
The article is organized as follows. In the next section,

we summarize the framework to determine the quark
propagator at finite temperature and chemical potential.
Since all technical details have been given elsewhere, see
Refs. [12–14] for the model gluon and Refs. [41,44–46] for
the unquenched system, we remain very brief. Section III is
devoted to the Bayesian BR method reconstruction and the
specific improvements we use in this work. Our results for
the quark spectral functions are presented and discussed in
Sec. IV. We conclude in Sec. V.

II. QUARK PROPAGATOR AT FINITE
TEMPERATURE AND CHEMICAL

POTENTIAL

A. Quark Dyson-Schwinger equation

In order to determine the quark propagator at finite
temperature and chemical potential, we work with the
Euclidean metric version of QCD and use the Matsubara
formalism. The renormalized quark Dyson-Schwinger
equation is then given by

S−1ðiωp; pÞ ¼ Z2S−10 ðiωp; pÞ þ Σðiωp; pÞ: ð1Þ
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Here, the inverse full quark propagator is denoted by
S−1ðiωp; pÞ, and its inverse bare counterpart is denoted
by S−10 ðiωp; pÞ. We follow the conventions of Ref. [6] and
explicitly use imaginary arguments for the energy in all
functions. The dependence of all functions on the renorm-
alization point is left implicit, and Z2 denotes the wave
function renormalization constant of the quark. The quark
Matsubara frequencies are given by ωp ¼ ð2np þ 1ÞπT
with temperature T. The Dirac structure of the inverse
propagators at finite T and baryochemical potential μ ¼ 0
can be decomposed via

S−10 ðiωp; pÞ ¼ iγ4ωp þ iγ · pþ Zmm;

S−1ðiωp; pÞ ¼ iγ4ωpCðiωp; jpjÞ þ iγ · pAðiωp; jpjÞ
þ Bðiωp; jpjÞ: ð2Þ

The dressing functions Aðiωp; jpjÞ, Bðiωp; jpjÞ and
Cðiωp; jpjÞ carry all nontrivial information on the quarks.
The quark mass renormalization constant ZmðΛ2Þ, the
renormalized mass mðΛ2Þ and Z2ðΛ2Þ at the renormaliza-
tion scaleΛ are determined within a momentum subtraction
(MOM) renormalization scheme. The explicit form of the
quark self-energy can be written as

Σðiωp; pÞ ¼
16π

3

Z2

Z̃3

αðΛÞT
X
nq

Z
d3q
ð2πÞ3 ½γμSðiωq; qÞ

× Γνðiωq; q; iωp; pÞDμνðiωp − iωq; p − qÞ�;
ð3Þ

with (Landau gauge) gluon propagator Dμν, quark-gluon
vertex Γν, gauge coupling α and ghost renormalization
constant Z̃3.
In order to determine the quark propagator self-

consistently from its DSE (see Fig. 1), we also need to
specify the dressed gluon propagator and the dressed
quark-gluon vertex. The truncation used in this work has
been developed over the past years [41,44,45,47,48] and is
guided by two main ideas. First, lattice results for the
temperature dependent quenched gluon propagator are
used as external input [48,49] and unquenched via adding
an explicit quark loop for each of the Nf ¼ 2þ 1 quark
flavors used in this work. The resulting DSE for the gluon
propagator is depicted in Fig. 2.
This approach ensures that the unquenched gluon

propagator inherits the leading order temperature and
chemical potential effects via the quark loops, giving a

contribution to the thermal mass. Second order unquench-
ing effects in the Yang-Mills diagrams are neglected. The
second element of our truncation is an approximation for
the full quark-gluon vertex, which combines information
from the well-known perturbative behavior at large
momenta and an approximate form of the Slavnov-
Taylor identity at small momenta studied long ago by
Ball and Chiu [50]. The explicit form of this approximate
expression for the vertex is discussed in Refs. [41,45,48]
and shall not be repeated here for brevity.
A much simpler system in terms of numerical effort is

obtained by substituting the dressed gluon propagator in the
quark DSE by a model together with a bare quark-gluon
vertex. Taking into account a Debye-like mass in the
longitudinal gluon, this reads ðk ¼ q − pÞ

g2Dμνðiωk; kÞΓνðiωq; q; iωp; pÞ
¼ ½PT

μνDTðω2
k; k

2Þ þ PL
μνDLðω2

k; k
2Þ�γν; ð4Þ

with PT;L
μν the transverse and longitudinal projection oper-

ators with respect to the heat bath. The dressing functions
are given by

DT ¼ Dðk2 þ ω2
kÞ; DL ¼ Dðk2 þ ω2

k þm2
gÞ; ð5Þ

where the functions

DðsÞ ¼ 8π2D
σ4

e−s=σ
2 þ 8π2γm

ln½τ þ ð1þ s=Λ2
QCDÞ2�

F ðsÞ ð6Þ

are defined with F ðsÞ ¼ ½1 − expð−s=4m2
t Þ�=s, τ ¼

e2 − 1, mt¼0.5GeV, γm¼12=25 and ΛQCD¼0.234GeV.
With σD ¼ ð0.8 GeVÞ3, we choose σ ¼ 0.5 as a represen-
tative value for the model parameters. This is one (the
simplest) example of a class of truncation schemes that have
been studied in Ref. [14] and found to agree qualitatively
with each other in the resulting spectral functions for the
quarks.As explained in the introduction,weuse thismodel as
a numerically easily accessible reference, which already
displays an interesting two-peak structure in the resulting
spectral functions.

=
−1

+ 2
−1

+

s

u/d

FIG. 2. The truncated gluon Dyson-Schwinger equation. The
yellow dot represents input from quenched lattice QCD, whereas
the dressed quark propagators in the quark loop are calculated
self-consistently from the quark DSE.

−1
+=

1−

FIG. 1. The quark Dyson-Schwinger equation. Dressed propa-
gators and vertices are denoted by large filled dots.

BAYESIAN ANALYSIS OF QUARK SPECTRAL … PHYS. REV. D 98, 014009 (2018)

014009-3



B. Quark spectral functions and representation

The spectral representation of the quark propagator is
given by

Sðiωp; pÞ ¼
Z∞

−∞

dω0

2π

ρðω0; pÞ
iωp − ω0 ; ð7Þ

with spectral function ρðω; pÞ parametrized as

ρðω; pÞ ¼ 2πðρ4ðω; jpjÞγ4 þ ρvðω; jpjÞðiγ · pÞ=jpj
− ρsðω; jpjÞÞ: ð8Þ

Similarly to Ref. [6], we choose conventions such that the
scalar dressing functions themselves agree with those
introduced by corresponding lattice studies [11]. With a
positive definite metric, which is not the case for gauge-
fixed QCD, the components of the spectral function would
furthermore obey the inequality

ρ4ðω; jpjÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρvðω; jpjÞ2 þ ρsðω; jpjÞ2

q
≥ 0 ð9Þ

as well as the standard sum rule

Z2

Z∞

−∞

dωρ4ðω; jpjÞ ¼ 1; ð10aÞ

with wave function renormalization constant Z2. The vector
and scalar spectral functions, ρv, ρs, sum up to zero and
hence are necessarily negative for some momentum regime,

Z∞

−∞

dωρvðω; jpjÞ ¼ 0;
Z∞

−∞

dωρsðω; jpjÞ ¼ 0: ð10bÞ

Using specific projection operators for the chirally symmet-
ric and/or static (jpj ¼ 0) case, one can define positive
semidefinite combinations of ρ4, ρv and ρs using Eq. (9);
see e.g., Ref. [6] for details. In this first study, here,we restrict
ourselves to the reconstruction of the componentρ4 only. The
corresponding left-hand side of Eq. (7) is then also given by
the γ4 component of the quark propagator, i.e.,

S4ðiωp; jpjÞ

¼ iωpCðωp; jpjÞ
ω2
pCðωp; jpjÞ2 þ p2Aðωp; jpjÞ2 þ Bðωp; jpjÞ2

: ð11Þ

This component has the advantage of being antisymmetric in
ωp and the corresponding part of the spectral function being
symmetric in ω, which means that we may restrict ourselves
inEq. (7) to positive frequencies and arrive, usingEq. (8), at a
purely imaginary kernel,

S4ðiωp; pÞ ¼ i
Z∞

0

dω0 2ωpρ4ðω0; pÞ
ω2
p þ ω02 ; ð12Þ

which is easily implemented numerically for the spectral
reconstruction; i.e., we will directly formulate the inverse
problem in imaginary frequency space, since the rational
kernel in Eq. (12) suppresses spectral information much less
than its Euclidean counterpart and thus is ideally suited for
use in spectral reconstructions.

III. BAYESIAN SPECTRAL RECONSTRUCTION

A. Bayesian inference

In this study, we use the concept of Bayesian inference
to invert the relation of Eq. (12) numerically. The quark
two-point function S4 is evaluated along discretized
imaginary frequencies ωp with p ∈ ½1…Ndata�, while
the spectral function is resolved along Nω bins in real-
time frequencies ω0

l,

−iS4ðiωpÞ ¼
XNω

l¼1

2ωp

ω2
p þ ω02

l

ρl: ð13Þ

The data here are obtained from a functional QCD
computation. Thus they can be evaluated at an arbitrary
number of points Ndata but contain a finite numerical error
ΔS4 due to the evaluation of intermediate integrals in e.g.,
Eq. (3). Therefore, for any finite Ndata and ΔS4, a naive χ2
fit of the Nω parameters ρl would lead to an infinite
number of degenerate solutions, all reproducing the data
within their uncertainty. Bayesian inference in the form of
Bayes theorem,

P½ρjS4; I� ¼
P½S4jρ; I�P½ρjI�

P½S4jI�
; ð14Þ

provides a systematic prescription of how to regularize the
otherwise underdetermined χ2 fit. It does so by incorpo-
rating additional prior information I on the spectrum, in
addition to the correlator data S4. The posterior P½ρjS4; I�
for a test function ρ denotes its probability to be the
correct spectrum, given the computed data and prior
information. It is proportional to the likelihood probability
P½S4jρ; I� and the prior probability P½ρjI�.
The former encodes how the correlator has been obtained

and in case of stochastically independent sampled data is
related to the standard χ2 fitting functional

P½S4jρ; I� ¼ exp½−L�; ð15Þ

with likelihood
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L ¼ 1

2

XNdata

p;q¼1

ðS4ðiωpÞ − Sρ4ðiωpÞÞ

× C−1
pqðS4ðiωqÞ − Sρ4ðiωqÞÞ: ð16Þ

Here, Sρ4ðiωpÞ denotes the correlator according to the current
choice of test function via Eq. (13), andCpq is the covariance
matrix of the actual correlator data S4. Note that we have
formulated the inverse problem in the imaginary frequency
domain and not based on Euclidean data. The reason is that
the exponentially damped integral kernel and the informa-
tion loss associated with it lead to much worse reconstruction
results than the rational Källen-Lehmann kernel used here
(for an explicit demonstration, see Refs. [39,51]). Note also
that in the case of the Euclidean kernel it was found that in
order to compute the propagator from a test spectral function
ρ with high accuracy one needs to deploy a logarithmic
frequency grid [52].
Since furthermore in our case the correlator is computed

and not sampled, we will assign an estimated diagonal
covariance matrix to the discrete S4 with constant relative
errors ΔS4=S4 ¼ const: L½ρ� possesses many flat direc-
tions, which translate into the nonuniqueness of the
maximum likelihood χ2 approach.
The second and decisive term in the numerator of Eq. (14)

is the prior probability, which acts as a regulator to the
likelihood probability, lifting the flat directions of L. It tells
us how compatible the test function ρ is with available prior
information. Conventionally, it is expressed as

P½ρjI� ¼ exp½αS½ρ; m��; ð17Þ

where α represents a so-called hyperparameter, which
weighs the influence of the data versus the prior. Prior
information is encoded inP½ρjI� in twoways, on the one hand
via the functional formof S itself and via the so-called default
model mðωÞ, which by definition is the most probable
spectrum in the absence of data; i.e., it represents the unique
extremum of S½ρ; m�.
Different implementations of the Bayesian strategy differ

not only in the regulator S, which they employ, but also in
how the hyperparameter α is treated, as well as how the
most probable spectrum

δP½ρjS4; I�
δρl

����
ρ¼ρBayes

¼ 0 ð18Þ

is determined numerically. Note that different Bayesian
prescriptions can yield different results, as long as Ndata
and ΔS4 are finite. Only in the “Bayesian continuum
limit,” all methods, if implemented correctly, must con-
verge to the same result. It is therefore important to test
how reconstructions change toward this limit using e.g.,
mock data tests.

In this study, we will work with quarks at high temper-
ature, where the spectral functions are assumed to be
positive definite, a property which in turn will enter as
prior information.
The popular Maximum Entropy Method for positive

definite spectra proposes using the Shannon–Jaynes
entropy as regulator, a choice justified by arguments from
two-dimensional image reconstruction,

SSJ ¼
Z

dω

�
ρ −m − ρ log

�
ρ

m

��
: ð19Þ

One carries out the reconstruction multiple times with
different values of α and then averages these intermediate
results ρα self-consistently over a probability distribution
for α, P½αjS4; I�. In the standard implementation by Bryan,
the functional space, from which the test function ρ is
chosen, is manually limited to a dimensionality of Ndata. It
has been shown that the extremum of P½ρjS4; I� in general is
not contained in this choice of search space [53], which
may result in slow convergence. In addition, the determi-
nation of P½αjS4; I� relies on a Gaussian approximation (see
also the discussion in Appendix C).
In this study, we instead use a more recent Bayesian

approach to spectral function reconstruction that has been
developed with the one-dimensional inverse problem of
Eq. (13) in mind. Its regulator functional reads

SBR ¼
Z

dω

�
1 −

ρðωÞ
mðωÞ þ log

�
ρðωÞ
mðωÞ

��
: ð20Þ

The hyperparameter α is treated in a Bayesian fashion, in
that we assume full ignorance of its values P½α� ¼ 1 and
integrate it out a priori,

P½ρjS4; IðmÞ� ¼ P½S4jI�
Z

∞

0

dαP½ρjIðα; mÞ�: ð21Þ

In addition, we also require that L ¼ Ndata as the correct
spectrum, on average, would lead to such a value. The most
probable spectrum is then obtained from carrying out a
numerical optimization on P½ρjS4; IðmÞ� according to
Eq. (18). In contrast to the MEM, we do not restrict the
search space and use a pseudo-Newton method (limited
Broyden-Fletcher-Goldfarb-Shanno) to find the global
extremum in the full Nω dimensional search space.
The regulator SBR was derived with the goal being to keep

its influence on the outcome of the reconstruction to a
minimum; i.e., it shall influence the reconstruction as weakly
as possible and “let the data speak.” Comparing SBR to SSJ or
the quadratic prior, one finds that far away from the
extremum ρ ¼ m, SBR shows the weakest curvature.
While this makes it easy for structures encoded in the data
to manifest themselves in the reconstruction, it also means
that common artifacts associated with inverse problems,
such as Gibbs ringing, are only weakly suppressed.
In turn, if the structures of physical interest are spectral

peaks, as will be the case in the following, we have to make
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sure that we unambiguously distinguish ringing from
genuine features. Due to its restricted search space, the
MEM usually produces smooth features, and it is consid-
ered safe from ringing. This impression is unfortunately
incorrect on the level of the regulator as illustrated in Fig. 3.
For a flat default model m ¼ 1, we compare the penalty
assigned to a function ρmock with a single broad feature, as
well as a similar function with an additional wiggle close to
its peak ρtest. The area under both spectra has been kept the
same. What one finds is that SBR and SSJ assign a lower
penalty to the distorted curve, even though the former was
explicitly derived with a smoothness axiom. What distin-
guishes the two curves is of course their arc length, which
increases for every additional wiggly structure.
Hence, we introduce a new BR-type regulator, which

penalizes arc length l ¼ R
dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdρ=dωÞ2

p
explicitly.

In order to leave as much of the original form of SBR intact,
we add a l2 term for both the spectrum and default model
and subtract unity.1 The result is

Ssmooth
BR ¼

Z
dω

�
−γ

�
dρðωÞ
dω

−
dmðωÞ
dω

�
2

þ 1 −
ρðωÞ
mðωÞ þ log

�
ρðωÞ
mðωÞ

��
: ð22Þ

The new hyperparameter γ reflects the freedom we have to
adjust the influence of the penalty term in addition to
setting the overall strength of the prior information,
weighted against data via α. In this study, we will use
the following strategy to set γ: As the intent of introducing
the additional penalty term is to remove ringing artifacts,
and we reduce to the standard BRmethod in the case γ ¼ 0,
we will carry out mock data analyses with a realistic mock
spectrum (see Sec. III B) and select the lowest value of γ for
which artificial ringing is completely suppressed. This
strategy of using mock training data to select a hyper-
parameter is similar to those used in inference via super-
vised machine learning. From our mock data tests, we find
γ ¼ 1

2
to be appropriate.

In the presence of the derivative term, we are not any
more able to analytically compute the α dependent nor-
malization of the prior probability and thus cannot mar-
ginalize α, as in done in Eq. (21). Thus, we revert to
handling α in the same way as in the “historic MEM”
prescription, in which one adjusts α in order that
ðL − NdataÞ < 10−1.
As we will see also explicitly in the mock data test in the

following section, this new regulator with γ ¼ 1
2
succeeds in

efficiently suppressing ringing artifacts. At the same time,
peaks encoded in the correlator become more washed out,
and it requires more data points and smaller errors to
resolve these peaks to the same accuracy as with the
original BR method. Hence, our strategy is the following.
Using the smoothening prior, we will identify in which part
of the spectrum actual peak structures reside and then
extract their features using the standard BR approach.
The reliability of the reconstruction can be estimated in

three different ways. Since in Bayes’s theorem in Eq. (14)
data and prior information enter, we need to understand the
dependence of the reconstruction result on that input. For
the former, we can vary the number of provided data points
and carry out a bootstrap jackknife resampling analysis of
the correlator. Since here we do not use sampled data, we
will instead successively lower the assigned error on the
data and observe convergence toward the Bayesian con-
tinuum limit. The dependence on the prior can be estimated
by repeating the reconstructions with different choices of
the default model, for which we choose a flat function
mðωÞ ¼ m0 and vary m0 ¼ f0.1; 0.5; 1.0; 5.0; 10g.
Bayesian methods also provide another measure for the

robustness of the reconstruction

hδρ2iI ≈ −
Z
I
dωdω0ðδ2Q=δρ2Þ−1=

Z
I
dωdω0; ð23Þ

based on the curvature of the optimization functional
Q½ρ; S4; I� ¼ Log½P½ρjS4; I��. In previous works, it has
been found that the actual dependence on the variation
of data and prior information is often larger than indicated
by this quantity. One possible reason for this discrepancy is

FIG. 3. Illustration of the susceptibility of the regulators SBR
and SSJ on ringing artifacts. If a mock spectrum ρmock (dark blue)
contains a broad feature, then introducing a small wiggle leads
actually to a smaller penalty.

1This naive extension of the standard BR method actually
violates the axiom of scale invariance, which, however, may be
recovered by introducing a further default model related
function hðωÞ, which encodes the uncertainty in the derivative
of the default model, similar to the case of the generalized BR
method [39].
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the need for two assumptions in the derivation of Eq. (23),
namely that the posterior is both highly peaked and may be
approximated by a Gaussian. In the following, we will
show error bands for the BR method that are obtained from
the variation of the default model and the curvature
measure, where the former dominates.

B. Mock data tests

Previous studies [13] deploying a MEM-type approach
hinted at the presence of two-peak structures at positive
frequencies in the quark spectral function in the Landau
gauge at finite temperature. One of the peaks resides at the
origin, one at a distance from the origin significantly larger
than its width. On the other hand, it is was not excluded that
further peaked features may be present. Therefore, we must
ascertain how well our reconstruction method will be able
to resolve different structures given a certain quality of
input data, for which we turn to a mock data analysis.
In the following, we compute the Euclidean frequency

correlator S4 according to Eq. (7) based on mock spectra
with different peak contents. This continuous function is
then evaluated at Nmock

data ¼ 128 discretely spaced imaginary
frequencies between ωp ∈ ½0; 8� GeV. These ideal data are
fed to the reconstruction algorithm undistorted but are
assigned a constant relative error ΔD=D. Increasing the
number of data points beyond 128 has not shown signifi-
cant improvements down to ΔD=D ¼ 10−8.
By successively lowering ΔD=D, we have investigated

the approach to the Bayesian continuum limit for fixed
Ndata as explicitly shown in Appendix A. In the following,
wewill showcase only two of these reconstructions for each
mock spectrum, which are relevant for the discussion. One
is the best possible outcome using a particular Bayesian
implementation, i.e., using a very small ΔD=D ¼ 10−8.
The other is the realistic case ΔD=D ¼ 10−3, which
corresponds to the precision easily obtainable in realistic
Dyson-Schwinger computations [52].
As a first step, let us have a look at a two-peak scenario

with one structure located at the origin and a second at
ω ¼ 2 GeV, as shown by the grey curve in Fig. 4. The two
solid curves of different brightness show the reconstruc-
tions based on either the smoothed BR method (top) or its
original implementation (bottom). The darker curve cor-
responds to the error ΔD=D ¼ 10−3, and the lightest color
corresponds to ΔD=D ¼ 10−8. The light colored bands
around the curves refer to the corresponding dependence on
the choice of the prior.
We find that already at ΔD=D ¼ 10−3 the shape of the

peak at the origin is very well reproduced. The smooth BR
method shows only minute deviations from the actual
functional form up to ω ¼ 0.2 GeV, while the standard
BR method still exhibits some ringing artifacts. In addition,
the position of the second peak is reproduced accurately
within 15%–20% for both variants of the BR method. The

width, as expected, is overestimated in both cases, and the
effect is stronger by construction for the smooth BR
method.
It is evident that lowering the errors consistently

improves the reconstruction of both the position and width
of the second peak. At ΔD=D ¼ 10−8, both methods
reproduce faithfully the position also of the second peak;
at the same time, also the estimation of the width improves
significantly. With such high precision data, none of the
two methods shows any ringing artifacts.
We continue with a more challenging scenario, where

one of the peaks is split into two structures. In particular,
here, we consider the emergence of an additional structure
close to the origin. If the peak at large frequencies is well
separated from these, then again neither the conventional
nor the smooth BR method is challenged in identifying the
three structures as seen by the results of Fig. 5. Of course,

FIG. 4. Mock data analysis of reconstruction reliability for a
two-peak scenario (grey dashed). Both the results for the smooth
BR (top) as well as the original BR (bottom) method are shown.
The dark curve denotes realistic errors ΔD=D ¼ 10−3, while the
light curve denotes the close to optimal result for ΔD=D ¼ 10−8.
Already at ΔD=D ¼ 10−3, the lowest peak is very well repro-
duced by the smooth BR method, while the standard BR shows
some ringing artifacts. The position of the second peak is
estimated within 15%–20% of the correct value. At
ΔD=D ¼ 10−8, both methods are devoid of ringing artifacts,
and the position of the second peak is faithfully reproduced.
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even though at ΔD=D ¼ 10−3 its presence is detected, a
quantitative determination of the features of the third peak
requires much smaller data uncertainty.
An even more difficult scenario for any Bayesian

reconstruction arises in the presence of an additional peak
positioned closely to the one off the origin. Here, close is
understood as a distance which is comparable to the width
of the peaks, as shown in Fig. 6 (grey dashed). Both
methods struggle to identify the split between the two peaks
even at optimal conditions ΔD=D ¼ 10−7. On the other
hand, it is important to note that the reconstructions of the
two different methods show qualitatively different behavior
in contrast to all previous scenarios. While before the
shapes of the peaks in both the conventional and smooth
BR methods agreed, here we see that at ΔD=D ¼ 10−7 the
original BR method starts to show a distorted peak.
Let us summarize the findings of the preceding section.

Our goal in introducing a smooth BR method was to enable
the identification of ringing artifacts in the standard BR
method. We find in the mock analysis that this goal is
achieved, as the former exhibits no sign of artificial
wiggles. At the same time, both methods are able to

identify the presence of peaks, as long as they are separated
by more than twice their width. For more closely situated
structures, even going to unrealistic conditions, such as
ΔD=D ¼ 10−7, does not provide a satisfactory resolution.
In practice, as detailed in the next section, we find neither
signs of numerical ringing artifacts nor any indications of
the presence of a third peak in our spectra reconstructed
with the standard BR method.
Quantitative estimates of spectral features will in the

following always be carried out by the standard BR
method, after having made sure via the smooth BR
method that the peak structure in question is not a ringing
artifact. For realistic data i.e., ΔD=D ∼ 10−3, we find that
the BR method will allow us to extract the peak position
with up to around 15%–20% uncertainty, while peak
heights are more difficult to estimate with 30%–50%
uncertainty. Additional comparison with data manually
made more sparse will tell us how much of the observed
temperature dependence of spectral features is attributable
to the medium and how much again has to be understood
as a methods artifact.

FIG. 5. Mock data analysis of reconstruction reliability for a
three-peak scenario (grey dashed) with two peaks closely
positioned off the origin. Both the results for the smooth BR
(top) as well as the original BR (bottom) method are shown.The
dark curve denotes realistic errors ΔD=D ¼ 10−3, while the light
curve denotes the close to optimal result for ΔD=D ¼ 10−8.

FIG. 6. Mock data analysis of reconstruction reliability for a
three-peak scenario (grey dashed) with two peaks closely
positioned off the origin. Both the result for the smooth
BR (top) as well as the original BR (bottom) method are shown.
The dark curve denotes realistic errors ΔD=D ¼ 10−3, while the
light curve denotes the close to optimal result for ΔD=D ¼ 10−7.
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IV. RESULTS

In this section, we apply the previously tested Bayesian
approaches to actual correlator data S4 obtained from
Dyson-Schwinger computations. We first reanalyze the
rainbow-ladder model approach described at the end of
Sec. II A. In this simple truncation, the determination of the
correlator is computationally cheap, and numerical errors
are easily reduced to ΔD=D < 10−3. Subsequently, we
discuss our main results based on the truncation scheme
with Nf ¼ 2þ 1 unquenched light flavors, back coupled to
the Yang-Mills sector.

A. Rainbow-ladder truncation

1. Chiral limit

Let us first discuss the case of the chiral limit, which
generates a second order phase transition at a critical
temperature of Tc ¼ 0.142 GeV. We have evaluated the
corresponding S4 alongMatsubara frequencies at 12 temper-
atures above Tc in the range of T ∈ ½0.15; 0.60� GeV. Due
to the used cutoff Λ ¼ 100 GeV and the discrete nature of
the Matsubara frequencies, this corresponds to Ndata ∈
½106; 27�. The correlator computations have been checked
to carry a numerical error of less than ΔD=D ≤ 10−3, so we
can assign a corresponding diagonal correlation matrix to it.
The imaginary frequency dependence of S4 at vanishing
spatial momentum is plotted in Fig. 7.
We deploy the conventional and smooth BRmethod with

a frequency discretization ofNω ¼ 1000 in the interval ω ∈
½0; 20� for reconstructing the quark spectral function. The
default model is set to a constantmðωÞ ¼ m0, and we carry
out the reconstruction with the different choices m0 ¼
f0.1; 0.5; 1.0; 5.0; 10g. The variance in the outcome is

taken as the basis for the error bands depicted in the
subsequently shown plots.
Our intention in using two different Bayesian methods is

to cross-check that the peak structures observed with the
standard BR method are indeed physical and not related
to numerical ringing. In the following, we will therefore
first discuss representative reconstructions for both of the
algorithms and, if no signs of ringing are encountered,
remain with the standard BR method, as it allows us to
more accurately extract the properties, such as the position
and weight of individual spectral features.
In Fig. 8, we present the zero momentum reconstruction

of the quark spectral function for different temperatures.
Note that since we explicitly use the symmetry of the
spectral function in Eq. (12) the position of the peak at
positive frequency ωþ is mirrored exactly in the negative
frequency domain. In the following, it is therefore sufficient
to discuss the positive frequency regime only.
In the top panel, the outcome of the smooth BR method

is shown, while the bottom panel corresponds to the
conventional one. Note that there are no signs of numerical
ringing present and the number of peaks agrees between the

FIG. 7. Zero momentum imaginary frequency quark correlator
in the chiral limit at finite temperature from the rainbow-ladder
truncation. Above ωp > 30 GeV, all correlators already lie very
close to the T ¼ 0 curve. Numerical errors are smaller than the
data-point markers.

FIG. 8. Zero momentum reconstruction of the quark spectral
function in the chiral limit at finite temperature using the smooth
BR (top) and the original BR (bottom) method. Both methods
show a clear indication for the presence of two-peak structures at
low temperature. The structure at the origin weakens with
increasing T, as does the higher lying peak, while also shifting.
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two methods. We learn that at low temperatures at least up
to T ≲ 0.25 GeV two well-defined peak structures exist.
One is located at the origin, and one above 1 GeV. With
increasing temperature, the height of the low lying peak
decreases continuously and seems to asymptote to a finite
value. The higher lying peak shows a clear tendency to
move to higher frequencies, while broadening at the same
time.
The reconstructions at different temperatures are based

on a data set with different Ndata. Thus, before we continue
to a more quantitative inspection of the spectra, we need to
make sure that, using the standard BR method, we can
disentangle the actual in-medium modification from the
effects of a reduction of data points. To this end, we
perform the following test: We take the lowest temperature
data set with Ndata ¼ 106 in imaginary frequencies and
make it more sparse by hand. Due to the discrete nature of
the Matsubara frequencies, this corresponds to a situation
where the T ¼ 0.15 GeV spectrum would be encoded in
a correlator evaluated at T ¼ 0.3 GeV or T ¼ 0.6 GeV
respectively. In Euclidean time, this corresponds to con-
structing the appropriate reconstructed correlator [54].
From similar tests performed in previous Bayesian studies,
we expect that with the decreasing number of data points
the resolution of peaks diminishes, eventually inducing
changes in the position and width of the reconstructed
features.
And indeed, as shown in Fig. 9, we find that going from

Ndata ¼ 106 to Ndata ¼ 53 (dark grey dashed) leads to a
visibleweakening of the peak structures, while their position
remains unaffected. Comparing to the reconstruction from
actual T ¼ 0.3 GeV with the same lower number of data

points (green solid), however, shows clear differences. Both
the diminishing of the lowest lying peak height as well as the
shifting of the second peak to higher frequencies can thus be
attributed to genuine in-medium effects. Interestingly, the
direction of change in the peak position is opposite to that
sketched in Refs. [13,14]. At T ¼ 0.6 GeV, i.e.,Ndata ¼ 26,
the data made more sparse do not allow the reconstruction of
the two peaks at all, and we must assume that the
reconstruction is not trustworthy at this point.
The investigation of the effects of finite momentum on

the quarks does not suffer from a similar ambiguity,
since for fixed T neither the number of data points nor
the relative errors change. In Fig. 10, we show recon-
structed spectra at T ¼ 150 MeV over a range of momenta
jpj=T ¼ f0; 1

2
; 1; 3

2
; 2; 5

2
; 3g.

As seen before at low temperature, both reconstruction
approaches unambiguously show the presence of two
peaks. One is located around the origin, and another one

FIG. 9. Test of the reliability of the standard BR reconstruction
at different temperatures based on the correlator manually made
more sparse at T ¼ 0.15 GeV. Using only every second data
point of the original Ndata ¼ 106 leads to diminished peak heights
(dark grey) but does not influence peak positions. When made
more sparse to every fourth, the Bayesian method does not
recover the peaks satisfactorily anymore (light grey). Nonethe-
less, clear in-medium modification at T > 0.15 GeV is observed.

FIG. 10. Low temperature T ¼ 0.15 GeV reconstructions of
the quark spectral function at different momenta using the smooth
BR (top) and the original BR (bottom) method. We find clear
indications of a two-peak structure. Both peak heights decrease
for larger momenta; the one close to the origin decreases,
however, much more rapidly. A shift of the second peak to
higher frequencies is observed.
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is positioned close to ω ≈ 1 GeV. Increasing the momen-
tum to jpj=T ¼ 3 induces changes in the spectrum that are
of the same qualitative nature as those from increasing
temperature. The peak at the origin decreases significantly
in area, while not extending further toward higher ω. The
second peak diminishes much more weakly and is seen to
shift to higher frequencies, as expected from the naive
momentum dependence of the dispersion relation.
For visualization purposes, we present in Fig. 11 the

reconstructions at a fixed intermediate momentum jpj=T ¼
1 (top) and jpj=T ¼ 3 (bottom) for all different temper-
atures investigated. All the effects on the peak around the
origin as well as the second peak at finite frequencies as
discussed above are clearly visible here.
We continue with a quantitative analysis of the in-

medium modification of the quark spectral features. Two
quantities of interest here are the position of the higher
lying peak, denoted with ωþ, and the height of the peak
around the origin, referred to as Z0. Both are shown in

Fig. 12. For ωþ, the expectation from resummed hard-
thermal loop perturbation theory at small jpj=T ≪ 1 is a

linear dependence on the temperature ωHTL
� ¼ mT � jpj

3

with thermal quark mass mT ∝ T. While at low temper-
atures and small momenta we see a rise stronger than linear,
at intermediate T, our ωþ indeed shows a behavior
compatible with a linear increase. Consistent with our
conclusions from the test based on input data that was
manually made more sparse, for temperatures much higher
than T ¼ 0.3 GeV, the reconstruction becomes unreliable,
and at the same time, we see that the linear rise abates and
goes over to a constant.
The behavior found here is again different from that

presented in Ref. [14]. First, we find that the peak at
nonzero frequency ωþ monotonously moves to larger
frequencies with increasing temperature in contrast with
the previously reported behavior, where the function ωþðTÞ
shows a minimum shortly above Tc. The second difference
is related to the height of the zero frequency peak, which in
the temperature range investigated does not go to zero but
stays finite. Since the high temperature regime is not
reliably captured due to the sparseness of the Matsubara

FIG. 11. Intermediate momentum jpj=T ¼ 1 (top) and jpj=T ¼
3 (bottom) reconstructions of the quark spectral function at
different temperatures using the original BR method. The
characteristic decrease in the peak height around the origin as
well as the shift and broadening of the higher lying peak structure
is clearly visible.

FIG. 12. (Top) position of the higher lying peak for different
temperatures and momenta. At intermediate temperatures, where
the reconstruction is reliable, we find a linear rise, which flattens
off, once the number of data points becomes too small. (Bottom)
Amplitude of the lowest lying peak, which we find to decrease
monotonously.
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frequencies, we cannot yet conclude whether it eventually
vanishes after all.
In all quantitative statements, we need to keep in mind

that our current numerical precision for the correlator data
is limited to ΔD=D ¼ 10−3. While we are confident,
judging from the mock data tests, that the number of peaks
and the direction of changes with temperature are correctly
captured, it is fathomable that the peak position may still
change by up to 20% if the errors are further reduced. The
width of the peaks carries at least the same uncertainty at
this point along the Bayesian continuum limit.
Another word of caution is in order regarding the

quantitative determination of the peak height. While peak
positions are among the most robust features to reconstruct,
the peak height stills shows a significant variation comparing
e.g., the standard and smooth BR outcomes in Fig 14. From
our mock data analysis, we understand that the smooth BR
method consistently underestimates the peak height, while
the standard method works rather well at determining this
spectral property even in a realistic scenario with ΔD=D ¼
10−3 (at least for the lowest lying structure at ω ¼ 0). We
further see in Fig. 9 that, while the change in available data
points in Fig. 9 leads to a significant change in the peak
height, the majority of the observed effect still may be
attributed to thermal effects. The uncertainties could be
significantly reduced by instead considering the area under
the spectral peak, which we found shows more consistency
between the different Bayesian methods than the peak
height alone.

2. Finite mass case

We proceed with a second set of correlators S4, for which
the current quark mass has been set to mq ¼ 3.7 MeV at a

renormalization point of 19 GeV. Here, we restrict our-
selves to the p ¼ 0 case. The question to answer is how the
spectral structures differ in contrast to the chiral case. We
use the same temperature regime and discretization of the
correlator data and leave the errors unchanged. The
imaginary frequency dependence of S4 in the finite mass
case at vanishing spatial momentum is displayed in Fig. 13.
The results for the zero momentum spectral reconstruc-

tions at different temperature are given in Fig. 14, with the
smooth BR method in the top panel and the conventional
one in the bottom one. Qualitatively, the figures are very
similar to the results in the chiral case. There exist two
peaks, one at the origin and one above 1 GeV. The position
of the second peak moves to higher frequencies as the
temperature increases, while the height of the lowest lying
peak decreases continuously. The only visible difference is
that at low temperature the height of the peak around the
origin is discernibly smaller than in the chiral case.
We again checked that the changes between the outcome at

different temperatures are indeed attributable to in-medium
effects bymanually coarsening theT ¼ 0.15 GeV correlator
data and repeating the reconstruction with it. The results of
this procedure are similar to the ones in the quenched case:

FIG. 13. Zero momentum imaginary frequency quark correlator
at finite mass and finite temperature from the rainbow-ladder
truncation. Above ωp > 30 GeV, all correlators already lie very
close to the T ¼ 0 curve. Numerical errors are smaller than the
data-point markers.

FIG. 14. Zero momentum reconstruction of the quark spectral
function at finite mass and finite temperature using the smooth BR
(top) and the original BR (bottom) methods. We find qualitatively
the same behavior as in the chiral case, the main difference being
the height of the lowest lying peak at low temperature.
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The deletion of every second data point, i.e., Ndata ¼ 56,
weakens the peak strength while leaving the peak position
unaffected. The reconstruction based on only every fourth
data point corresponding to the situation at T ¼ 0.6 GeV
fails to identify the encoded two-peak structure and is
therefore deemed not trustworthy.
Just as in the chiral case, we determine the position of the

second peak ωþ and the height of the peak around the
origin Z0, shown in the top and bottom panels of Fig. 15
respectively.2 As is to be expected from the close resem-
blance of the reconstructed spectra, the values obtained do
not differ markedly between the finite mass (triangle) and
the chiral (circle) case. The only differences are found at
low temperatures. The values of ωþ for finite mass actually
show a linear behavior down to T ¼ 0.15 GeV, whereas in
the chiral case, they deviate from a straight line at that

point. Z0 is smaller at low temperatures in the presence of a
finite quark mass, but already at T ¼ 0.2 GeV, no signifi-
cant difference remains.

B. Unquenched truncation with back-coupled
Nf = 2 + 1 quark flavors

Our main result concerns the quark spectrum computed
from the quark and gluon Dyson-Schwinger equations in a
modern truncation incorporating Nf ¼ 2þ 1 light quark
flavors with physical masses. In this case, we encounter a
chiral crossover at a pseudocritical temperature of T ¼
0.155 GeV via the inflection point of the quark condensate
and T ¼ 0.160 GeV via the chiral susceptibility in agree-
ment with corresponding lattice results. We have computed
S4 along Matsubara frequencies at vanishing spatial
momentum for 11 temperatures in a larger temperature
range of T ∈ ½0.125; 1.0� GeV, i.e., also for temperatures
below the pseudocritical one, as shown in Fig. 16. At the
same cutoff of Λ ¼ 100 GeV as before, this now corre-
sponds to Ndata ∈ ½127; 16�. The correlator computations
have been checked to carry a numerical error of less than
ΔD=D ≤ 10−3, so that we can assign a corresponding
diagonal correlation matrix to it. Both the smooth and
original BR methods are carried out with a frequency
discretization of Nω ¼ 1000 in the interval ω ∈ ½0; 20�. The
default model is set to a constantmðωÞ ¼ m0, and we carry
out the reconstruction with the different choices
m0 ¼ f0.1; 0.5; 1.0; 5.0; 10g. The variance in the outcome
is taken as the basis for the error bands depicted in the
subsequently shown plots. In order to keep the presentation
of the reconstructed spectra clear, we show in Fig. 17 only a
subset of the reconstruction in a temperature range perti-
nent to the discussion below. For completeness, the full
results are plotted in Appendix B in Fig. 23.

FIG. 15. (Top) position of the higher lying peak for different
temperatures at vanishing momentum for the finite mass case
(triangle) and the chiral case (circle). Except for the lowest T, no
significant difference is observed. (Bottom) Amplitude of the
lowest lying peak, which except for very low temperatures shows
the same behavior between the chiral and finite mass cases.

FIG. 16. Zero momentum imaginary frequency quark correlator
at finite mass and finite temperature from the modern truncation
with unquenched Nf ¼ 2þ 1 light quark flavors. Above
ωp>50GeV, all correlators already lie very close to the T ¼ 0

curve. Numerical errors are smaller than the data-point markers.

2Note that the quantity ωþ shown here does not fully coincide
with the conventional thermal mass at jpj ¼ 0, as it is recon-
structed from S4, instead of S4 � Ss. Since the latter makes the
spectral function nonsymmetric, we postpone its analysis to
future work.

BAYESIAN ANALYSIS OF QUARK SPECTRAL … PHYS. REV. D 98, 014009 (2018)

014009-13



The first interesting result is that the reconstructions
at low temperatures show unstable behavior that hints at a
failure of the reconstruction limited to positive definite
spectra.We see in Fig. 17 that at T ¼ 0.125 GeV two sharp
peaks appear at positions very different from those at
higher T. The results at and above the transition region,
T ¼ 0.150 GeVandT ¼ 0.175 GeV, appear to be in better
shape at first glance. However, truncating these data sets
(e.g., from Ndata ¼ 106 to Ndata ¼ 94 for the lowest
temperature) actually changes the behavior of the spectral
functions around ω ¼ 0. The same tests for the two
analyses in the previous subsections showed virtually
no effect on the reconstruction, which is what is expected
for a well-converged result. We thus conclude that in the
truncation scheme with back-coupled quarks positivity
violations characteristic for the low temperature spectral
functions of the quarks persist for much larger temper-
atures than in the simple model case and prohibit con-
vergence. Only the spectra at and above T ¼ 0.2 GeV do

not show such artificial behavior and are therefore deemed
trustworthy.
This is also indicated in Fig. 18, where we show the

reconstruction outcome of taking the correlator at T ¼
0.2 GeV and Ndata ¼ 80 and making it more sparse by a
factor 2 (dark grey dashed) or factor 4 (light grey dashed).
For Ndata ¼ 40, the reconstruction is only very weakly
affected, while for Ndata ¼ 20, a sole peak at the origin
remains. We conclude as before that the reconstruction
eventually becomes unreliable at high temperature but that
at intermediate T we are able to observe genuine in-
medium modification.
We now analyze the position of the peaks. Although

we find the same number of peaks present as in the model
calculation, their behavior under variations of temper-
ature seems to be different. Whereas the amplitude of
the lowest lying peak still decreases with increasing
temperature, the position of the second peak does not
show a clear pattern. In particular, it appears to not move
monotonously to higher values of frequency with increas-
ing temperature.
This is obvious from Fig. 19, where we plot again the

location ωþ of the second peak (upper panel) and the
amplitude Z0 of the zero mode (lower panel). For purpose
of comparison, we also depict the results from the finite
mass rainbow-ladder truncation as circles. Clear qualita-
tive and quantitative differences are visible. Instead of
monotonously rising in value, ωþ appears to decrease first
up to around T ¼ 0.4 GeV before then increasing again
in an almost linear fashion toward higher temperatures.
Interestingly, the initial downward trend starts in the low

FIG. 17. Zero momentum reconstruction of the T > 0 quark
spectral function in the modern truncation with unquenched
Nf ¼ 2þ 1 light quark flavors using the smooth BR (top) and the
original BR (bottom) methods. For better readability, the plot
contains only a subset of the reconstructed temperatures and is
given in the logarithmic scale.

FIG. 18. Test of the reliability of the reconstruction at different
temperatures based on the correlator made manually more sparse
at T ¼ 0.2 GeV. Using only every second data point of the
original Ndata ¼ 80 (dark grey) leaves the result virtually un-
changed. When made more sparse to every fourth point, the
Bayesian method only recovers the single peak at the origin
(light grey). Nonetheless, clear in-medium modification at
T > 0.2 GeV is observed.
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temperature regime, where we did not deem the
reconstruction reliable due to the possible presence of
positivity violation. Then, we must further clarify whether
the behavior of ωþ up to T ¼ 0.4 GeV might still suffer
from the influence of residual positivity violation. This
will require the application of a reconstruction algorithm
for general spectral functions, which is foreseen as the
next step in this line of study.
Z0 on the other hand behaves at least qualitatively

similarly in the region where we trust the reconstruction.
Below T ¼ 0.15 GeV, it also shows a clear dip, which is
related to the appearance of the artificial spiky structures at
intermediate frequencies there. Above T ¼ 0.2 GeV, it
decreases monotonously.
Compared to the values reported in Ref. [14], the behavior

of ωþ here is quite similar. If the reconstructions between
T ¼ 0.2 GeV and T ¼ 0.4 GeV are reliable, in particular, as
they do not show any obvious pathologies, then we also
observe a dip inωþ at intermediate temperatures. The height

of the central peak, on the other hand, never fully vanishes in
our case.

V. CONCLUSIONS

We have investigated the spectral properties of quarks in
the Landau gauge, based on Dyson-Schwinger equations
according to two different truncation schemes. In the
rainbow-ladder approximation model, both the chiral and
finite current quark mass cases have been considered, while
our main result concerns quark spectra in a modern
truncation with Nf ¼ 2þ 1 unquenched flavors of light
medium quarks.
The reconstruction of the spectral functions was based

on a recently developed Bayesian approach, the so-called
BR method, formulated in imaginary frequencies. We
further developed in this study a low-gain variant of the
BR method, which successfully suppresses numerical
ringing, which can affect the original BR method and
in turn helps us to unambiguously determine the number
of physical peaks in the spectrum. The accuracy of the
reconstruction further benefits from the use of the Källen-
Lehmann kernel instead of the Euclidean one.
In mock data tests, we have shown the capabilities

and limitations of our Bayesian reconstruction approach
for both a best-case scenario with correlator precision
ΔD=D¼10−8 and a real-world setting with ΔD=D ¼
10−3. In the case with two peaks, which is most relevant
for our study, the combination of the conventional and
smooth BR methods allowed us to unambiguously identify
the number of encoded peaks, while an estimate of the peak
properties, e.g., their position, was achieved within 15%–
20% of the correct value. On the other hand, in the most
challenging but least likely realized case, where two rather
broad peaks at high frequency were located close to each
other, it required more than the best-case scenario to infer
the presence of all features.
The reconstructed spectra for the rainbow-ladder trun-

cation model with vanishing and finite current quark mass
showed very similar behavior. At low temperatures, two
peaks were present, one at the frequency origin and
another one above ω ¼ 1 GeV. Changing the temperature
or changing the spatial momenta induced qualitatively
similar changes. The lowest lying peak height diminished
but did not vanish up to the highest parameter values
investigated. The second peak both broadened and moved
to higher frequencies.
A quantitative analysis of the height of the low lying

peak Z0 and position of the second peak ωþ revealed a
different behavior than reported in previous studies. We
did not find any indication of a nonmonotonicity in ωþ
with respect to temperature, and our value for Z0 always
took on finite values in contrast to a vanishing ω ¼ 0 peak
in Ref. [14].
We have made sure that the observed changes in Z0 and

ωþ with temperature can be attributed to the thermal

FIG. 19. (Top) position of the higher lying peak for different
temperatures at vanishing momentum for the finite mass case
(triangle) and the chiral case (circle). Except for the lowest T, no
significant difference is observed. (Bottom) Amplitude of the
lowest lying peak, which except for very low temperatures shows
the same behavior between the chiral and finite mass cases.
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medium. To disentangle the effects from a degrading of the
reconstruction due to fewer available data points at high
temperature, we repeated the reconstructions with correla-
tor data sets manually made more sparse and identified the
regime where the Bayesian method is reliable. And indeed,
in the region where the reconstruction can be trusted, we
found that ωþ shows a linear rise with T qualitatively
compatible with hard-thermal loop predictions. At the same
point where the reconstruction became unreliable, we also
saw that the linear rise began to artificially flatten off.
In the unquenched truncation scheme with Nf ¼ 2þ 1

flavors of light medium quarks, the positive definite
Bayesian approach was challenged at low and high temper-
atures. For T < 0.2 GeV, we found indications that non-
positive spectral contributions were present, which led to
artificially spiky structures. On the other hand a test with
input data, manually made more sparse, showed that for
Ndata < 20 the reconstruction also became unreliable. In the
intermediate temperature window, we observed again two-
peak structures with the lower one decreasing monoto-
nously in height. The second peak, however, behaved very
differently than before as it then appeared to exhibit a dip in
ωþ, similar to the behavior reported in Ref. [14].
In order to unambiguously determine whether the non-

monotonous behavior of ωþ can be attributed to physics
encoded in the correlator, we will have to extend the
analysis of this study in the future to nonpositive spectral
functions. In the context of gluon spectral functions in
lattice QCD, a generalization of the BR method has been
proven a useful tool [19]. Implementing a smooth version
of this generalized BR method will constitute an important
step toward a robust and quantitative picture of the low

temperature regime of quark spectra, which is work in
progress.
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APPENDIX A: MOCK TEST BAYESIAN
CONTINUUM LIMIT

In this Appendix, we present figures for the explicit
approach of the mock spectral reconstructions of Sec. III B
toward the Bayesian continuum limit at fixed Ndata ¼ 128.
Each of the figures contains seven solid curves, denoting
the reconstruction according to an assigned relative error
ΔD=D ¼ ½10−8; 10−2�. In the upper panel, the smooth BR
is deployed, while in the lower one, it is the original BR
method. The darkest curve corresponds to the largest error.
In Fig. 20, the two-peak scenario is shown, while Fig. 21
contains the results for three-peak scenario with the second
peak lying close to that at the origin. Figure 22 shows the
outcome for a three-peak scenario with two closely placed
structures at finite ω.

FIG. 20. Mock data analysis of reconstruction reliability for a two-peak scenario (grey dashed). Both the smooth BR (left) as well as
the original BR (right) methods are shown. While the latter unambiguously shows only two features and is devoid of ringing, it
approaches the Bayesian continuum limit more slowly than the original BR.
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APPENDIX B: COMPLETE SPECTRAL RECONSTRUCTIONS FOR THE UNQUENCHED CASE

Here, we plot in Fig. 23 for completeness the spectral reconstructions for the unquenched truncation with back-coupled
Nf ¼ 2þ 1 quark flavors. One observes the appearance of artificial peaked structures at the lowest temperature
T ¼ 0.125 GeV, while at T ¼ 0.2 GeV and above, we obtain the same number of peaks as in the model computations.
As was discussed in the context of Fig. 19, the position of the peak located at finite frequencies, however, displays a
qualitatively different behavior here than in the model truncation.

FIG. 21. Mock data analysis of reconstruction reliability for a three-peak scenario (grey dashed) with two peaks closely positioned off
the origin. Both the smooth BR (left) as well as the original BR (right) methods are shown.

FIG. 22. Mock data analysis of reconstruction reliability for a three-peak scenario (grey dashed) with two peaks closely positioned off
the origin. Both the smooth BR (left) as well as the original BR (right) methods are shown.
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APPENDIX C: TEST OF THE EVIDENCE
PROBABILITY COMPUTATION

In contrast to the BRmethod, where the hyperparameter α
is self-consistently integrated out a priori, MEM-like
approaches marginalize α at the end of the reconstruction
procedure [35,37]; i.e., in MEM, one conventionally com-
putes the corresponding spectrum ρα for many different
values of α and then determines the probability distribution
P½αjρ; D; I�. The individual ρα are subsequently averaged,
weighted by P½αjρ; D; I�. In order to compute P½αjρ; D; I�,
one, however, relies on both the assumptions that the
posterior probability is highly peaked and that it allows
for a Gaussian approximation. Neither is tested in practice.
Common lore states that P½αjρ; D; I�will have a peak at a

finite α for which one particular spectrum contributes most
strongly. If the maximum were at α ¼ 0, the method reverts
to an underdetermined χ2 fit, and no unique extremum
exists. Here, we give numerical evidence that the existence
of a peak in the approximated P½αjρ; D; I� depends on the
choice of search space used. Furthermore, if the search
space is extended to the full size of the problem (in which
there still exists a unique Bayesian answer), we find that
only a maximum at α ¼ 0 remains.
We use the same mock data as in the two-peak scenario

in Sec. III B and compare four different scenarios. We
deploy the MEMwith limited search space SBR andNbase¼
Ndata according to Bryan and compare with (solid line) an
implementation without restriction, where Nbase ¼ Nω
(dashed line). The Bayesian result is selected with a step
tolerance in the minimizer ofΔ ¼ 5 × 10−8. In addition, we
replace the Shannon-Jaynes entropy by the BR prior and
repeat the reconstruction with SBR and restricted search
space Nbase ¼ Ndata (solid line) or without, i.e., using SBR
and Nbase ¼ Nω (dashed line). We have of course adapted
the computation of P½αjρ; D; I� to this new prior. The
results for the probabilities are shown in Fig. 24.
We find indeed that only for the restricted search space a

peak at finite values of α remains. This issue is independent

of the actual regulator used; both SSJ and SBR show the
same trend. We believe that the underlying reason is that in
the presence of a restricted search space the minimizer is
at some point not able to lower the value of L, while in the
full search space, it can be brought very close to zero.
This finite minimal value of L then prohibits the probability
of rising further. Since the Bayesian answer is unique if it
exists [37], we conclude that it is the approximations made
to determine P½αjρ; D; I� which prevent us from obtaining
that unique result in the full search space.
As a consequence, we revert to the historic MEM choice

of setting α such that L ¼ Ndata in case of the smooth BR
method, where an a priori marginalization of the hyper-
parameter is not analytically feasible.

FIG. 23. Zero momentum reconstruction of the T > 0 quark spectral function in the modern truncation with unquenchedNf¼2þ1 light
quark flavors using the smoothBR (top) and the originalBR(bottom)methods. Forbetter readability, the plot is given in the logarithmic scale.

FIG. 24. Approximate probability distribution for the hyper-
parameterP½αjρ; D; I� computed according to four different scenar-
ios. We compare the use of the Shannon-Jaynes entropy SBR with
Bryan's search space Nbase ¼ Ndata (turquoise solid) or the full
search spaceNbase ¼ Nω (bluedashed).Theother twocurves denote
theBRpriorSBR withBryan's search spaceNbase ¼ Ndata (red solid)
or full search spaceNbase ¼ Nω (yellowdashed).Only by artificially
restricting the search space do we find a maximum at finite α.
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