
Research Article
Heavy-Light Mesons in the Nonrelativistic Quark Model Using
Laplace Transformation Method

M. Abu-Shady 1 and E. M. Khokha2

1Department of Applied Mathematics, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
2Department of Basic Science, Modern Academy of Engineering and Technology, Cairo, Egypt

Correspondence should be addressed to M. Abu-Shady; dr.abushady@gmail.com

Received 8 March 2018; Revised 15 May 2018; Accepted 3 June 2018; Published 12 July 2018

Academic Editor: Chun-Sheng Jia

Copyright © 2018 M. Abu-Shady and E. M. Khokha. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited. The publication of this article was funded by SCOAP3.

An analytic solution of theN-dimensional radial Schrödinger equation with the combination of vector and scalar potentials via the
Laplace transformation method (LTM) is derived. The current potential is extended to encompass the spin hyperfine, spin-orbit,
and tensor interactions. The energy eigenvalues and the corresponding eigenfunctions have been obtained in the N-dimensional
space. The present results are employed to study the different properties of the heavy-light mesons (HLM). The masses of the
scalar, vector, pseudoscalar, and pseudovector for B, Bs, D, and Ds mesons have been calculated in the three-dimensional space.
The effect of the dimensional number space is discussed on the masses of the HLM. We observed that the meson mass increases
with increasing dimensional space. The decay constants of the pseudoscalar and vector mesons have been computed. In addition,
the leptonic decay widths and branching ratio for the B+, D+, and 𝐵+𝑠 mesons have been studied. Therefore, the used method with
the current potential gives good results which are in good agreement with experimental data and are improved in comparison with
recent theoretical studies.

1. Introduction

One of the most important tasks in nonrelativistic quantum
mechanics is to get the solution of the Schrödinger equation.
The solution of the Schrödinger equation with spherically
symmetric potentials plays a significant role in many fields
of physics such as hadronic spectroscopy for understanding
the quantum chromodynamics theory. Numerous works
have been introduced to get the solution of Schrödinger
equation using different methods like the operator algebraic
method [1], path integral method [2], the conventional series
solution method [3, 4], Fourier transform [5, 6], shifted
(1/𝑁) expansion [7, 8], point canonical transformation [9],
quasi-linearization method [10], supersymmetric quantum
mechanics (SUSQM) [11], Hill determinant method (HDM)
[12], and other numerical methods [13–15].

Recently, the study of the different topics has received
a great attention from theoretical physicists in the higher
dimensional space. In addition, the study is more gen-
eral and one can obtain the required results in the lower

dimensions directly, such as the hydrogen atom [16–18],
harmonic oscillator [19, 20], random walks [21], Casimir
effects [22], and the quantization of angular momentum
[23–27]. The𝑁-dimensional Schrödinger equation has been
studied with different forms of spherically symmetric poten-
tials [28–33]. The 𝑁-dimensional Schrödinger equation has
been investigated with the Cornell potential and extended
Cornell potential [34–38] using different methods such as
the Nikiforov-Uvarov (NU) method [32, 36, 39, 40], power
series technique (PST) [41], the asymptotic iteration method
(AIM) [34], Pekeris type approximation (PTA) [41, 42], and
the analytical exact iteration method (AEIM) [43, 44].

The LTM is one of the useful methods that contributed
to finding the exact solution of Schrödinger equation in one-
dimensional space forMorse potential [45, 46], the harmonic
oscillator [47], and three-dimensional space with pseudo-
harmonic and Mie-type potentials [48] and with noncentral
potential [49]. The N-dimensional Schrödinger equation has
been solved via the LTM in many studies for Coulomb
potential [28], harmonic oscillator [50], Morse potential
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[51], pseudoharmonic potential [52], Mie-type potential [53],
anharmonic oscillator [54], and generalizedCornell potential
[38].

The study of different properties of HLM is very vital
for understanding the structure of hadrons and dynamics
of heavy quarks. Thus, many theoretical and experimental
efforts have been done for understanding distinct charac-
teristics of HLM. In [4, 34, 55], the authors calculated the
mass spectra of quarkonium systems as charmonium and
bottomonium mesons with the quark-antiquark interaction
potential using various methods in many works. Al-Jamel
and Widyan [56] studied the spin-averaged mass spectra
of heavy quarkonia with Coulomb plus quadratic potential
using (NU) method. Abou-Salem [57] has computed the
masses and leptonic decay widths of 𝑐𝑐, 𝑏𝑏, 𝑐𝑠, 𝑏𝑠, 𝑏𝑢, and𝑐𝑏 numerically using Jacobi method. The strong decays,
spectroscopy, and radiative transition of heavy-light hadrons
have been computed using the quark model predictions [58].
The decay constant of HLM has been calculated using the
field correlation method [59]. Moreover, the spectroscopy of
HLM has been investigated in the framework of the QCD
relativistic quark model [60]. The spectroscopy and Regge
trajectories ofHLMhave been obtained using quasi-potential
approach [61]. The decay constants of heavy-light vector
mesons [62] and heavy-light pseudoscalar mesons [63] have
been calculated with QCD sum rules. A comparative study
has been introduced for the mass spectrum and decay prop-
erties for the D meson with the quark-antiquark potential
using hydrogeometric and Gaussian wave function [64]. In
framework of Dirac formalism the mass spectra of D𝑠 [65]
and D [66] mesons have been obtained using Martin-light
potential in which the hadronic and leptonic decays ofD and
D𝑠 mesons have been evaluated [67]; besides the rare decays
of 𝐵0 and 𝐵0𝑠 mesons into dimuon (𝜇+𝜇−) [68] and the decay
constants of B and B𝑠 have been calculated [69]. The mass
spectra and decay constants for ground state of pseudoscalar
and vector mesons have been obtained using the variational
analysis in the light quark model [70]. The spectroscopy
of bottomonium and B meson has been studied using the
free-form smearing in [71]. The variational method has been
employed to compute the masses and decay constants of
HLM in [72]. In addition, the decay properties of D and
D𝑠 mesons have been investigated using the quark-antiquark
potential in [73]. The B and 𝐵s mesons spectra and their
decays have been studied with a Coulomb plus exponential
type potential in [74]. The leptonic and semileptonic decays
of B meson into 𝜏 have been studied [75]. The degeneracy
of HLM with the same orbital angular momentum has been
broken with the spin-orbit interactions [76]. The relativistic
quarkmodel has been investigated to study the properties ofB
and𝐵s mesons [77] and the excited charm and charm-strange
mesons [78].The perturbationmethod has been employed to
determine the mass spectrum and decay properties of HLM
with the mixture of harmonic and Yukawa-type potentials
[79]. In [80], the authors have investigated the leptonic
decays of seven types of heavy vector and pseudoscalar
mesons. The spectra and wave functions of HLM have been
calculated within a relativistic quark model by using the

Foldy-Wouthuysen transformation [81].The isospin breaking
of heavy meson decay constants had been compared with
latticeQCD fromQCDsumrules [82].Thedecay constants of
pseudoscalar and vector B and D mesons have been studied
in the light-cone quark model with the variational method
[83]. In [84], the authors have calculated the strong decays of
newly observed 𝐷J (3000) and 𝐷sJ (3040) with two 2P (1+)
quantum number assignments. The leptonic (𝐷 󳨀→ 𝑒+]𝑒)
and semileptonic (𝐷 󳨀→ 𝐾(∗)ℓ+]ℓ, 𝐷 󳨀→ 𝜋ℓ+]ℓ)decays have
been analyzed using the covariant quark model with infrared
confinement within the standard model framework [85].The
weak decays of B, 𝐵𝑠, and 𝐵𝑐 into𝐷-wave heavy-light mesons
have been studied usingBethe-Salpeter equation [86]. In [87],
the decay constant and distribution amplitude for the heavy-
light pseudoscalar mesons have been evaluated using the
light-front holographic wavefunction. By using the Gaussian
wave function with quark-antiquark potential model, the
Regge trajectories, spectroscopy, and decay properties have
been studied for𝐵 and𝐵𝑠mesons [88],D andD𝑠mesons [89],
and also the radiative transitions and the mixing parameters
of the 𝐷-meson have been obtained [90]. The dimensional
space dependence of the masses of heavy-light mesons has
been investigated using the string inspired potential model
[91].

The goal of this work is to get the analytic solution of
the N-dimensional Schrödinger equation for the mixture of
vector and scalar potentials including the spin-spin, spin-
orbit, and tensor interactions using LTM in order to obtain
the energy eigenvalues in the N-dimensional space and the
corresponding eigenfunctions. So far no attempt has been
made to solve theN-dimensional Schrödinger equation using
the LTM when the spin hyperfine, spin-orbit, and tensor
interactions are included. To show the importance of present
results, the present results are employed to calculate the mass
spectra of the HLM in three-dimensional space and in the
higher dimensional space. In addition, the decay constants,
leptonic decay widths, and branching fractions of the HLM
are calculated.

The paper is systemized as follows: the contributions of
previous works are displayed in Section 1. In Section 2, a brief
summary of Laplace transformation method is introduced.
In Section 3, an analytic solution of the N-dimensional
Schrödinger equation is derived. In Section 4, the obtained
results are discussed. In Section 5, summary and conclusion
are presented.

2. Overview of Laplace
Transformation Method

TheLaplace transform 𝜙(𝑧) orL of a function𝑓(𝑡) is defined
by [92]

𝜙 (𝑧) = L {𝑓 (𝑡)} = ∫∞

0
𝑒−𝑧𝑡𝑓 (𝑡) 𝑑𝑡. (1)

If there is some constant 𝜎 ∈ 𝑅 such that |𝑒−𝜎𝑡𝑓(𝑡)| ≤ 𝑀 for
sufficiently large 𝑡, the integral in (1) exists for Re 𝑧 > 𝜎 for𝑧 > 0. The Laplace transform may fail to exist because of a
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sufficiently strong singularity in the function 𝑓(𝑡) as 𝑡 󳨀→ 0.
In particular

L [ 𝑡𝛼Γ (𝛼 + 1)] = 1𝑧𝛼+1 , 𝛼 > −1, (2)

where Γ is the gamma function. The Laplace transform has
the derivative properties

L {𝑓(𝑛) (𝑡)} = 𝑧𝑛L {𝑓 (𝑡)} − 𝑛−1∑
𝑘=0

𝑧𝑛−1−𝑘𝑓(𝑘) (0) , (3)

L {𝑡𝑛𝑓 (𝑡)} = (−1)𝑛 𝜙(𝑛) (𝑧) , (4)

where the superscript (𝑛) stands for the 𝑛-th derivative with
respect to 𝑡 for 𝑓(𝑛)(𝑡) and with respect to 𝑧 for 𝜙(𝑛)(𝑧). If 𝑧0 is
the singular point, the Laplace transform behaves near 𝑧 󳨀→𝑧0 as

𝜙 (𝑧) = 1
(𝑧 − 𝑧0)𝜐 , (5)

and then for 𝑡 󳨀→ ∞
𝑓 (𝑡) = 1Γ (𝜐) 𝑡𝜐−1𝑒𝑧0𝑡. (6)

On the other hand, if near origin 𝑓(𝑡) behaves like 𝑡𝛼 with𝛼 > −1, then 𝜙(𝑧) behaves near 𝑧 󳨀→ ∞ as

𝜙 (𝑧) = Γ (𝛼 + 1)𝑧𝛼+1 . (7)

3. Analytic Solution of the𝑁-Dimensional
Radial Schrödinger Equation

The N-dimensional radial Schrödinger equation that de-
scribes the interaction between quark-antiquark systems
takes the form [41]

[ 𝑑2𝑑𝑟2 + (𝑁 − 1)𝑟 𝑑𝑑𝑟 − ℓ (ℓ + 𝑁 − 2)𝑟2
+ 2𝜇 (𝐸 − 𝑉𝑞𝑞 (𝑟))]Ψ (𝑟) = 0,

(8)

where ℓ,𝑁 represent the angular quantum number and the
dimensional number greater than one, respectively, and 𝜇 =𝑚𝑞𝑚𝑞/(𝑚𝑞 + 𝑚𝑞) is the reduced mass of the quark-antiquark
system.

In the nonrelativistic quark model, the quark-antiquark
potential 𝑉𝑞𝑞(𝑟) consists of the spin independent potential𝑉(𝑟) and the spin dependent potential 𝑉𝑆𝐷(𝑟), respectively:

𝑉𝑞𝑞 (𝑟) = 𝑉 (𝑟) + 𝑉𝑆𝐷 (𝑟) . (9)

The spin independent potential is taken as a combination of
vector and scalar parts [93]:

𝑉 (𝑟) = 𝑉𝑉 (𝑟) + 𝑉𝑆 (𝑟) , (10)

𝑉𝑉 (𝑟) = 𝜂 (𝑎𝑟2 + 𝑏𝑟) − 𝑐𝑟 , (11)

𝑉𝑆 (𝑟) = (1 − 𝜂) (𝑎𝑟2 + 𝑏𝑟) , (12)

where 𝑉𝑉(𝑟) and 𝑉𝑆(𝑟) are the vector and scalar parts,
respectively, and 𝜂 stands for the mixing coefficient. �, b,
and c are arbitrary parameters where a, b, and c > 0 which
are fitted with experimental data. The harmonic and linear
terms represent the confining part at long distance and the
Coulomb term stands for the quark-antiquark interactions
through one gluon exchange at short distances which gives
better description of quark-antiquark interaction.

The spin dependent potential is extended to three types
of interaction terms as [94]

𝑉𝑆𝐷 (𝑟) = 𝑉𝐿𝑆 (𝑟) (L . S) + S12𝑉𝑇 (𝑟) + 𝑉𝑆𝑆 (𝑟) (S1 . S2) , (13)

while the spin-orbit 𝑉𝐿𝑆(𝑟) and tensor 𝑉𝑇(𝑟) terms give the
fine structure of the states, the spin-spin 𝑉𝑆𝑆(𝑟) interaction
term describes the hyperfine splitting of the state, and L is an
angular quantumoperator, and S is a spin operator (for detail,
see [94]).

𝑉𝐿𝑆 (𝑟) = 12𝑚𝑞𝑚𝑞𝑟 (3
𝑑𝑉𝑉𝑑𝑟 − 𝑑𝑉𝑆𝑑𝑟 ) , (14)

𝑉𝑇 (𝑟) = 112𝑚𝑞𝑚𝑞

(1𝑟 𝑑𝑉𝑉𝑑𝑟 − 𝑑2𝑉𝑉𝑑𝑟2 ) , (15)

𝑉𝑆𝑆 (𝑟) = 23𝑚𝑞𝑚𝑞

∇2𝑉𝑉, (16)

where ∇2 is radial Laplace operator.

S1 . S2 = 12 [𝑆 (𝑆 + 1) − 32] , (17)

⟨L . S⟩ = 12 [𝐽 (𝐽 + 1) − 𝐿 (𝐿 + 1) − 𝑆 (𝑆 + 1)] , (18)

S12 = 2 [S2 − 3 (S . r̂) (S . r̂)] . (19)

The diagonal elements of the S12 are defined.

⟨S12⟩ = 4(2𝐿 + 3) (2𝐿 − 1) [⟨𝑆2⟩ ⟨𝐿2⟩ − 3 ⟨L . S⟩2

− 32 ⟨L . S⟩] .
(20)

Substituting (11)-(16) into (9) then the nonrelativistic quark-
antiquark potential 𝑉𝑞𝑞(𝑟) takes the form

𝑉𝑞𝑞 (𝑟) = 𝑎𝑟2 + 𝑏𝑟 + 𝛿 + 𝑔𝑟 + ℎ𝑟3 , (21)

where

𝛿 = 2𝑎𝑚𝑞𝑚𝑞

[2𝜂 (S1 . S2) + (2𝜂 − 12) (L . S)] , (22)

𝑔 = 𝑏𝑚𝑞𝑚𝑞

{𝜂 [43 (S1 . S2) + 112S12]
+ (2𝜂 − 12) (L . S)} − 𝑐,

(23)

ℎ = 3𝑐2𝑚𝑞𝑚𝑞

[16S12 + (L . S)] . (24)
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Substituting (21) into (8), then

[ 𝑑2𝑑𝑟2 + (𝑁 − 1)𝑟 𝑑𝑑𝑟 − ℓ (ℓ + 𝑁 − 2)𝑟2 + 𝜀 − 𝐴𝑟2 − 𝐵𝑟
− 2𝜇𝛿 − 𝐺𝑟 − 𝐻𝑟3 ]Ψ (𝑟) = 0,

(25)

where

𝜀 = 2𝜇𝐸,
𝐴 = 2𝜇𝑎,
𝐵 = 2𝜇𝑏,
𝐺 = 2𝜇𝑔,
𝐻 = 2𝜇ℎ.

(26)

The complete solution of (25) takes the form

Ψ (𝑟) = 𝑟𝑘𝑒−𝛼𝑟2𝑓 (𝑟) , 𝑘 > 0, with 𝛼 = √𝜇𝑎2 , (27)

where the term 𝑟𝑘 confirms that the solution is bounded at𝑟 = 0. The function 𝑓(𝑟) is yet to be determined. From (27)
we get

Ψ󸀠 (𝑟) = 𝑟𝑘𝑒−𝛼𝑟2 [𝑓󸀠 (𝑟) + (𝑘𝑟 − 2𝛼𝑟)𝑓 (𝑟)] . (28)

Ψ󸀠󸀠 (𝑟) = 𝑟𝑘𝑒−𝛼𝑟2 {𝑓󸀠󸀠 (𝑟) + (2𝑘𝑟 − 4𝛼𝑟)𝑓󸀠 (𝑟)
+ [𝑘 (𝑘 − 1)𝑟2 + 4𝛼2𝑟2 − 4𝛼𝑘 − 2𝛼]𝑓 (𝑟)} .

(29)

Substituting (27), (28), and (29) into (25), then,

𝑟𝑓󸀠󸀠 (𝑟) + (𝜔 − 4𝛼𝑟2) 𝑓󸀠 (𝑟)
+ {𝜆𝑟 − 𝐵𝑟2 + 𝜁𝑟 − 𝐺 − 𝐻𝑟2 }𝑓 (𝑟) = 0, (30)

where

𝜔 = 2𝑘 + 𝑁 − 1, (31)

𝜆 = 𝑘 (𝑘 + 𝑁 − 2) − ℓ (ℓ + 𝑁 − 2) , (32)

𝜁 = 𝜀 − 4𝛼𝑘 − 2𝛼𝑁 − 2𝜇𝛿. (33)

In order to apply the Laplace transform of the above differen-
tial equation, the parametric condition is taken as in [52, 54].

𝑘 (𝑘 + 𝑁 − 2) − ℓ (ℓ + 𝑁 − 2) = 0. (34)

Thus, (32) has a solution

𝑘+ = ℓ,
and 𝑘− = − (ℓ + 𝑁 − 2) . (35)

We take the physical solution of (32) (𝑘 = 𝑘+ = ℓ) as in [52,
54].

Substituting (34) into (30) yields

𝑟𝑓󸀠󸀠 (𝑟) + (𝜔 − 4𝛼𝑟2) 𝑓󸀠 (𝑟)
+ {𝜁𝑟 − 𝐵𝑟2 − 𝐺 − 𝐻𝑟2 }𝑓 (𝑟) = 0. (36)

By expanding the term𝐻/𝑟2 around 𝑦 = 0, where 𝑦 = 𝑟 − 𝜐
and 𝜐 is a parameter as in [36, 56], we get

𝐻𝑟2 = 𝐻
(𝑦 + 𝜐)2 =

𝐻𝜐4 (3𝑟2 − 8𝑟𝜐 + 6𝜐2) . (37)

Substituting (37) into (36) yields

𝑟𝑓󸀠󸀠 (𝑟) + (𝜔 − 4𝛼𝑟2) 𝑓󸀠 (𝑟) + {𝑄𝑟 − 𝑃𝑟2 − 𝐶0} 𝑓 (𝑟)
= 0, (38)

where

𝑄 = 𝜁 + 8𝐻𝜐3 ,
𝑃 = 𝐵 + 3𝐻𝜐4 ,

and 𝐶0 = 𝐺 + 6𝐻𝜐2 .
(39)

The Laplace transform is defined as 𝜙(𝑧) = L{𝑓(𝑟)} and
taking boundary condition 𝑓(0) = 0 yields

(𝑧 + 𝜏) 𝑑2𝜙 (𝑧)𝑑𝑧2 + ( 𝑧24𝛼 + 𝜌) 𝑑𝜙 (𝑧)𝑑𝑧
+ (𝛾𝑧 + 𝐶04𝛼) 𝜙 (𝑧) = 0.

(40)

Here

𝜏 = 𝑃4𝛼 ,
𝜌 = 𝑄4𝛼 + 2,
𝛾 = (2 − 𝜔)4𝛼 .

(41)

The singular point of (40) is 𝑧 = −𝜏. By using the condition
of (5), the solution of (40) takes the form

𝜙 (𝑧) = 𝐶
(𝑧 + 𝜏)𝑛+1 , 𝑛 = 0, 1, 2, 3, . . . . (42)

From (42),

𝜙󸀠 (𝑧) = −𝐶 (𝑛 + 1)
(𝑧 + 𝜏)𝑛+2 , (43)

𝜙󸀠󸀠 (𝑧) = 𝐶 (𝑛 + 1) (𝑛 + 2)
(𝑧 + 𝜏)𝑛+3 . (44)

Substituting (42)-(44) into (40), we obtain the following
relations:

𝛾 = 𝑛 + 14𝛼 , (45)

𝛾𝜏 + 𝐶04𝛼 = 0, (46)
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Figure 1: The current potential and other potential models are
plotted as functions of distance r.

(𝑛 + 1) (𝑛 + 2) − 𝜌 (𝑛 + 1) + 𝐶0𝜏4𝛼 = 0. (47)

Using (26), (39), and (41) and the set of (45)-(47), then, the
energy eigenvalue of (8) in the N-dimensional space is given
by the relation

𝐸𝑛ℓ𝑁 = √ 𝑎2𝜇 (2𝑛 + 2ℓ + 𝑁) − 𝑏24𝑎 + 𝛿 − 8ℎ𝜐3
− ℎ𝑎 ( 9ℎ4𝜐8 + 3𝑏2𝜐4) .

(48)

Take the inverse Laplace transform such that 𝑓(𝑟) =
L−1{𝜙(𝑧)}.The function 𝑓(𝑟) takes the following form:

𝑓 (𝑟) = 𝐶Γ (𝑛 + 1)𝑟𝑛𝑒−𝜏𝑟. (49)

Using (11), (13), and (23), the eigenfunctions of (9) take the
following form:

Ψ (𝑟) = 𝐶Γ (𝑛 + 1)𝑟𝑛+ℓ exp(−√𝜇𝑎2 𝑟2 − √ 𝜇2𝑎𝑏𝑟) . (50)

From the condition ∫∞
0
|Ψ(𝑟)|2𝑟𝑁−1𝑑𝑟 = 1, the normalization

constant 𝐶 can be computed. In addition, the wave equationΨ(𝑟) satisfies the boundary condition Ψ(𝑟 = 0) = Ψ(𝑟 =∞) = 0.
4. Discussion of Results

In Figure 1, the current potential has been plotted in com-
parison to other potential models; we see that the present
potential is in a qualitative agreement with other potential
models [72, 74, 79], in which the confining part is clearly
obtained in comparison to Cornell and Coulomb plus expo-
nential potentials. The different states of 𝐵 and 𝐷 mesons
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Figure 2: The current potential of B meson for different states.
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Figure 3: The current potential of𝐷meson for different states.

have been shown in Figures 2 and 3, respectively, in which
the principal number of states plays an important role in
confining part of potential.

In the following subsections, we employ the obtained
results in the previous section to determine the mass spectra
of scalar, vector, pseudoscalar, and pseudovector of 𝐵, 𝐵𝑠, 𝐷,
and 𝐷𝑠 mesons in the 𝑁-dimensional space in comparison
with the experimental data (PDG 2016) [95] and with other
recent studies. In addition, the decay properties such as decay
constants, leptonic decay width, and the branching ratio of
HLM are calculated.

4.1. Mass Spectra of Heavy-Light Mesons. Themasses of HLM
in the N-dimensional space are defined [44]:

𝑀𝐵,𝐷 = 𝑚𝑞 + 𝑚𝑞 + 𝐸𝑛ℓ𝑁. (51)

Substituting (48) into (51), then the mass spectra of HLM in
the N- dimensional space can be found from the relation

𝑀𝐵,𝐷 = 𝑚𝑞 + 𝑚𝑞 + √ 𝑎2𝜇 (2𝑛 + 2ℓ + 𝑁) − 𝑏24𝑎 + 𝛿
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Table 1: Parameters for HLM.

𝑚𝑐 𝑚𝑏 𝑚𝑢,𝑑 𝑚𝑠 𝜂 𝜐
1.45 (GeV) 4.87 (GeV) 0.38 (GeV) 0.48 (GeV) 0.25 1 (GeV−1)

Table 2: Masses for pseudoscalar (2S+1𝐿𝐽 = 1𝑆0 ) mesons in GeV. 𝑎 = 0.00085 GeV3, 𝑏 = 0.01614 GeV2, and 𝑐 = 0.7.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 1.864 1.864 1.895 1.871 1.859 1.884 [89] 1.864 [73] 1.902 1.939
Ds 1.960 1.968 1.962 1.964 1.949 1.965 [89] 1.978 [73] 1.989 2.023
B 5.277 5.280 5.302 5.273 5.262 5.287 [88] 5.272 [74] 5.311 5.346
Bs 5.366 5.366 5.340 5.363 5.337 5.367 [88] 5.385 [74] 5.397 5.428

Table 3: Masses for vector (2𝑆+1𝐿𝐽 = 3𝑆1)mesons in GeV. 𝑎 = 0.026068 GeV3, 𝑏 = 0.218058 GeV2, and 𝑐 = 8 × 10−3.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.010 2.010 2.023 2.008 2.026 2.010 [89] 2.010 [73] 2.218 2.426
Ds 2.100 2.112 2.057 2.107 2.110 2.120 [89] 2.102 [73] 2.244 2.434
B 5.374 5.325 5.356 5.329 5.330 5.323 [88] 5.327 [74] 5.567 5.759
Bs 5.415 5.415 5.384 5.419 5.405 5.413 [88] 5.409 [74] 5.588 5.760

Table 4: Masses for scalar (2𝑆+1𝐿𝐽 = 3𝑃0)mesons in GeV. 𝑎 = 0043 GeV3, 𝑏 = 0.001 GeV2, and 𝑐 = 10−3.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.289 2.318±0.029 2.316 2.364 2.357 2.357[89] 2.539[73] 2.374 2.459
Ds 2.350 2.318 2.372 2.437 2.412 2.438[89] 2.311[73] 2.427 2.505
B 5.700 5.710 5.657 5.776 5.740 5.730[88] 5.745[74] 5.736 5.815
Bs 5.720 - - - 5.719 5.811 5.776 5.812[88] 5.843[74] 5.785 5.856

− 8ℎ𝜐3 − ℎ𝑎 ( 9ℎ4𝜐8 + 3𝑏2𝜐4) .
(52)

In Tables 2–6, we have calculated the masses of the HLM
in the three-dimensional space in comparison with the
experimental data and other recent studies [72–74, 81, 88,
89, 96]. The parameters used in the present calculations are
shown in Table 1. In addition, the masses at N = 4 and N
= 5 are calculated. In Tables 2 and 3, we observe that 𝐷
and 𝐵𝑠 meson masses close to experimental data and other
meson masses are in good agreement with experimental data
and become better in comparison to the results in recent
studies [72–74, 81, 88, 89, 96]. In comparison with [72],
they used the variational method for the Cornell potential to
study the HLM with including the spin-spin and spin-orbit
interactions. They ignored the tensor interactions in their
calculations. The present results are good in comparison to
the results in [72]. In addition, we used the LTM in the present
calculations. Yazarloo and Mehiraban used the variational
method to study D and 𝐷s mesons for the Cornell potential
[73] and used the Nikiforov-Uvarov (NU) method to study
B and 𝐵s mesons for the Coulomb plus exponential type
potential [74].The present results are in good agreement with
the results of [73, 74]. Kher et al. [89] used a Gaussian wave
function to calculate themass spectra ofD and𝐷s in addition
to B and 𝐵s mesons [88] for the Cornell potential. Jing-Bin
[81, 96] obtained the spectra of the HLM in the relativistic

model from the Bethe-Salpeter equation using the Foldy-
Wouthuysen transformation in his works.

We note that the present results for D and 𝐵s meson
masses become better in comparison to the results of [81, 88,
89, 96], where the values of pseudoscalar D and 𝐵s mesons
are close to the experimental data in Table 2. The values of
vector 𝐷 and 𝐵s mesons close to the experimental data and
the values of vectorD𝑠 and 𝐵mesons are good in comparison
to the experimental results in Table 3.

The masses of the scalar mesons are presented in Table 4;
the value of D meson is close to the experimental value. The
values of D𝑠 and B are in agreement with the experimental
values and the value of 𝐵s meson is in good agreement with
the theoretical studies [72–74, 81, 88, 89, 96]. In Table 5, we
observe that all the values of pseudovector mesons are close
to the experimental results except the value of Bmesonwhich
is in good agreement with the experimental value.The values
of vector D𝑠 and B mesons are in good agreement with the
experimental results. In Table 6, the results of the p-wave state
for the HLM are reported.

The present predictions of D,𝐷s, B, and B𝑠 mesons are in
agreement in comparison to the experimental data and the
theoretical studies [73, 74, 81, 88, 89, 96].

In addition, we have investigated the masses of the HLM
in the higher dimensions at N=4 and N=5. In Tables 2–6,
the effect of the dimensional number is investigated on the
masses of the HLM. One can see that the masses increase
with increasing dimensional number. The influence of the
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Table 5: Masses for pseudovector (2S+1𝐿𝐽 = 1𝑃1)mesons in GeV. 𝑎 = 0.01359 GeV3, 𝑏 = 0.08784 GeV2, and 𝑐 = 0.008.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.421 2.421 2.362 2.507 2.434 2.425[89] 2.421[73] 2.571 2.722
Ds 2.460 2.460 2.409 2.558 2.528 2.529[89] 2.429[73] 2.597 2.735
B 5.797 5.726 5.760 5.719 5.736 5.733[88] 5.744[74] 5.936 6.075
Bs 5.828 5.829 5.775 5.819 5.824 5.828[88] 5.841[74] 5.952 6.077

Table 6: Masses for mesons with p-wave state (2S+1𝐿𝐽 = 3𝑃2) in GeV. 𝑎 = 0.0163 GeV3, 𝑏 = 0.113 GeV2, and 𝑐 = 6 × 10−5.
Meson Present work Exp. [95] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.463 2.463 2.460 2.482 2.461[89] 2.463[74] 2.628 2.792
Ds 2.500 2.537 2.570 2.575 2.569[89] 2.528[74] 2.641 2.800
B 5.817 5.740 5.739 5.754 5.740[88] 5.743[73] 5.969 6.122
Bs 5.840 5.840 5.838 5.843 5.840[88] 5.840[73] 5.976 6.113

Table 7: The decay constants of pseudoscalar B and Dmesons in MeV.

Meson 𝑓𝑝 𝑓𝑝 [72] [83] [87] [97]
D 220 235 228 200 ± 24 214.2+7.6−7.8 210 ± 11
Ds 250 243 273 232 ± 17 253.5+6.6−7.1 259 ± 10
B 147 201 149 184 ± 32 191.7+7.9−6.5 192 ± 13
Bs 174 213 187 215 ± 24 225.4+7.9−5.3 230 ± 13

Table 8: The decay constants of vector B and Dmesons in MeV.

Meson 𝑓V 𝑓V [83] [73, 74] [79]
D 290 210 247 ± 35 307 [73] 353.8
Ds 310 212 287 ± 29 344 [73] 382.1
B 196 182 210 ± 37 242.4 [74] 234.7
Bs 216 191 239 ± 29 178.8 [74] 244.2

dimensional number is not considered on the masses of the
HLM in theworks [72–74, 81, 88, 89, 96]. Roy andChoudhury
[91] have studied the masses of heavy flavor mesons in the
higher dimensional space using string inspired potential.
They found that an increase of the dimensional number
leads to increase the meson masses. Therefore, the present
results of the mass spectra of HLM are in good agreement
in comparison with the results of [91].

4.2. Decay Constants. The study of the decay constants is
one of the very significant characteristics of the HLM, as
it provides a direct source of information on the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements. Many theo-
retical studies have been done for determining the decay
constants with different models as relativistic quark model
[97–99], lattice QCD [100–102], QCD sum rules [62, 97, 103],
and nonrelativistic model [72–74, 79, 97].

The Van Royen-Weisskopf formula [104] can be used to
calculate the decay constants of the pseudoscalar and vector
mesons𝑓𝑝 and 𝑓V, respectively, in the nonrelativistic limit
which is defined as

𝑓2
𝑝/V = 12 |Ψ (0)|2𝑀𝑝/V

. (53)

The Van Royen-Weisskopf formula with the QCD radiative
corrections taken into account can be written as [105]

𝑓2

𝑝/V = 12 |Ψ (0)|2𝑀𝑝/V
𝐶2 (𝛼𝑠) , (54)

where

𝐶 (𝛼𝑠) = 1 − 𝛼𝑠𝜋 (Δ𝑝/V − 𝑚𝑞 − 𝑚𝑞𝑚𝑞 + 𝑚𝑞

ln
𝑚𝑞𝑚𝑞

) (55)

and Δ𝑝 = 2 and Δ V = 8/3, for pseudoscalar and vector
mesons, respectively.

In Tables 7 and 8, we have determined the decay constants
of the pseudoscalar and vectorB andDmesons obtained from
(53) and (54) in comparison with the results of other recent
works. In [87], the authors evaluated the decay constant
for the heavy-light pseudoscalar mesons using the helicity-
improved light-front holographic wavefunction. In [83], the
authors applied the variational method to study the decay
constants of the pseudoscalar and vector B and D mesons in
the light-cone quark model for the relativistic Hamiltonian
with the Gaussian-type function.

In [72], the authors used the variational method to com-
pute the decay constants of HLM from the radial Schrödinger
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Table 9: Leptonic decay width of B+ meson in GeV.

Present Γ [74] [79] [107]
𝐵+ 󳨀→ 𝑒+𝜐𝑒 2.475 ×10−24 8.624 ×10−24 8.094 ×10−24 5.689 ×10−24
𝐵+ 󳨀→ 𝜇+𝜐𝜇 1.086 ×10−19 3.685 ×10−19 3.459 ×10−19 2.439 ×10−19
𝐵+ 󳨀→ 𝜏+𝜐𝜏 2.445 ×10−17 8.196 ×10−17 7.697 ×10−17 5.430 ×10−17

Table 10: Leptonic decay width of D+ meson in GeV.

Present Γ [79] [108] [66]
𝐷+ 󳨀→ 𝑒+𝜐𝑒 0.622 ×10−20 1.488 ×10−20 1.323 ×10−20 5.706 ×10−21
𝐷+ 󳨀→ 𝜇+𝜐𝜇 2.715 ×10−16 6.322 ×10−16 5.641 ×10−16 2.433 ×10−16
𝐷+ 󳨀→ 𝜏+𝜐𝜏 0.668 ×10−15 1.215 ×10−15 1.529 ×10−15 6.157 ×10−16

Table 11: Leptonic decay width of𝐷+
𝑠 meson in GeV.

Present Γ [79] [108] [67]
𝐷+𝑠 󳨀→ 𝑒+𝜐𝑒 1.529 ×10−19 2.962 ×10−19 3.157 ×10−19 1.792 ×10−19
𝐷+𝑠 󳨀→ 𝜇+𝜐𝜇 0.668 ×10−14 1.259 ×10−14 1.347 ×10−14 7.648 ×10−15
𝐷+𝑠 󳨀→ 𝜏+𝜐𝜏 0.586 ×10−13 1.296 ×10−13 1.326 ×10−13 7.508 ×10−14

equation with the Cornell potential. Zhi-Gang Wang [97]
introduced an analysis of the decay constants of HLM with
QCD sum rules. Yazarloo and Mehiraban [79] used the
perturbation method to study the decay constants of 𝐷, 𝐷s,
B, and 𝐵s mesons with the combination of harmonic and
Yukawa-type potentials.

In Table 7, the obtained results are in good agreement
in comparison to the results of [72, 83, 87, 97]. In Table 8,
the present results are compatible with the results of [73,
74, 79, 83]. In addition, the ratio of decay constants for D
mesons is (𝑓𝐷𝑠/𝑓𝐷 = 1.140). This value is in good agreement
with the experimental value 𝑓𝐷𝑠/𝑓𝐷 = 1.258 ± 0.038 [95].
The present result is in agreement with the obtained values(𝑓𝐷𝑠/𝑓𝐷 = 1.195) in [72] and (𝑓𝐷𝑠/𝑓𝐷 = 1.160) in [83]. Also,
we have (𝑓𝐷∗𝑠 /𝑓𝐷∗ = 1.070) which is in agreement with the
calculated values (𝑓𝐷∗𝑠 /𝑓𝐷∗ = 1.183) in [87] and (𝑓𝐷∗𝑠 /𝑓𝐷∗ =1.233) in [97]. The calculated ratio of decay constants for
B mesons (𝑓𝐵𝑠/𝑓𝐵 = 1.184) and (𝑓𝐵∗𝑠 /𝑓𝐵∗ = 1.102) are in
good agreement in comparison with (𝑓𝐵𝑠/𝑓𝐵 = 1.168) and(𝑓𝐵∗𝑠 /𝑓𝐵∗ = 1.138) in [83].

4.3. Leptonic DecayWidths and Branching Ratio. Thecharged
HLM can decay to a charged lepton pair 𝑙+]𝑙 via a virtualW±

boson.The leptonic decaywidths of theHLMcan be obtained
from the relation [106]

Γ (𝐵+, 𝐷𝑞 󳨀→ 𝑙+]𝑙)
= 𝐺2

𝐹𝑀𝐵,𝐷𝑞8𝜋 𝑚2
𝑙 (1 − 𝑚2

𝑙𝑀2
𝐵,𝐷𝑞

)
2

𝑓2
𝐵,𝐷

× {{{
󵄨󵄨󵄨󵄨𝑉𝑢𝑏󵄨󵄨󵄨󵄨2 for 𝐵 meson󵄨󵄨󵄨󵄨󵄨𝑉𝑐𝑞󵄨󵄨󵄨󵄨󵄨2 (𝑞 ∈ 𝑑, 𝑠) , for 𝐷 meson

(56)

where 𝐺𝐹 = 1.664 × 10−5 is the Fermi constant and the
relevant CKM elements are taken from the PDG [95] as|𝑉𝑢𝑏| = 0.004, |𝑉𝑐𝑑| = 0.227, and |𝑉𝑐𝑠| = 0.974. The
leptonic masses 𝑚𝑙 are taken as 𝑚𝑒 = 0.501 × 10−3 GeV,𝑚𝜇 = 0.105 GeV, and 𝑚𝜏 = 1.776 GeV. We obtain the
decay constants of the HLM from Tables 7 and 8 into (56)
to compute leptonic decay widths of the HLM. The obtained
results of the leptonic decay width of B+, D+, and𝐷+

𝑠 mesons
are shown in Tables 9, 10, and 11, respectively. Vinodkumar et
al. [107] calculated the leptonic decay widths of B, B𝑠 mesons
besides, D and D𝑠 mesons [66, 67, 108] for the Martin-like
potential with Dirac formalism. We have determined the
leptonic decay widths of B+ meson in Table 9 in comparison
with the results of the [74, 79, 107], as well as the leptonic
decay widths ofD+ meson in Table 10 in comparison with the
results of [66, 79, 108] and the leptonic decay widths of 𝐷+

𝑠

meson in Table 11 compared with the results of [66, 79, 108].
We note that the present results are in good agreement with
the results of [66, 67, 74, 107, 108].

The branching ratio of the HLM is defined as

𝐵𝑟 (𝐵+, 𝐷𝑞 󳨀→ 𝑙+𝜐𝑙) = Γ (𝐵+, 𝐷𝑞 󳨀→ 𝑙+𝜐𝑙) × 𝜏𝐵+ ,𝐷𝑞 (57)

where the lifetime 𝜏 of B+, D+, and 𝐷+
𝑠 mesons is taken as𝜏𝐵+ = 1.638𝑝𝑠, 𝜏𝐷+ = 1.040𝑝𝑠, and 𝜏𝐷+𝑠 = 0.5𝑝𝑠 [95]. We

have determined the branching ratio for the 𝐵+, 𝐷+, and 𝐷+
𝑠

mesons compared with the experimental data and with the
results of other recent studies [72–74, 88, 89].

In Table 12, we note that the present values of the
branching ratio for the B+ meson are close to experimental
data and are in agreement in comparison with the theoretical
results [72, 74, 79, 88, 107]. In addition, in Tables 13 and 14,
we note that the evaluated results of branching ratio for the
D+ and 𝐷+

𝑠 mesons are close to the experimental data and
become better in comparison with works [72, 73, 79, 89, 108].
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Table 12: Leptonic branching ratio of B+ meson.

Present Br [88] [79] [107] [72] [74] Exp. [95]
𝐵+ 󳨀→ 𝑒+𝜐𝑒 6.162 ×10−12 8.640 ×10−12 2.015 ×10−11 1.419 ×10−11 6.220 ×10−12 2.147 ×10−11 <9.8 ×10−7
𝐵+ 󳨀→ 𝜇+𝜐𝜇 2.705 ×10−7 0.370 ×10−7 8.611 ×10−7 6.085 ×10−7 2.630 ×10−7 9.174 ×10−7 <1.0 ×10−6
𝐵+ 󳨀→ 𝜏+𝜐𝜏 6.088 ×10−5 0.822 ×10−4 1.916 ×10−4 1.354 ×10−4 1.140 ×10−4 2.040 ×10−4 (1.14±0.27) ×10−4

Table 13: Leptonic branching ratio of D+ meson.

Present Br [89] [79] [73] [72] [108] Exp. [95]
𝐷+ 󳨀→ 𝑒+𝜐𝑒 0.984 ×10−8 0.580 ×10−8 2.351 ×10−8 1.77 ×10−8 1.130 ×10−8 2.105 ×10−8 <8.8 ×10−6
𝐷+ 󳨀→ 𝜇+𝜐𝜇 4.293 ×10−4 2.470 ×10−4 9.991 ×10−4 7.54 ×10−4 4.770 ×10−4 8.977 ×10−4 (3.74±0.17) ×10−4
𝐷+ 󳨀→ 𝜏+𝜐𝜏 1.055 ×10−3 0.860 ×10−3 1.920 ×10−3 1.79 ×10−3 2.030 ×10−3 2.933 ×10−3 <1.2×10−3

Table 14: Leptonic branching ratio of𝐷+
𝑠 meson.

Present Br [89] [79] [73] [72] [108] Exp. [95]
𝐷+𝑠 󳨀→ 𝑒+𝜐𝑒 1.163 ×10−7 0.940 ×10−7 2.251 ×10−7 1.82 ×10−7 1.630 ×10−7 1.391 ×10−7 <8.3 ×10−5
𝐷+𝑠 󳨀→ 𝜇+𝜐𝜇 5.078 ×10−3 4.000 ×10−3 9.572 ×10−3 7.74 ×10−3 6.900 ×10−3 5.937 ×10−3 (5.56±0.25) ×10−3
𝐷+𝑠 󳨀→ 𝜏+𝜐𝜏 4.451 ×10−3 3.780 ×10−3 9.864 ×10−2 8.2 ×10−2 6.490 ×10−2 5.844 ×10−3 (5.55±0.24)%

5. Summary and Conclusion

In this work, we have presented an approximate-analytic
solution of the N-dimensional radial Schrödinger equation
for the mixture of vector and scalar potentials via the
LTM. The spin-spin, spin-orbit, and tensor interactions have
been included in the extended Cornell potential model. The
energy eigenvalues and the corresponding eigenfunctions
have been determined in the N-dimensional space. In three-
dimensional space, we have employed the obtained results
to study the different properties of the HLM that are not
considered in many recent studies. The masses of the scalar,
vector, pseudoscalar, and pseudovector for B, B𝑠, D, and D𝑠

mesons have been calculated in the three-dimensional space
and in the higher dimensional space in Tables 2–6. Most of
the present calculations are close to the experimental data and
are improved in comparison with the recent calculations [72–
74, 81, 88, 89, 96]. As well, we have computed the masses of
the HLM in the higher dimensional space at N=4 and N=5.
The dependence of the masses of HLM on the dimensional
number is discussed. We found that the masses increase with
increasing dimensional number. This result is obtained in
[91]. In Tables 7 and 8, the decay constants of the pseudoscalar
and vector mesons have been determined in comparison
with the results of [72–74, 79, 83, 87, 97]. The calculated
ratios of the decay constants of D mesons (𝑓𝐷𝑠/𝑓𝐷 = 1.140)
and (𝑓𝐷∗𝑠 /𝑓𝐷∗ = 1.070) are close to the experimental ratio(𝑓𝐷𝑠/𝑓𝐷 = 1.258 ± 0.038).

The present results of the decay ratio of B mesons are
in good agreement with the results of [72, 83]. The leptonic
decay widths of B+ meson have been studied in comparison
with the results of [74, 79, 107] and the leptonic decay widths
of D+ meson in comparison with the results of [66, 79, 108].
In addition, the leptonic decay widths of 𝐷+

𝑠 meson have
been studied in comparison with the results of [66, 79,
108].

The obtained results of the leptonic decay widths are
compared with the results of [66, 67, 74, 107, 108]. We have
determined the branching ratio for the B+, D+, and 𝐷+

𝑠

mesons that are in good agreement with the experimental
data and with the recent studies [72–74, 88, 89]. Therefore,
the current potential with used method gives very good
predictions for the heavy-light meson properties. We hope to
extend this work to include external force as a future work.
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