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1 Introduction

1.1 The conformal bootstrap and Virasoro conformal blocks

In spite of the enormous progress in our understanding of 2D conformal field theories over

the past 35 years, important classes of two-dimensional conformal field theories remain to

be discovered, or at least better-understood. An outstanding example is critical percola-

tion, which is known to be a CFT with Virasoro central charge c = 0, but the correlation

functions of this CFT remain to be computed. Recently, new numerical 2D conformal boot-

straps that fully exploit the full 2D local conformal symmetries were developed and new

2D CFT’s were discovered [8, 12]. These 2D bootstraps are based on Virasoro conformal

blocks, and the corresponding solutions are functions of infinite-dimensional representa-

tions of local conformal transformations, as opposed to bootstraps that are valid in any

dimension, which are based on global conformal blocks, and the corresponding solutions

are functions of finite-dimensional representations of global conformal transformations.

1.2 Zamolodchikov’s recursion relation

To implement the new 2D bootstraps numerically, one needs to compute the 4-point confor-

mal blocks on the sphere efficiently. The most efficient known method to compute 4-point

conformal blocks on the sphere is Zamolodchikov’s recursion relation. In fact, solving the

2D bootstrap efficiently is what motivated Al. Zamolodchikov to develop the recursion

relations in the first place [14, 15]. There are two versions of Zamolodchikov’s recursion

relation, a hypergeometric version [14], and an elliptic version [15]. The elliptic version is

particularly efficient, and will be the focus of the present work, and to fully understand

this recursion relation, we will find it useful to consider a related recursion relation for

the 1-point conformal block on the torus, and its 0-point conformal block limit, which is a

Virasoro character.

1.3 The singularities

The 4-point conformal block on the sphere is a function of six parameters: the Virasoro

central charge, the conformal dimension of the Virasoro representation that flows in the

internal channel, and the conformal dimensions of the four external fields. The solution of
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the elliptic recursion relation displays a rich structure of poles. These poles are physical

in the sense that they correspond to the propagation of states for suitable choices of the

central charge and conformal dimensions. In a numerical 2D bootstrap based on Virasoro

conformal blocks that are computed using the elliptic recursion relation, one must deal

with these poles when exploring the space of possible crossing-symmetric CFT solutions.

This happens, for example, in studies of percolation in the 2D Ising model [9]. When

the central charge is such that one deals with minimal-model conformal blocks, additional

poles appear. These additional poles are non-physical and appear due to resonances of

conformal dimensions (see equation (2.11)) at rational values of the central charge. This

complication requires a careful study of the pole structure of the elliptic recursion relation

in the case of Virasoro minimal models, which is the aim of the present work.

1.4 The present work

We study the cancellation of the non-physical poles in computations of minimal-model

conformal blocks using Zamolodchikov’s elliptic recursion relation for the 4-point conformal

block on the sphere. But the 4-point conformal block on the sphere is not the only or

the simplest conformal block that can be computed using a recursion relation. In 2009,

Poghossian [10], and independently Fateev and Litvinov [3] proposed recursion relations

to compute Liouville 1-point conformal blocks on the torus. These recursion relations are

equivalent [6], and we use the Fateev-Litvinov version to study minimal-model 1-point

functions on the torus, and their 0-point limits (when the vertex operator insertion is

the identity) which are Virasoro minimal-model characters, as the simplest examples of

solutions of a Zamolodchikov-type elliptic recursion relation.

1.5 Outline of contents

In section 2, we recall basic facts related to the Virasoro algebra, its representations, and

conformal blocks. In section 3, we consider the 4-point conformal blocks on the sphere

as solutions of the recursion relation, study their singularities and their behaviour in the

context of the Virasoro generalized minimal models and minimal models. In section 4,

we consider the 1-point conformal block on the torus as solutions of the Fateev-Litvinov

recursion relation. In section 5, we study the solutions of the Fateev-Litvinov recursion

relations for the Virasoro minimal-model 1-point functions on the torus in the special

case where the inserted vertex operator is the identity and the 1-point function reduces

to the character of the irreducible highest-weight representation that flows in the torus.

In appendix A, we include the details of an explicit computation, and in appendix B, we

include technical details related to coefficients that appear in the recursion relations.

2 Virasoro algebra, representations and conformal blocks

We recall basic definitions related to the Virasoro algebra, representation theory, and con-

formal blocks. We refer the reader to the review [13].

2.1 The Virasoro algebra, generators and central charge

A Virasoro CFT is based on the Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, n,m ∈ Z, (2.1)

– 2 –
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where the Virasoro generators Ln, n ∈ Z are the modes of the stress-energy tensor and c

is the central charge. The Liouville parametrization of the central charge is,

c = 1 + 6Q2, Q = b+ b−1, c ∈ C (2.2)

2.2 Verma modules

Given a highest-weight state |∆〉, with highest weight ∆, L0|∆〉 = ∆ |∆〉, the descendant

states L−n1 · · ·L−nN |∆〉, n1 > n2 > · · · > nN , form a basis of the Verma module V∆. A

general element in this basis is L−Y |∆ 〉, labeled by a Young diagram Y = (n1, · · · , nN ),

that has N non-zero parts, and,

L0 |L−Y ∆〉 = (∆ + |Y |) |L−Y ∆〉, (2.3)

where |Y | =
∑N

i=1 ni is the number of cells in the Young diagram Y . Using the state-

field correspondence, we use Φ∆ (x) for the primary field of conformal dimension ∆, and

L−Y Φ∆(x) for the descendant fields. We parametrize the conformal dimension ∆ by the

parameter Q, (2.2), and the charge α,

∆ = α (Q− α) (2.4)

2.3 Degenerate representations

A degenerate representation has a highest weight ∆m,n,

∆m,n = αm,n (Q− αm,n) , αm,n = −1

2
(m− 1) b− 1

2
(n− 1) b−1, (2.5)

and has a null state |χmn 〉 at level mn, 〈χmn |χmn〉 = 0. When a representation with high-

est weight ∆mn appears in the spectrum of a given CFT model, two situations can occur.

2.3.1 Null states vanish

The corresponding representation module Vm,n is the quotient of a reducible Verma module

by a non-trivial submodule,

Vmn =
V∆mn

V∆mn+mn
(2.6)

The representations Vmn form the spectrum of the Virasoro generalized minimal as well as

the minimal models. The vanishing of the null state implies the fusion rules. The fusions

of products of Vmn have simple expressions in the parametrization (2.4). For instance, the

fusion of Vmn with a Verma module Vα is a sum of mn Verma modules and takes the form,

Vmn × Vα =

1
2

(m−1)∑
i= 1

2
(1−m)

1
2

(n−1)∑
j= 1

2
(1−n)

Vα+ib+jb−1 , (2.7)

where the sums are in steps of 1.

– 3 –
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2.3.2 Null states do not vanish

Representations with non-vanishing null-states appear in Liouville field theory at c 6 1 [12],

and in computations of probabilities of non-local critical objects such as the left-right

passage probability of an SLE interface. We will not deal with this case in the present work.

2.4 The Virasoro minimal models

Mp p ′ , are labeled by two positive co-prime integers p and p ′, such that 0 < p < p ′. The

space of chiral states of Mp p ′ is generated by a Virasoro algebra with central charge,

b =

(
− p

′

p

) 1
2

(2.8)

The space of chiral states splits into (typically finitely-many) fully-degenerate irreducible

highest-weight modules Vmn labeled by two integers m and n, such that 0 < m < p, and

0 < n < p ′. From (2.5), ∆mn satisfies the negation relation, and the periodicity relation,

∆mn = ∆−m,−n, ∆m,n = ∆m+p, n+p ′ , (2.9)

which combine to give,

∆m,n = ∆m′, n′ , m′ = p−m, n′ = p ′ − n, (2.10)

as well as an infinite chain of relations that involve ‘resonant’ conformal dimensions,

∆m,n = ∆p+m, p ′+n = · · · (2.11)

Two pairs of indexes (m,n) and (r, s) are resonant if there are linked by a finite chain of

transformations (2.9). In this case we use the notation,

(m,n)↔ (r, s)±l , (2.12)

to indicate that there exists an integer l such that,

(m,n)↔ (r, s)±l =⇒ r = l p±m, s = l p ′ ± n, l ∈ N (2.13)

2.4.1 Remark

In our notation, 0 < p < p ′, and b =
√
−p ′/p is pure imaginary such that |b| > 0. One can

think of |b| as the magnitude of the positive screening charge α+ > 0. We normally take

the negative screening charge α− < 0, and the background charge,

− 2α0 = − (α+ + α−) , (2.14)

that is, the background charge can be screened by the sum of a single α+ and a single α−.

– 4 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
3

2.5 The Virasoro conformal blocks

The conformal blocks are special functions of the Virasoro representations. We consider

the 4-point conformal blocks on the sphere, the 1-point conformal blocks on the torus, and

the 0-point conformal blocks on the torus, which are Virasoro characters. In all generality,

these conformal blocks are defined in terms of the p|Y | × p|Y | matrix S|Y | (Y, Y
′) of inner

products of descendants at level |Y |, where p|Y | is the number of partitions of |Y |,

S|Y |
(
Y, Y ′

)
= 〈L−Y ∆|L−Y ′∆〉, |Y | = |Y ′|, (2.15)

and the matrix elements,

〈L−Y1∆1|L−Y2Φ∆2(1)|L−Y3∆3〉 (2.16)

In Virasoro CFT’s, the Shapolavov matrix and the 3-point functions are completely deter-

mined by the Virasoro algebra (2.1). Note that this is not true anymore for more general

conformal chiral algebras such as the WN algebras [1, 2].

3 The 4-point conformal blocks on the sphere

We outline Zamolodchikov’s computation of the 4-point conformal block on the sphere, and

study its poles.

3.1 The 4-point conformal block on the sphere

Global conformal symmetry determines the dependences of four-point blocks on three of

the four positions zi, and we assume (zi) = (x, 0,∞, 1). The conformal block is a function

of six parameters, the central charge, the cross-ratio x, the conformal dimensions of the

four external fields ∆i, i = 1, · · · , 4, and the conformal dimension of the representation

that flows in the internal channel ∆int. In terms of the vertex-operators charges,

∆i = αi (Q− αi) , ∆int = αint (Q− αint) (3.1)

The 4-point conformal block on the sphere has an x-series expansion,

B (∆, x) = x−∆1−∆2+∆ int
(
1 + B1 (∆) x+ B2 (∆) x2 + · · ·

)
, (3.2)

where ∆ for the set of external and internal conformal dimensions (∆1,∆2,∆3,∆4,∆int),

and,

B|Y | (∆) =
∑
Y,Y ′

|Y |=|Y ′|

S
(−1)
|Y |

(
Y, Y ′

)
〈∆2 |Φ1(1)|L−Y ′∆ int 〉〈L−Y ∆int |Φ3(1)|∆4 〉, (3.3)

where Y ′ is any Young diagram such that |Y ′| = |Y |, and Φi is a primary field of conformal

dimension ∆i.

– 5 –
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3.2 The elliptic recursion relation

In [15], Zamolodchikov introduced an elliptic recursion relation of the same 4-point con-

formal blocks on the sphere.1 The recursion parameter q is a function of x

q =
1

16

(
x+

1

2
x2 +

21

64
x3 +

31

128
x4 +O

(
x5
))

, (3.4)

which follows from inverting,

x =
θ4

2 (q)

θ4
3 (q)

, (3.5)

where θ2 (q) and θ3 (q) are Jacobi theta functions,

θ2 (q) =

∞∑
n=−∞

q(n+1/2)2 , θ3 (q) =

∞∑
n=−∞

qn
2
, (3.6)

The conformal blocks can be written as,

B (∆, c, x) = x
c−1
24
−∆1−∆2 (1− x)

c−1
24
−∆2−∆3 (16q)∆int−Q

2

4 θ3 (q)3Q2−4(∆1+∆2+∆3+∆4)

×Hsph (∆ext,∆int, c, x) , (3.7)

where the elliptic variable q and function θ3(q) are defined in (3.4) and in (3.6) and we

use ∆ext for the set of external dimensions (∆1,∆2,∆3,∆4). The analytic structure of the

function Hsph (∆ext,∆int, c, x) is manifest in the following expansion,2

Hsph (∆ext,∆int, c, x) = 1 +
∑
rs>1

(16q)rs
Rsph
r,s (∆ext, c)

∆int −∆r,s
Hsph (∆ext,∆r,−s, c, x) , (3.8)

where,

Rsph
m,n (∆, c) =

1

rm,n
Pm,n (∆1,∆2)Pm,n (∆3,∆4) (3.9)

The factors Pm,n carries all dependence in Rsph
m,n (∆) on the external conformal dimensions

∆i, i = 1, · · · , 4. It is convenient to parametrize the conformal dimensions in terms of the

momenta λi and λm,n,

∆i =
c− 1

24
+ λ2

i , ∆m,n =
c− 1

24
+ λ2

m,n (3.10)

In terms of these variables, one has,

Pm,n (∆1,∆2) =
∏
ρ,σ

(λ1 + λ2 − λρ,σ) (λ1 − λ2 − λρ,σ)

ρ = 1−m, 3−m, · · · ,m− 1, σ = 1− n, 3− n, · · · , n− 1 (3.11)

The factor rm,n is given by,

rm,n = − 1

2

∏
ρ,σ

2λρ,σ,

ρ = 1−m, 2−m, · · · ,m, σ = 1− n, 2− n, · · · , n, (ρ, σ) 6= (0, 0), (m,n) (3.12)
1In [11], Poghossian extended Zamolodchikov’s elliptic recursion relation to a class of W3 Toda 4-point

conformal blocks on the sphere.
2Note that some closed form expression has been found in [7].
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3.3 The generalized minimal model

When the central charge is non-rational, but a degenerate representation V∆m,n flows in

the channel, the recursion relation (3.8) has a pole related to the presence of a null-state

at level mn in V∆m,n , and the corresponding Shapovalov matrix has a vanishing eigenvalue

that produces the singularity in the expansion (3.3).

3.3.1 The regularization ε

We introduce a regularization parameter ε,

∆int = ∆(ε)
m,n = ∆mn + ε (3.13)

The limit ε→ 0 in (3.8) exists only if the polynomial Pm,n(∆1,∆2) and/or Pm,n(∆3,∆4),

defined in (3.9) and in (3.11), vanish. Recall that Pm,n(∆1,∆2) vanishes when

(V∆1 ,V∆2 ,Vm,n) satisfy the fusion rules (2.7), that is to say when α2 = α1 + ib+ jb−1, with

i ∈ {(1−m)/2, (3−m)/2, · · · , (m− 1)/2} and j ∈ {(1− n)/2, (3−m)/2, · · · , (n− 1)/2}.
The generalized minimal model has a non-rational central charge, c /∈ Q, and a spectrum

formed by all the degenerate representations Vm,n with (m,n) ∈ N+. All the fields in the

spectrum satisfy the fusion rules (2.7), imposed by the condition χmn = 0. The conformal

blocks of the generalized minimal model can be obtained by using the recursion relation

with a simple limiting procedure. This consists in setting,

∆i = ∆(εi)
ri,si = ∆ri,si + εi, i = 1, · · · , 4, (3.14)

with εi → 0, i = 1, · · · , 4 of the same order of ε, εi = O (ε), and take the limit ε→ 0. Using,

Hsph
m,n (∆, c, x)

∆int −∆m,n
∝
Pm,n

(
∆

(ε)
r1,s1∆

(ε2)
r2,s2

)
Pm,n

(
∆

(ε3)
r3,s3∆

(ε4)
r4,s4

)
∆ε
m,n −∆m,n

∼ O (ε) , (3.15)

it is straightforward to see that the term Hsphm,n (∆, c, x)in (3.8) do not contribute. In the

generalized minimal models therefore, the conformal block with ∆int = ∆m,n is obtained

using the sum in (3.8) where the term (r, s) = (m,n) is omitted. We stress that, in

this procedure limit, the final result is independent of the exact relation between the

regularization parameters εi and ε. The only thing that matters is the fact that the εi and

ε are of the same order. As we will see later, this will not be the case for the computation

of the characters.

3.4 Minimal-model conformal blocks.

We address here the problem of how to obtain the conformal blocks of minimal models

Mp,p ′ from the recursion relation (3.8). The main observation is that, with respect to the

generalized minimal models, there are new poles appearing in (3.8). The location of these

extra poles do not depend neither on the internal channel field nor on the external fields.

They originate from the resonances in the conformal dimensions that occur when c ∈ Q.

– 7 –
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Let us consider for instance one conformal block of the Ising minimal model, M4,3. At

level 7, two terms appear,

Rsph
2,1 (∆ext, c)

∆int −∆2,1

Rsph
1,5 (∆ext, c)

∆2,−1 −∆1,5
, and

Rsph
1,3 (∆ext, c)

∆int −∆1,3

Rsph
4,1 (∆ext, c)

∆−1,3 −∆4,1
, (3.16)

that are singular due to the fact that at c = 1/2, (2,−1)→ (1, 5)− and (−1, 3)→ (4, 1)−.

Differently from the poles that originate when ∆int = ∆m,n, which are related to the null-

state at level mn, these other singularities can be considered an artifact of the recursion

relation in the sense that they are not related to any special properties of descendant states.

In the appendix we better explain this point with an explicit example.

3.4.1 The regularization ε′

In addition to (3.13), we introduce a regularization parameter ε′ to the central charge c,

b2 = −p
′

p
+ ε′, (3.17)

that is of the same order of ε, ε′ = O (ε).

3.5 Conjecture

We conjecture that, by setting (3.13), (3.14) and (3.17), the limit ε → 0 in the recursion

relation (3.8) exists and provides the correct minimal model conformal block.

3.6 Further example

We have checked that the two terms (3.16) combine to give a finite contribution. Another

example, at level 20, is the combination of the following five singular terms,

Rsph
1,1 (∆ext, c)(

∆
(ε)
1,1 −∆1,1

) Rsph
4,3 (∆ext, c)

(∆1,−1 −∆4,3)

Rsph
7,1 (∆ext, c)

(∆4,−3 −∆7,1)

+
Rsph

1,1 (∆ext, c)(
∆

(ε)
1,1 −∆1,1

) Rsph
2,5 (∆ext, c)

(∆1,−1 −∆2,5)

Rsph
1,9 (∆ext, c)

(∆2,−5 −∆1,9)

+
Rsph

2,3 (∆ext, c)(
∆

(ε)
1,1 −∆2,3

) Rsph
5,1 (∆ext, c)

(∆2,−3 −∆5,1)

Rsph
1,9 (∆ext, c)

(∆5,−1 −∆1,9)

+
Rsph

2,3 (∆ext, c)(
∆

(ε)
1,1 −∆2,3

) Rsph
1,7 (∆ext, c)

(∆2,−3 −∆1,7)

Rsph
7,1 (∆ext, c)

(∆1,−7 −∆7,1)
+

Rsph
4,5 (∆ext, c)(

∆
(ε)
1,1 −∆4,5

) (3.18)

to a finite contribution. If we can predict the singular terms that, at a given level, provide

finite contributions, we have not been able to obtain a compact formula for these. As we

will see in the following, we can control the contribution of these type of singularities in

the computation of a simpler symmetry function, the character.
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4 1-point conformal blocks on the torus

We recall the Fateev-Litvinov recursion relation for the 1-point conformal block on the

torus, and introduce the structure of its poles.

4.1 The 1-point conformal block on the torus

The Virasoro 1-point conformal block on the torus consists of a single vertex-operator

insertion in a torus geometry, and a Virasoro irreducible highest-weight representation

flows in the single internal channel of the torus. This is a function of four parameters, the

central charge, the torus parameter q, the conformal dimension of the external field ∆ext,

and the conformal dimension of the internal channel ∆int. The conformal dimension of the

external vertex-operator is,

∆ext = αext (Q− αext) , (4.1)

and similarly, the conformal dimension of the representation that flows in the torus is,

∆int = αint (Q− αint) (4.2)

The torus 1-point conformal block has the q-series expansion,

F (∆, q) = 1 + F1 (∆) q + F2 (∆) q2 + · · · , (4.3)

where ∆ is a pair of conformal dimensions (∆ext, ∆int), and,

F|Y | (∆) =
∑
Y,Y ′

|Y |=|Y ′|

S
(−1)
|Y |

(
Y, Y ′

)
〈L−Y ∆int |Φext(1) |L−Y ′∆int〉 (4.4)

4.2 The recursion relation of Fateev and Litvinov [3]

The 1-point conformal block on the torus is,

F (∆ | q) =
q1/24

η(q)
H (∆ | q) , (4.5)

where,

q1/24

η(q)
=

∞∏
i=1

1

1− qi
= 1 + q + · · ·+ pN q

N + · · · , (4.6)

pN is the number of partitions of N ∈ N, and,

H (∆ | q) =

∞∑
N=0

HN (αext,∆int) q
N (4.7)

4.2.1 Remark

The factor q1/24/η(q) is the character of the Fock space of a free boson, and in (4.5), the

1-point function on the torus is written in terms of the free-boson of Feigin and Fuks [4, 5].

This will become clear once we take the αext → 0 limit, and 1-point function becomes a

character, in section 5.
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4.2.2 The recursion relation

The recursion comes in the definition of HN , the coefficients of the numerator of the

conformal block,

HN (αext,∆int) =
N∑

rs=1

Rtor
r,s (αext)

(∆int −∆r,s)
HN−rs (αext,∆−r,s) , H0 (αext,∆int) = 1 (4.8)

4.2.3 The Rtor
r,s numerators

Rtor
r,s (αext) =

1

4rr,s

∏
k

∏
l

(
k − 1

2
b+

l − 1

2
b−1 + αext

)
,

k = 1− 2r, 3− 2r, · · · , 2r − 1, l = 1− 2s, 3− 2s, · · · , 2s− 1, (4.9)

rr,s is given by formula (3.12).

4.2.4 Examples

The simplest coefficients HN , N = 1, 2, · · · , in (4.7) are,

H1 (αext,∆int) =
Rtor

1,1 (αext)

(∆int −∆1,1)
,

H2 (αext,∆int) =
Rtor

1,1 (αext)

(∆int −∆1,1)
H1 (αext,∆−1,1)

+
Rtor

1,2 (αext)

(∆int −∆1,2)
+

Rtor
2,1 (αext)

(∆int −∆2,1)
,

H3 (αext,∆int) =
Rtor

1,1 (αext)

(∆int −∆1,1)
H2 (αext,∆−1,1) +

Rtor
1,2 (αext)

(∆int −∆1,2)
H1 (αext,∆−1,2)

+
Rtor

2,1 (αext)

(∆int −∆2,1)
H1 (αext,∆−2,1) +

Rtor
1,3 (αext)

(∆int −∆1,3)
+

Rtor
3,1 (αext)

(∆int −∆3,1)

(4.10)

and so on.

4.3 Remark

Expanding (4.5), we obtain,

F (∆ext,∆int | q) = (H0) q0 + (H0 +H1) q + (2H0 +H1 +H2) q2 + · · ·

=

∞∑
N=0

N∑
k=0

p(N − k)Hkq
N (4.11)

From (4.11), the structure of the conformal block F (∆ | q) is clear. In particular, if ∆ext =

0, and HN = 0, for all N = 1, 2, · · · , we recover the character of the Fock space of a free

boson, which is the character of a generic non-minimal conformal field theory. If ∆ext = 0,

and HN = ±1, for appropriate values of N , null states and their descendants are removed

and one obtains the character of an irreducible fully-degenerate highest-weight module.

This will be discussed in detail in section 5.
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5 The 0-point functions on the torus: the characters

We discuss the derivation of the character of the representation corresponding to ∆int

using the recursion relation and a particular limiting procedure, in three cases: 1. general

central charge and general ∆int , 2. general central charge and degenerate representation

∆int = ∆m,n, and 3. minimal models Mp,p ′ characters.

5.1 General central charge and general ∆int

We introduce regularization parameter ε that we set to 0 at the end. We set the inserted

vertex-operator to be the identity, in the limit ε to zero,

αext = 2ε (5.1)

The factor 2 in the above definition is for convenience. For general r, s ∈ N, the term,

Rtor
r,s

(αext = 2ε)

(∆int −∆r,s)
= −ε (Q− 2αr,s)

(∆int −∆r,s)
+O

(
ε2
)
, (5.2)

vanishes in the limit ε → 0, provided that limε→0 ∆int 6= ∆r,s. All the Hi are then zero

and the expansion is given by (4.6). As expected, one finds the character χ∆int(q) of an

irreducible Verma module of dimension ∆int.

5.2 General central charge, ∆int = ∆m,n

First we set αext = 2ε. Differently from the previous case, here we encounter the pole

coming from the denominator (∆int −∆m,n).

5.2.1 Internal field regularization

We need to regularize the dimension of the internal field, and we set,

αint = αm,n + ε′, (5.3)

and we define,

∆(ε′)
m,n = αint (Q− αint) = ∆m,n + ε′ (Q− 2αm,n) +O

(
ε′ 2
)

(5.4)

For ε, ε′ � 1, the term,
Rtor
m,n (2ε)(

∆
(ε′)
m,n −∆m,n

) = −
ε+O

(
ε2
)

ε′ +O (ε′ 2)
(5.5)

The result of the limit (ε, ε′) → (0, 0) depends therefore on the way one reaches the point

(ε, ε′) = (0, 0). For instance, if one first sends ε → 0 and then ε′ → 0, all the Hi are zero

and the character of a general Verma module is found. This result can be interpreted by

saying that the null-state at level nm is not vanishing. Interestingly, such representation

appears for instance in the construction of the Liouville theory for c 6 1 [12]. By setting

ε′ = ε one finds instead that,

lim
ε→0

Rtor
m,n (αext = 2ε)(
∆

(ε)
m,n −∆m,n

) = −1, (5.6)

– 11 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
3

for general b. The contribution (5.6) is the only non-zero term in Hmn, which is itself

the only non-zero Hi. This contribution Hmn = −1 at level mn corresponds to removing

the null state. From equation (4.11), you can see that the expansion is (keeping only the

non-zero terms),

F (∆ | q) = 1 + · · ·+ (pmn − 1) qmn + (pmn+1 − 1) qmn+1

+ · · ·+ (pmn+N − pN ) qmn+N + · · · (5.7)

This corresponds to quotienting out the module of the null state.We observe that the

condition ε′ = ε, providing the character of a degenerate representation Vm,n, assures that

the Coulomb gas fusion condition αint + αint = αext is satisfied for any value of ε.

5.3 Characters in minimal models

In the case of the minimal models, b2 = −p ′

p , where p and p ′ are coprime positive integers,

0 < p < p ′, we know that a fully-degenerate highest-weight module Vm,n has a null-state

at level mn, and another at level (p − m)(p ′ − n). We need first to solve the new poles

appearing in the term Hm′n′ =
Rtor
m′,n′ (2ε)(

∆
(ε′)
m,n−∆m′,n′

) , where ∆
(ε′)
m,n is defined in (5.3), 0 < m < p

and 0 < n < p ′, and m′ = p−m, and n′ = p ′ − n.

5.3.1 The regularization ε′′

We introduce a third regularization parameter ε
′′

to move away from the minimal model

point by setting

b =

√
−p
′

p
(1 + ε′′) (5.8)

For ε, ε′, ε′′ � 1,

Rtor
m′,n′ (2ε)(

∆
(ε′)
m,n −∆m′,n′

) = −
ε+O

(
ε2
)

−ε′ + 1
2

√
−pp ′ ε′′ +O (ε′ 2, ε′′ 2, ε′ ε′′)

(5.9)

Again, the final result depends on how we approach the point (ε, ε′, ε
′′
) = (0, 0, 0). In

order to obtain the minimal model character we have first to remove the null state at level

(p−m)(p ′ − n). This is obtained by setting,

ε′ → ε, ε′′ → 4√
− p p ′

ε, (5.10)

and taking the limit ε→ 0. Then both (5.6) and,

lim
ε→0

Rtor
m′,n′ (2ε)(

∆
(ε)
m,n −∆m′,n′

) = −1, (5.11)

are satisfied at the same time. The results (5.6) and (5.11) are not sufficient to prove that

one obtains in the limit the minimal model character. One has to consider that there are
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other terms, of the form,

Rtor
m1,n1

(2ε)(
∆

(ε)
m1,n1 −∆m1,n1

) Rtor
m2,n2

(2ε)

(∆−m1,n1 −∆m2,n2)
, (5.12)

that will contribute when “resonances” in the conformal dimension, such as ∆−m1,n1 =

∆m2,n2 , occur. The fact that there is an infinite number of resonances, or equivalently,

infinitely-many pairs (r, s) that correspond to the same conformal dimension ∆r,s, and that

the recursion relation expression for HN includes all resonances (r, s) such that rs 6 N

will thus play an important role. We are now in the position to give the exact contribution

of all the terms which do not vanish in the limit ε→ 0 (see appendix B for the derivation

of the following results). In the following we always assume that the integers (m,n) belong

to the minimal model Mp,p ′ Kac table, 0 < m < p, 0 < n < p ′. Concerning the terms

in the recursion that have at the denominator the dimension of the internal field ∆
(ε)
m,n, we

show in appendix B that,

if (m,n)↔ (r, s)±l =⇒ lim
ε→0

Rtor
r,s (2ε)

∆
(ε)
m,n −∆r,s

= − 1

22l−1±1(2l ± 1)

l− 1
2
± 1

2∏
k=1

4k2 − 1

k2
(5.13)

We consider now the terms of the type Rtor
r,s (2ε) /

(
∆m′,−n′ −∆r,s

)
. We define two integers

(l1, l2) from the Euclidean division of (r, s), (r, s) = (l1p+m, l2p
′ + n). We have,

if
(
m′,−n′

)
↔ (r, s)±l′ =⇒

lim
ε→0

Rtor
r,s

∆m′,−n′ −∆r,s
= − 1

22 l+1 l′

l∏
k=1

4k2 − 1

k2
, l = min (l1, l2) (5.14)

We will provide below the complete combinatorial structure of all the terms that contribute

to the character. All these terms are finite, but they are fractional and add up to integral

values.

5.4 Example 1. The Ising model, (p ′, p) = (4, 3), (m,n) = (1, 1)

We give here an explicit application of the previous formulas to the identity character of

the M4,3 minimal model. We set αest = 2ε, αint = ε and b = bε given by (5.10).

H1 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) , lim
ε→0

H1 = −1, H6 =
Rtor

2,3 (2ε)(
∆

(ε)
1,1 −∆2,3

) , lim
ε→0

H6 = −1

H11 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
2,5 (2ε)

(∆1,−1 −∆2,5)
+

Rtor
2,3 (2ε)(

∆
(ε)
1,1 −∆2,3

) Rtor
5,1 (2ε)

(∆2,−3 −∆5,1)
(5.15)

Using the fact that (1, 1) and (2, 3) are in the Kac table and that (1,−1) → (2, 5)−1 ,

(2,−3)→ (5, 1)+
1 , one has from (5.13) and (5.14),

lim
ε→0

H11 =

(
−1×−1

2

)
+

(
−1×−1

2

)
= 1 (5.16)

H13 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
4,3 (2ε)

(∆−1,1 −∆4,3)
+

Rtor
2,3 (2ε)(

∆
(ε)
1,1 −∆2,3

) R tor
1,7 (2ε)

(∆2,−3 −∆1,7)
(5.17)
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From (1,−1)→ (4, 3)+
1 , (2,−3)→ (1, 7)−1

lim
ε→0

H13 =

(
−1×−1

2

)
+

(
−1×−1

2

)
= 1, (5.18)

These two terms correspond to adding again the null states at level 11 and 13, which are

contained into the modules of both the null states at level 1 and 6, and were therefore

subtracted twice. Let us make another example at level 20,

H20 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
4,3 (2ε)

(∆1,−1 −∆4,3)

Rtor
7,1 (2ε)

(∆4,−3 −∆7,1)

+
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
2,5 (2ε)

(∆1,−1 −∆2,5)

Rtor
1,9 (2ε)

(∆2,−5 −∆1,9)

+
Rtor

2,3 (2ε)(
∆

(ε)
1,1 −∆2,3

) Rtor
5,1 (2ε)

(∆2,−3 −∆5,1)

Rtor
1,9 (2ε)

(∆5,−1 −∆1,9)

+
Rtor

2,3 (2ε)(
∆

(ε)
1,1 −∆2,3

) Rtor
1,7 (2ε)

(∆2,−3 −∆1,7)

Rtor
7,1 (2ε)

(∆1,−7 −∆7,1)
+

Rtor
4,5 (2ε)(

∆
(ε)
1,1 −∆4,5

) (5.19)

From (5.13) and (5.14),

lim
ε→0

H20 =

(
−1×−1

2
×−1

2

)
+

(
−1×−1

2
×−1

2

)
+

(
−1×−1

2
×−1

4

)
+

(
−1×−1

2
×−1

4

)
− 1

4
= −1 (5.20)

Notice that this sum of terms which add up to an integer has exactly the same structure

as equation (3.18).

5.5 General case

We consider the character of a representation indexed by (m,n), 0 < m < p, 0 < n < p ′.

We provide here the explicit procedure to find all the terms that, in the limit (5.10), have

a finite fraction contribution that sums up, at a given level, to 1 or −1. We want to give a

procedure that takes into account all the singular terms appearing in the one-point torus

recursion relation in the minimal model limit. Given a pair of indices (m,n), we want

to find the set of pairs (r, s), that are resonant with (m,−n), (m,−n) ↔ (r, s)+
l , or with

(−m,n), (−m,n)↔ (r, s)+
l , where we used the notation defined in (2.13). These pairs are

obtained respectively by the two transformations,

v
(l)
1 : (m,n)→

(
r = lp+m, s = lp ′ − n

)
(m,−n)↔ (r, s)+

l (5.21)

v
(l)
2 : (m,n)→

(
r = lp−m, s = lp ′ + n

)
(−m,n)↔ (r, s)+

l (5.22)
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By using these transformations we generate the following diagram,

k = 0

(m,n)

∆m,n

(p+m, p ′ + n)

(2p+m, 2p ′ + n)

· · · · · ·

v
(l)
1

v
(l)
2

∆m,n

(p−m, p ′ − n)

(2p−m, 2p ′ − n)

· · · · · ·

v
(l)
1

v
(l)
2

k = 1

∆m,n +mn
(p+m, p ′ − n)

v
(l)
1

(2p+m, 2p ′ − n)

· · · · · ·

∆m,n +mn

(p−m, p ′ + n)

(2p−m, 2p ′ + n)

· · · · · ·

∆m,n + (p−m)(p ′ − n)

(m, 2p ′ − n)

v
(l)
1

v
(l)
2

(p+m, 3p ′ − n)

· · · · · ·

(2p−m,n)

v
(l)
1

v
(l)
2

(3p−m, p ′ + n)

· · · · · ·

∆m,n + (p−m)(p ′ − n)

k = 2

· · · · · ·

· · ·

· · ·

· · ·

· · ·

In the k = 0 column, we place the two groups of pairs, (r, s), which are resonant with

(m,n), (m,n)↔ (r, s)+
l and (m,n)↔ (r, s)−l . The column k = 1 is generated by applying

the transformations v
(l)
1 and v

(l)
2 to (m,n) and (p ′ −m, p− n). One obtains four families,

corresponding to the two set of pairs (r, s) resonant with (m,−n), (m,−n) ↔ (r, s)+
l

and (m,−n) ↔ (r, s)−l and associated to representation with dimension ∆m,n + mn, plus

the two sets of pairs in resonance with (p−m,n− p ′), (p−m,n− p ′) ↔ (r, s)+
l and

(p−m,n− p ′) ↔ (r, s)−l and associated to representation with dimension ∆m,n + (p′ −
m)(p− n). The column k = 2 is obtained by applying the transformations v

(l)
1 and v

(l)
2 to

(p+m, p ′ − n), (p−m, p ′ + n), (m, 2p ′ − n) and (2p−m,n) and so on. At each column

one can therefore identify four families of pairs that we indicate with the letters U1, D1

and U2, D2. Any pair of indices appearing in the diagram is identified by its family and

by two non-negative integers k and l, indicating respectively the column and the position

in the interior of each family,

U1(k, l)→
(

(k + l)p+m, (−1)kn+ lp ′ +
1− (−1)k

2
p ′
)

D1(k, l)→
(

(1 + l)p−m, (−1)k+1n+ (l + k)p ′ +
1− (−1)k+1

2
p ′
)
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U2(k, l)→
(
lp+m, (−1)kn+ (l + k)p ′ +

1− (−1)k

2
p ′
)

D2(k, l)→
(

(1 + l + k)p−m, (−1)k+1n+ lp ′ +
1− (−1)k+1

2
p ′
)

(5.23)

It is straightforward to obtain the action of the transformations v
(l)
1 and v

(l)
2 on each index,

v
(l′)
1 : U1(k, l)→ U1(k + 2l + 1, l′), U2(k, l)→ U1(k + 2l + 1, l′)

v
(l′)
1 : D1(k, l)→ D2(k + 2l + 1, l′), D2(k, l)→ D2(k + 2l + 1, l′)

v
(l′)
2 : U1(k, l)→ D1(k + 2l + 1, l′), U2(k, l)→ D1(k + 2l + 1, l′)

v
(l′)
2 : D1(k, l)→ U2(k + 2l + 1, l′), D2(k, l)→ U2(k + 2l + 1, l′). (5.24)

The above rules allow to write the chains of resonant terms in the recursion relation in

terms of words formed by the letters U1,2 and D1,2, whose sequences have to satisfy the

connections above. For instance, the terms in the example in (5.19), correspond to the

following words,

U1(0, 0)U1(1, 0)U1(2, 0)

U1(0, 0)D1(1, 0)U2(2, 0)

D1(0, 0)D2(1, 0)U2(2, 0)

D1(0, 0)U2(1, 0)U1(2, 0)

U1(0, 1)

As seen in this example, the words corresponding to a certain level N will all end either

with U or with D. The reason is that the last arrows of the chains must point to the

same dimension, so they must all point either to the 1 sector or all point to the 2 sector.

From (5.24), all U labels transform to a label in the 1 sector, while all D labels transform

to labels in the 2 sector. Since there always exists either a U1(0, 0)U1(1, 0) · · ·U1(K, 0) or

a D2(0, 0)D2(1, 0) · · ·D2(K, 0) chain, of length K + 1, the level N is either,

NU (K) =
K∑
k=0

(kp+m)

(
(−1)kn+

(
1− (−1)k

) p ′
2

)
, (5.25)

or

ND(K) =
K∑
k=0

((k + 1)p−m)

(
(−1)k+1n+

(
1− (−1)k+1

) p ′
2

)
(5.26)

Then, the contribution of each word is obtained by using formulas (5.13) and (5.14). For

instance,

U1(k1, l1)U1(k1 + 2l1 + 1, l2)→ lim
ε→0

Rtor
r2,s2(2ε)

∆r1,−s1 −∆r2,s2

,

with (r1, s1) = U1(k1, l1), (r2, s2) = U1(k1 + 2l1 + 1, l2) (5.27)
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Applying (5.14) with l′ = l1 + l2 + 1 and l = l2, one has,

U1(k1, l1)U1(k1 + 2l1 + 1, l2)→ − 1

22l2+1(l1 + l2 + 1)

l2∏
j=1

4λ2 − 1

λ2
(5.28)

In the same way, we find,

U2(k1, l1)D1(k1 + 2l1 + 1, l2) = D1(k1, l1)U2(k1 + 2l1 + 1, l2)

= D2(k1, l1)D2(k1 + 2l1 + 1, l2)

= U1(k1, l1)U1(k1 + 2l1 + 1)

= − 1

22l2+1(l1 + l2 + 1)

l2∏
λ=1

4λ2 − 1

λ2
(5.29)

and

U2(k1, l1)U1(k1 + 2l1 + 1) = D1(k1, l1)D2(k1 + 2l1 + 1, l2)

= D2(k1, l1)U2(k1 + 2l1 + 1, l2)

= U1(k1, l1)D1(k1 + 2l1 + 1, l2)

= − 1

22l2+1(k1 + l1 + l2 + 1)

l2∏
λ=1

4λ2 − 1

λ2
(5.30)

The non-trivial contribution at level N(K) is given by all possible chains starting with

U1(0, l0) or D1(0, l0), with constraint on the last terms: U1 or U2 if N = N1, D1 or D2

if N = N2. Note that given equalities (5.29) and (5.30), for fixed K and fixed {li}, the

contributions at levels N1(K) and N2(K) are equal. Therefore, to compute the contribution

at level N1(K) (resp. at level N2(K)), instead of constraining the chains to end by U (resp.

D), we can leave the ends of the chains free and divide by 2 at the end. The first terms of

the chains involve the internal dimension ∆ε
m,n,

U1(0, l0) =
Rtor
l0p+m,l0p ′+n

∆ε
m,n −∆l0p+m,l0p ′+n

= − 1

22l0(2l0 + 1)

l0∏
λ=1

4λ2 − 1

λ2
,

D1(0, l0) =
Rtor

(l0+1)p−m,(l0+1)p ′−n

∆ε
m,n −∆(l0+1)p−m,(l0+1)p ′−n

= − 1

22l0(2l0 + 1)

l0∏
λ=1

4λ2 − 1

λ2
(5.31)

We now need to specify the set {li}. Let us denote I the cardinal of this set. We then have

the constraint,

I +

I−1∑
i=0

2li = K + 1 (5.32)

By writing I = K + 1− 2a, the constraint is,

K−2a∑
i=0

li = a, (5.33)
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and the set {l0, l1, · · · , lK−2a} is therefore a partition of size K − 2a + 1 of the integer a,

{l0, l1, · · · , lK−2a} = p̃K−2a+1(a) in which zeroes are included, as well as all permutations.

For example the set of the partitions of size 3 of 3 is,

{(3, 0, 0), (0, 3, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 1, 2), (0, 2, 1), (1, 1, 1)}. (5.34)

a then runs from 0 to a maximal a. If K is odd, K + 1 is even and Imin = K + 1− 2amax

is even. Therefore Imin = 2, and amax = (K − 1)/2. If K is even, K + 1 is odd and

Imin = K + 1 − 2amax is odd and equals 1. Therefore amax = K/2 and l0 = amax, all

other li being 0, and this chain consists of the single term (5.31). We can now give the

final formula for the contribution CN(K) that takes into account all the non-zero terms at

a given level N(K),

CN(K) =
1

2

[K−1
2

]∑
a=0

∑
{l0,··· ,lK−2a}=p̃K−2a+1(a)

∑
{X0,··· ,XK−2a}

X0 (0, l0)

×
K−1−2a∏
j=0

Xj

(
2

j−1∑
i=0

li + j, lj

)
Xj+1

(
2

j∑
i=0

li + j + 1, lj+1

)
+ δK(mod 2),0X0 (0,K/2) , (5.35)

where the Xj>1’s are U1,2 or D1,2, X0 is U1 or D1. From (5.29), (5.30) and (5.31),

CN(K) = − δK(mod 2),0

K/2∏
λ=1

4λ2 − 1

λ2

2K(K + 1)
+

[K−1
2

]∑
a=0

∑
{l0,...,lK−2a}=p̃K−2a+1(a)

−

l0∏
λ=1

4λ2 − 1

λ2

22l0(2l0 + 1)

×
K−1−2a∏
j=0

−

lj+1∏
λ=1

4λ2 − 1

λ2

22lj+1+1

(
1

lj + lj+1 + 1
+

1

lj + lj+1 + 1 + 2
∑j−1

i=0 li + j

)
.

(5.36)

We have checked numerically — up to order N ∼ 300 — that CN(K) = (−1)K+1.

6 Conclusions

We extended Zamolodchikov’s elliptic recursion relation for 4-point conformal blocks on

the sphere [15], and its analogue for 1-point functions on the torus [3, 10], originally derived

for conformal blocks in Liouville theory with non-rational central charge, to conformal field

theories with rational central charges, including the generalized minimal and minimal mod-

els. When the central charge is rational, solutions of the recursion relation have additional

poles that appear on a term by term basis. These poles are non physical in the sense that

they are artifacts of the recursion which splits perfectly well-defined terms into terms that

can be singular on their own but add up to finite contributions. We studied the structure
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of these non physical poles in two situations. 1. In 4-point conformal blocks on the sphere,

where we found that the singular terms add up to finite terms on the basis of examples,

and conjectured that this is the case in general, and that regularizing properly all the pa-

rameters entering the conformal block, one obtains the minimal model conformal block. 2.

In 1-point conformal blocks on the torus, in the limit where the vertex operator insertion is

the identity operator and the 1-point conformal block reduces to a 0-point conformal block,

which is a Virasoro character. In this case, the contributions of the non-physical poles are

fractions, and explicit expressions of these fractions were derived in (5.13) and (5.14). We

unveiled the combinatorial structure of these fractions found it to be reminiscent of that

in the Feigin-Fuks construction of minimal model characters [4], and used it to show that

the contribution of the non-physical poles add up to ±1. The non-physical poles of the

4-point conformal blocks also follow this combinatorial structure. A fine regularization

of the central charge is needed in the case of the 0-point functions, whereas the 4-point

function is not sensitive to the regularization used.
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A A direct computation at c = −2

At c = −2, which we can consider as theM(2, 1) minimal model, the first extra pole appear

at order 3 in the expansion of the conformal block. It is therefore possible to compare the

recursion result to the result one gets by hand, ie by computing the Shapovalov matrix of

inner products and the “matrix elements”,

〈L−Y ∆|Φ∆1(x)Φ∆2(0)〉/〈∆|Φ∆1(x)Φ∆2(0)〉,
〈Φ∆3(1)Φ∆4(∞)|L−Y ′∆〉/〈Φ∆3(1)Φ∆4(∞)|∆〉 (A.1)

which appear in (3.3). In the basis {L3
−1 |∆〉 , L−1 |Q2〉 , |Q3〉} where,

|Q2〉 =

(
L2
−1 −

2(2∆ + 1)

3
L−2

)
|∆〉 ,

|Q3〉 =
(
L3
−1 − 2(∆ + 1)L−2L−1 + ∆(∆ + 1)L−3

)
|∆〉 (A.2)
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are the quasi-primary states at levels 2 and 3, the Shapovalov matrix at level 3 is diagonal,

S(3) = diag (24∆(∆ + 1)(2∆ + 1),

64

9
(∆ + 2)(2∆ + 1)(∆−∆1,2)(∆−∆2,1),

6∆(∆ + 1)(∆ + 2)(∆−∆1,3)(∆−∆3,1)) (A.3)

Then the contribution of the quasi-primary at level 3 is,

PL (Q3 ; ∆1,∆2)PR (Q3 ; ∆3,∆4)

〈Q3|Q3〉
=

P2 (∆ ; ∆i)

6∆(∆ + 1)(∆ + 2)(∆−∆1,3)(∆−∆3,1)
(A.4)

where P2 (∆ ; ∆i) is a polynomial of order 2 in the internal dimension ∆:

P2 (∆ ; ∆i) = (∆1 −∆2)(∆3 −∆4)(∆1 + ∆2 − 1)(∆3 + ∆4 − 1)∆2

+ (∆1 −∆2)(∆3 −∆4)
{

(1− (∆1 + ∆2))
(
(∆3 −∆4)2 − (∆3 + ∆4)

)
+ (1− (∆3 + ∆4))

(
(∆1 −∆2)2 − (∆1 + ∆2)

)}
∆

+ (∆1 −∆2)(∆3 −∆4)
(
(∆1 −∆2)2 − (∆1 + ∆2)

)
×
(
(∆3 −∆4)2 − (∆3 + ∆4)

)
(A.5)

When c = −2, we have,

∆1,3 = 0, ∆3,1 = 3, (A.6)

and the contribution (A.4) of |Q3〉 is well-defined. However, if we decompose it in partial

fractions,

〈Q3|Φ∆1(0)|∆2〉〈∆3|Φ∆4(∞)|Q3〉
〈Q3|Q3〉

=
A

∆−∆1,1
+

B

∆−∆1,3
+

C

∆−∆3,1
+

A∆ +D

(∆ + 1)(∆ + 2)
,

(A.7)

we find,

A =
f1,1 (∆1,∆2) f1,1 (∆3,∆4)

2∆1,3∆3,1
,

B =
f1,3 (∆1,∆2) f1,3 (∆3,∆4)

∆1,3(∆1,3 −∆3,1)(1 + ∆1,3)(2 + ∆1,3)
,

C =
f3,1 (∆1,∆2) f3,1 (∆3,∆4)

∆3,1(∆1,3 −∆3,1)(1 + ∆3,1)(2 + ∆3,1)
, (A.8)

where we defined the function,

fr,s (∆i,∆j) = (∆i −∆j)
(
(∆i −∆j)

2 − (∆i + ∆j)(1 + ∆r,s) + ∆r,s

)
(A.9)

Notice that given equations (A.6), A and B become singular for c = −2. In fact we have,

lim
c→−2

A ∝ R1,1(∆i)R2,1(∆i)

∆1,−1 −∆2,1
, lim

c→−2
B ∝ R1,3(∆i), lim

c→−2
C ∝ R3,1(∆i) (A.10)

A and B are the terms that add to a finite contribution. In that sense, the extra poles are

artifacts of the recursion relation rewrites a well-defined quantity as a sum of terms that

are individually singular.
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B About Rtor
m,n

We prove that

Rtor
m,n (2ε) = −ε

(
mb+ nb−1

)
+O

(
ε2
)
, (B.1)

for general b and for all (m,n).

Rtor
m,n (α) =

1

4rm,n

∏
k,l

(
1− k

2
b+

1− l
2

b−1 − α
)
,

k = 1− 2m, 3− 2m, · · · , 2m− 1, l = 1− 2n, 3− 2n, · · · , 2n− 1 (B.2)

and,

rm,n = − 1

2

∏
ρ,σ

2λρ,σ,

ρ = 1−m, 2−m, · · · ,m, σ = 1− n, 2− n, · · · , n, (ρ, σ) 6= (0, 0), (m,n) (B.3)

which can be rewritten as,

rm,n =
1

2

m∏
i=1−m

n∏
j=1−n

(
i b+ j b−1

)
, (i, j) 6= (0, 0), (i, j) 6= (m,n), (B.4)

When the inserted operator is the identity, α = 2ε, we get,

Rtor
m,n = − ε∏

ij (i b+ j b′)

∏
(k,l) 6=(1,1)

(
1− k

2
b+

1− l
2

b−1

)
+O

(
ε2
)

(B.5)

We can call ρ = 1−k
2 and σ = 1−l

2 , then ρ goes from 1 − m, 2 − m, · · · ,m and σ from

1− n, 2− n, · · · , n. (k, l) 6= (1, 1)⇔ (ρ, σ) 6= (0, 0) and we get,

Rtor
m,n = − ε

 ∏
(i,j) 6=(0,0),(i,j) 6=(m,n)

(
ib+

j

b

)−1 ∏
(ρ,σ) 6=(0,0)

(
ρb+

σ

b

)
+O

(
ε2
)

= − ε
(
mb+ n b′

)
+O

(
ε2
)

(B.6)

This also implies that,

lim
ε→0

Rm,n (2ε)

ε (mb+ nb−1)
= −1 (B.7)

for all b, for all (m,n). When c ∈ Q, it can happen that the denominator rm,n vanishes.

We will show that the coefficients Rm,n (2ε) are always well-defined and express them in

closed form. Let’s first examine the space (m,n) for which rm,n ∼ εd. Let us start with

the case d = 1. rm,n = ε⇒ ∃(i1, j1) such that,

b2 = −j1
i1
, 1−m 6 i1 6 m, 1− n 6 j1 6 n, (i1, j1) 6= (m,n), (B.8)

so that,

rm,n = ε, (m,n) ∈ {p}×]p ′,∞[
⋃

]p,∞[×{p ′} (B.9)
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Figure 1. Degree d for the Ising model p = 4, p ′ = 3. Green dots are the values for which Dm,n 6= 0.

In the same way, rm,n = ε2 ⇒ ∃(i1, j1), (i2, j2) such that b2 = − j1
i1

= − j2
i2

with (i1, j1) 6=
(i2, j2), that is, (i1, j1) = (p, p ′) and (i2, j2) = (−p,−p ′), that is,

rm,n = ε2, (m,n) ∈]p,∞[×]p ′, 2p ′[
⋃

]p, 2p[×]p ′,∞[ (B.10)

We can generalize to rm,n = εd.

(m,n) ∈
{
d+ 1

2
p

}
×
]d+ 1

2
p ′,∞

[ ⋃ ]d+ 1

2
p,∞

[
×
{
d+ 1

2
p ′
}

d odd (B.11)

(m,n) ∈ ]
d

2
p,∞[×]

d

2
p ′,

(
d

2
+ 1

)
p ′
[ ⋃ ]d

2
p,

(
d

2
+ 1

)
p
[
×
]d
2
p ′,∞

[
d even (B.12)

This space is shown on figure 1 for the Ising model. Notice that odd d corresponds to the

borders of the cells (the fundamental cell being the Kac table). The physical states are not

located on the borders, so under the condition that Rtor
m,n (2ε) vanishes for odd d, we can

restrict only to even d. For even d, the coefficient Rtor
m,n is,

Rtor
m,n (2ε) = − 2ε

m√−p ′
p

+
n√
−p ′

p

+O (ε)

× d
2∏

k=1

b−1
(
±kpb2 ± kp ′ − 2εb

)
×
′∏(

ρb+ σb−1 − 2ε
)
× 1

2
∏ d

2
k=1 b

−1 (±kpb2 ± kp ′)×
∏′ (ρb+ σb−1)

(B.13)

where
∏′ is

∏m
ρ=1−m

∏n
σ=1−n with (0, 0), (m,n) and (±kp,±kp ′) excluded. Using the

regularization for the b,

b =

√
−p
′

p

(
1 +

4ε√
−pp ′

)
(B.14)
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we have,

±kpb2 ± kp ′ = ±4ε k

√
−p
′

p
+O

(
ε2
)
,

±kpb2 ± kp ′ − 2εb = 2ε

√
−p
′

p
(±2k − 1) +O

(
ε2
)

(B.15)

which gives,

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

× 1

2d

d
2∏

k=1

4k2 − 1

k2
+O

(
ε2
)

(B.16)

for all (m,n) and d. For given (m,n), we can write m = lmp + m0, n = lnp
′ + n0 with

0 6 m0 < p and 0 6 n0 < p ′. Then,

d = 2 min (lm, ln) ≡ 2 l (B.17)

and we can write

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

× 1

22l

l∏
k=1

4k2 − 1

k2
+O

(
ε2
)

(B.18)

l = min (lm, ln). We need to check that the coefficient also vanishes when d is odd. In

that case,

Rtor
m,n (2ε) = − ε

m√−p ′
p

+
n√
−p ′

p

+O (ε)

× (d+ 1

2
pb2 +

d+ 1

2
p ′ − 2εb

)

×

d−1
2∏

k=1

b−1
(
±kpb2 ± kp ′ − 2εb

)
×
′∏(

ρb+ σb−1 − 2ε
)

× 1(
d+1

2 pb2 + d+1
2 p ′

)∏ d−1
2

k=1 b
−1 (±kpb2 ± kp ′)×

∏′ (ρb+ σb−1)
(B.19)

Using equation (B.15) we get,

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

 d

2d−1(d+ 1)

d−1
2∏

k=1

4k2 − 1

k2
+O

(
ε2
)

(B.20)

Here d = 2 min (lm, ln)− 1 ≡ 2 l − 1 which yields,

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

 2l − 1

22l−1 l

l−1∏
k=1

4k2 − 1

k2
+O

(
ε2
)

(B.21)
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These terms thus do not contribute in the computation of the character of a physical

field. Now we can figure out expressions for the terms in the recursion. The non-vanishing

terms that involve ∆int = ∆ε
m,n are of the type

Rtor
r,s(2ε)

∆ε
m,n−∆r,s

with (m,n)→ (r, s)±l Using the

regularization of b, we have,

∆ε
m,n −∆r,s = (±2l + 1)

m√−p ′
p

+
n√
−p ′

p

 ε+O
(
ε2
)

(B.22)

and using expression (4.9) with min (lr, ls) = l − 1
2 ±

1
2 , we get,

lim
ε→0

Rtor
r,s (2ε)

∆ε
m,n −∆r,s

= − 1

22(l− 1
2
± 1

2
)(2l ± 1)

l− 1
2
± 1

2∏
k=1

4k2 − 1

k2
(B.23)

The terms involving the extra poles are of the form
Rtor
r,s

∆m′,−n′−∆r,s
when (m′,−n′)→ (r, s)±l′ .

We get,

lim
ε→0

Rtor
r,s

∆m′,−n′ −∆r,s
= − 1

22l+1 l′

l∏
k=1

4k2 − 1

k2
, l = min(lr, ls). (B.24)
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