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Abstract: Inclusive hadron production in e+e− annihilation has long been used to study

both single hadron fragmentation functions (FF) and dihadron fragmentation functions

(DiFF). In particular, the polarized DiFFs can be accessed in electron-positron annihila-

tion by measuring azimuthal correlations between two back-to-back pairs of hadrons in the

center of mass system, where the relevant structure functions can be expressed as convolu-

tions of two (polarized) DiFFs. Here we explore the advantages of measuring the inclusive

back-to-back production of a single hadron on one side against a hadron pair on the oppo-

site side of the detector in two jet events. The leading twist cross section for this process

contains convolutions of the corresponding single hadron FFs on one side and the DiFFs for

the hadron pair on the other side, which furnishes several interesting new opportunities. A

measurement of the unpolarized cross section with a number of different types of observed

hadrons will help in untangling the quark flavor dependence of the unpolarized DiFFs,

when the results are analyzed together with the inclusive measurements of dihadron pairs,

such as those recently performed by the BELLE collaboration. Even more interesting, with

a polarized hyperon on one side we can study the quark spin-dependent DiFFs of an un-

polarized hadron pair on the other side. This, in turn, will allow us to test the universality

of the spin-dependent DiFFs entering the cross sections of electron-positron annihilation

and semi-inclusive deep inelastic scattering processes.
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1 Introduction

The study of the hadronization process, which is quantified by various fragmentation func-

tions, has gained a great deal of attention in recent years [1]. This has been motivated

by the ability of the new experiments to measure various azimuthal correlations in the

deep inelastic scattering processes that involve polarized FFs and DiFFs. For example, the

measurements of the quark transverse polarization dependent Collins FF and the so-called

interference DiFF (IFF) in electron-positron annihilation in BELLE [2–5] and BaBar [6]

experiments, have allowed the extraction of the quark transversity parton distribution

function (PDF) [7–10] using semi-inclusive deep inelastic scattering (SIDIS) measurements

with one and two detected final state hadrons by the HERMES [11, 12] and COMPASS [13, 14]

collaborations. It is worth mentioning that the cross section for hadron production in e+e−

annihilation involves a summation over all intermediate quark-antiquark pairs, thus requir-

ing additional input in order to access the quark flavor dependence of the FFs and DiFFs.

The key for such a combined analysis is the universality of the FFs and DiFFs en-

tering the cross section of both electron-positron annihilation and SIDIS processes, which

was proven explicitly for the transverse-momentum dependent FFs [15, 16], while similar

arguments should apply in the case of DiFFs [17]. This is in contrast to the prediction

of the process dependence of the naive-time-reversal-odd (T-odd) Sivers PDF, which is

predicted to change sign between SIDIS and Drell-Yan annihilation [18]. An experimental

test of such universality for the naive-time-reversal-odd FFs has been proposed in ref. [19],

by exploring the so-called “polarizing” FF D⊥1T of a spin 1/2 hyperon. The “polarizing”

FF describes the correlation of the transverse polarization of a produced hadron with its
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own transverse momentum in the quark fragmentation process and is a chiral-even func-

tion. Thus, in SIDIS with a final state hyperon detected, it couples to the well-determined

unpolarized PDF, while in e+e− annihilation with back-to-back hyperon and unpolarized

hadron production, it couples to the corresponding unpolarized FF.

Recently, we proposed two new measurements [20] of the quark helicity dependent

DiFF G⊥1 , both in SIDIS with two final state detected hadrons and two back-to-back

hadron pair production in e+e− annihilation. The chiral-even nature of G⊥1 entails that

in SIDIS it couples to the well-determined quark unpolarized and helicity PDFs [21]. In

e+e− annihilation though, the G⊥1 from one pair couples to that for the second pair on the

other side [22, 23], making it not possible (or at least very hard) to determine the sign of

this function. Thus, such measurements allow one to test only for the agreement between

the magnitudes of G⊥1 extracted from the two measurements.

In this work we propose a new measurement in e+e− annihilation, exploiting the pro-

duction of a single inclusive hadron back-to-back to a hadron pair, where the relevant cross

section should involve convolutions of FFs for the single hadron in one jet and the DiFFs

for the hadron pair produced in the opposite jet. The purpose of such a measurement is

two-fold, and will leverage our knowledge of the single hadron FFs. First, the absolute

cross section measurements will provide a wider basis for extracting the quark flavor de-

pendence of the DiFFs, especially when analyzed together with the inclusive hadron pair

measurements in the same jet [5]. Secondly, by studying various azimuthal asymmetries

we can better determine the polarized DiFFs, and also access their sign.

This paper is organized in the following way. In the next section we detail the derivation

of the cross section for the proposed new process. In section 3, we explore the relevant

unpolarized measurements and the azimuthal asymmetries for accessing the DiFFs. In

section 4, we examine the particular case where one detects a polarized Λ0 hyperon. Finally,

we present the summary of our findings and conclusions in section 5.

2 The cross section calculation

In this section we detail the derivation of the leading twist cross section for the process

e+e− → h1h2 + Λ +X, where the electron and positron with momenta l and l′ annihilate

into an intermediate virtual photon with momentum q = l+ l′. In the final state, we detect

a hadron Λ with momentum PΛ, produced back-to-back to the unpolarized hadron pair

h1, h2 of momenta P1 and P2, as illustrated in figure 1. Here Λ denotes either an unpolarized

hadron ( for example π,K, etc ) hadron, or a spin 1/2 baryon withe a polarization vector

SΛ. We restrict our consideration to the case where the center-of-mass energy of the

electron-positron pair is far below the mass of the Z boson. We use the conventional

framework for the inclusive hadron production in e+e− annihilation [22–25]. In the next

subsection we first describe the kinematics of the process and then detail the calculation

of the cross section in the following subsection.

2.1 Kinematics

For our calculations we choose the e+e− center-of-mass coordinate system, where the ẑ

axis is chosen to point opposite to the Λ’s 3-momentum PΛ. We denote the components
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Figure 1. The kinematics of e+e− → h1h2 + Λ +X process.

of 3-vectors transverse to ẑ axis with subscript ⊥. The x̂ axis is then taken along the

transverse component l⊥ of the electron momentum. Together, the ẑ and x̂ axes span the

lepton plane. In dihadron studies it is useful to replace P1, P2 by the total and the relative

hadron momenta, defined as

Ph = P1 + P2, (2.1)

R =
1

2
(P1 − P2), (2.2)

and the invariant mass of the pair is defined by P 2
h = M2

h .

We consider the kinematic regime where the virtuality of the time like momentum

of the virtual photon is much larger than the typical hadronic mass scales, thus defining

Q2 ≡ q2 we can ignore any contributions of order 1/Q. At the QED and QCD leading order

approximation, the virtual photon produces a quark and an antiquark pair e+e− → γ∗ →
q + q̄, which then hadronize and produce two back-to-back jets. Further, we assume that

we are in the “leading hadron approximation”, where a significant fraction of the energy

in each jet is carried by the observed hadrons, that is Ph · PΛ ∼ Q2. We can use these

two large momenta to define light-like directions to conveniently decompose the hadronic

tensor, as done earlier for other reactions [22, 24]. For this, we choose a coordinate system

where the transverse components of the light-cone momenta1 of Ph, PΛ vanish, PhT = 0

and PΛT = 0. Introducing two light-like vectors n+ and n−, such that n2
+ = n2

− = 0 and

n+n− = 1, we can decompose the relevant large momenta as

Pµh =
M2
h

zhQ
√

2
nµ− +

zhQ√
2
nµ+ ≈

zhQ√
2
nµ+, (2.3)

PµΛ =
zΛQ√

2
nµ− +

M2
Λ

zΛQ
√

2
nµ+ ≈

zΛQ√
2
nµ−, (2.4)

qµ =
Q√

2
nµ− +

Q√
2
nµ+ + qµT , (2.5)

1The light-cone components of a 4-vector a are defined as a = (a+, a−,aT ), where a± = 1√
2
(a0 ± a3).
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where MΛ is the mass of Λ, and the momentum fractions are defined as

zh =
2Ph · q
Q2

≈
P+
h

q+
≡ z, (2.6)

zΛ =
2PΛ · q
Q2

≈
P−Λ
q−
≡ z̄, (2.7)

and

−q2
T = Q2

T � Q2. (2.8)

In this system, for any 4-vector, we can obtain the components orthogonal to n± using

gµνT = gµν − nµ+nν− − nν+n
µ
−, (2.9)

εµνT = εµνρσn+ρn−σ, (2.10)

where gµν is the metric tensor and we use the convention ε0123 = +1.

The leptonic tensor, on the other hand, is usually evaluated in the coordinate system

depicted in figure 1, where PΛ = q⊥ = 0. In this system, we can again define normalized

time-like and space like vectors along the dominant momenta

t̂ =
q

Q
, (2.11)

v̂ = 2
PΛ

z̄Q
− t̂ . (2.12)

The projections of the 4-vectors onto the two orthogonal ⊥ directions can be obtained using

the tensors

gµν⊥ = gµν − t̂µt̂ν + v̂ν v̂µ, (2.13)

εµν⊥ = −εµνρσ t̂ρv̂σ. (2.14)

Interestingly, the two perpendicular projection tensors differ only by a factor of order

QT /Q, since

gµν⊥ = gµνT −
nµ+q

ν
T + nν+q

µ
T

Q
. (2.15)

Thus we can neglect the differences between the T and ⊥ components of the vectors in

this work.

2.2 Cross section

The cross section for this process is given by the convolution of the leptonic and

hadronic tensors

2P 0
1 2P 0

2 2P 0
Λdσ

d3P1d3P2d3PΛ
=
α2
em

Q6
LµνW

µν
(3h), (2.16)
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where Lµν is the leptonic tensor, Wµν
(3h) is the hadronic tensor, and αem is the fine structure

constant. The leptonic tensor can be evaluated using standard methods (e.g. [24]), yielding

Lµν = Q2

[
− 2A(y)gµν⊥ + 4B(y)v̂µv̂ν − 4B(y)

(
l̂µ⊥ l̂

ν
⊥ +

1

2
gµν⊥

)
(2.17)

− 2C(y)B1/2(y)
(
v̂µ l̂ν⊥ + v̂ν l̂µ⊥

)]
,

where the normalized perpendicular part of the leptons’s 4-momentum is defined as

l̂µ⊥ =
lµ⊥
|l⊥|

. (2.18)

The usual coefficient functions are given by

A(y) =
1

2
− y + y2, (2.19)

B(y) = y(1− y), (2.20)

C(y) = 1− 2y, (2.21)

where the lepton momentum fractions are defined as

y =
Ph · l
Ph · q

≈ l−

q−
=

1 + cos θ2

2
. (2.22)

Here θ2 is the angle between the 3-momentum of the electron l and the ẑ axis in the

center-of-mass frame,

The phase space factor can be then written in the conventional notation

d9V ≡ d3P1d
3P2d

3PΛ

2P 0
1 2P 0

2 2P 0
Λ

=
d2Ph⊥dz dϕRdM

2
hdξ

8z

Q2z̄dz̄dΩΛ

8
, (2.23)

where we used PΛ⊥ = 0 and the leading order relations in the hard scale Q

P−h � P+
h ,→ Eh ∼

1√
2
P+
h , (2.24)

R− � R+,→ ER ∼
1√
2
R+, (2.25)

R+

P+
h

= ξ − 1/2 ∼ ER
Eh

, (2.26)

and we replaced |RT | with the invariant mass of the hadron pair Mh using the relation

R2
T = ξ(1− ξ)M2

h −M2
1 (1− ξ)−M2

2 ξ. (2.27)

The spherical angle of the Λ hadron can be expressed in terms of y and the azimuthal

angle of l⊥ as

dΩΛ = 2dydϕL, (2.28)
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yielding

d9V =
Q2

32

z̄

z
d2Ph⊥dz dϕR dM2

h dξ dz̄ dy dϕL (2.29)

= zz̄
Q2

32
d2qT dz dϕR dM2

h dξ dz̄ dy dϕL , (2.30)

where in the last expression we substituted Ph⊥ with the transverse component of the

intermediate virtual photon’s 3-momentum in the light-cone frame qT = −Ph⊥/z.
The hadronic tensor is defined as

Wµν
(3h)(q;Ph, R, PΛ) =

1

(2π)7

∑
X

∫
d3PX

(2π)32P 0
X

(2π)4 δ(q − PX − Ph − PΛ) (2.31)

× 〈0|Jµ(0)|PX ;Ph, R, PΛ〉〈PX ;Ph, R, PΛ|Jν(0)|0〉 .

Using the parton picture, we can decompose the hadronic tensor in terms of the quark-

quark correlators ∆ and ∆̄ for the production of a hadron pair and a hyperon in the

fragmentation of the quark and the antiquark with momenta k and k̄, respectively

Wµν
(3h) ≈

3

(2π)3

∑
a

e2
a

∫
d4k d4k̄ δ4(q − k − k̄)Tr

[
∆̄(k̄, PΛ)γµ∆(k, Ph, R)γµ

]
, (2.32)

where a and ea denote the flavor and the fractional electric charge of the fragmenting quark,

while the pre factor is the number of quark colors Nc = 3. We can then integrate the k+

and k̄− components using the δ function and rewrite the hadronic tensor as a convolution

of the conventional integrated quark-quark correlators

Wµν
(3h) ≈

3(32z)(4z̄)

(2π)3

∑
a

e2
a

∫
d2kTd

2k̄T δ
2(qT − kT − k̄T ) (2.33)

× Tr
[
∆̄(z̄, k̄T )k̄−=P−Λ /z̄

γµ∆(z, ξ,kT ,RT )k+=P+
h /z

γµ
]
,

where the light-cone momentum fractions for the dihadron correlators are defined in terms

of those for the individual hadrons,

z = z1 + z2, (2.34)

ξ =
z1

z
= 1− z2

z
, (2.35)

where zi = P+
i /k

+ are the light-cone momentum fractions of each hadron in the pair.

The two-hadron fragmentation of a quark is described by a quark-quark correlator [22,

26–28]

∆ij(k;Ph, R) =
∑
X

∫
d4ζeik·ζ〈0|ψi(ζ)|PhR,X〉〈PhR,X|ψ̄j(0)|0〉, (2.36)

which, for the case of an unpolarized hadron pair and at the leading twist approximation,

is parametrized via four DiFFs

1

32z

∫
dk−∆(k,Ph, R)|k+=P+

h /z
≡ ∆(z, ξ,kT ,RT ) (2.37)

=
1

4π

1

4

{
D1/n+ −G

⊥
1

εµνρσγ
µnν+k

ρ
TR

σ
T

M2
h

γ5 +H^
1

σµνR
µ
Tn

ν
+

Mh
+H⊥1

σµνk
µ
Tn

ν
+

Mh

}
.
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Here D1 is the unpolarized DiFF, while the helicity-dependent DiFF, G⊥1 , describes the

correlation of the fragmenting quark’s longitudinal polarization with the vector product

of the transverse momenta of the two hadrons. The two remaining DiFFs, H^
1 (IFF) and

H⊥1 , describe the correlations between the quark transverse polarization with the relative

and total transverse momenta of the pair, respectively. The DiFFs here are defined in a

frame where their total momentum 3-momentum is along the ẑ axis, and we can choose as

two transverse vectors RT and kT , which are the transverse components of R and k in this

system. We can relate kT = −P⊥/z to the transverse component of P in a frame where k

has no transverse component. In general, DiFFs depend on z, ξ,kT ,RT . It is worth noting,

that only kT ·RT correlations are possible for our scalar functions and so the azimuthal

dependence of the DiFFs can be expanded in a Fourier cosine series

D1(z, ξ,k2
T ,R

2
T , cos(ϕKR)) =

1

π

∞∑
n=0

cos(n · ϕKR)

1 + δ0,n
D

[n]
1 (z, ξ, |kT |, |RT |) , (2.38)

where ϕKR ≡ ϕk − ϕR is the relative azimuthal angle between kT and RT .

For single polarized hadron production the quark-quark correlator now depends on the

momentum of the fragmenting quark k, and the momentum PΛ and polarization SΛ of the

produced hadron. Once again we can integrate over the large component of the light-cone

momentum
1

4z

∫
dk+∆(k, PΛ,SΛ)k−=P−Λ /z

≡ ∆(z,kT ,SΛ) , (2.39)

where kT is the transverse component of the fragmenting quark’s momentum in a system

with the ẑ axis pointed along the 3-momentum PΛ. Following the notation in ref. [29],

we can expand the correlator in terms of the relevant leading-twist transverse momentum

dependent (TMD) FFs

∆(z,kT ,SΛ) =
1

4

{
D1/n+ +D⊥1T

εµνρσγ
µnν+k

ρ
TS

σ
T

Mh
(2.40)

−
(
λΛG1L +G1T

kT · ST
Mh

)
/n+γ5 −H1T iσµνS

µ
Tn

ν
+γ5

−
(
λΛH

⊥
1L +H⊥1T

kT · ST
Mh

)
iσµνk

µ
Tn

ν
+γ5 +H⊥1

σµνk
µ
Tn

ν
+

Mh

}
,

where λΛ and ST are the helicity and the transverse polarization vectors of the produced

Λ hadron. The FFs are functions of z and P 2
Λ⊥. Here PΛ⊥ = −zkT is the transverse

momentum of the produced hadron in a system where the 3-momentum of the quark k has

no transverse component.

Finally, we can calculate the cross section

dσ
(
e+e− → (h1h2) + Λ +X

)
d2qT dz dϕR dM2

h dξ dz̄ dy
=

3α2
em

(2π)2Q2
z2z̄2

∑
a

e2
a (2.41)

×
{
A(y) F

[
Da→h1h2

1 Dā→Λ
1

]
− STA(y) F

[
k̄T
MΛ

sin(ϕk̄ − ϕS) Da→h1h2
1 D⊥,ā→Λ

1T

]
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+ λΛA(y) F
[
kTRT
M2
h

sin(ϕk − ϕR) G⊥,a→h1h2
1 Gā→Λ

1L

]
+ STA(y) F

[
kTRT
M2
h

sin(ϕk − ϕR)
k̄T
MΛ

cos(ϕk̄ − ϕS) G⊥,a→h1h2
1 Gā→Λ

1T

]
+ STB(y) F

[(
kT
Mh

sin(ϕk + ϕS)H⊥,a→h1h2
1

+
RT
Mh

sin(ϕR + ϕS)H^,a→h1h2
1

)
H ā→Λ

1T

]
+ λΛB(y) F

[(
kT
Mh

sin(ϕk + ϕk̄)H
⊥,a→h1h2
1

+
RT
Mh

sin(ϕR + ϕk̄)H
^,a→h1h2
1

)
k̄T
MΛ

H⊥,ā→Λ
1L

]
+ STB(y) F

[(
kT
Mh

sin(ϕk + ϕk̄)H
⊥,a→h1h2
1

+
RT
Mh

sin(ϕR + ϕk̄)H
^,a→h1h2
1

)
k̄2
T

M2
Λ

cos(ϕk̄ − ϕS)H⊥,ā→Λ
1T

]
+B(y) F

[(
kT
Mh

cos(ϕk + ϕk̄)H
⊥,a→h1h2
1

+
RT
Mh

cos(ϕR + ϕk̄)H
^,a→h1h2
1

) k̄T
MΛ

H⊥,ā→Λ
1

]}
,

where ϕS is the azimuthal angle of ST and we have integrated over the trivial dependence

on the azimuthal angle of the lepton plane ϕL. The transverse momentum convolution, F ,

is defined as

F [wDaD̄ā] (2.42)

=

∫
d2kTd

2k̄T δ
2(kT + k̄T − qT )w(kT , k̄T ,RT , R̄T )Da(z, ξ,k2

T ,R
2
T ,kT ·RT )Dā(z̄, k̄2

T ) .

Integrating the cross section over qT , ϕR and ξ yields the unpolarized “collinear” cross

section

dσ
(
e+e− → (h1h2) + Λ +X

)
dz dM2

h dz̄ dy
=

3α2
em

(2π)2Q2
A(y)

∑
a

e2
a D

a→h1h2
1 (z,M2

h) D̄ā→Λ
1 (z̄), (2.43)

where

Da
1(z,M2

h) = z2

∫
d2kT

∫
dξ

∫
dϕRD

a
1(z, ξ,k2

T ,R
2
T ,kT ·RT ) (2.44)

= z2

∫
d2kT

∫
dξ D

a,[0]
1 (z, ξ, |kT |, |RT |),

and

Dā
1(z) = z̄2

∫
d2k̄TD

ā
1(z̄, k̄2

T ). (2.45)
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Further integrating the result in eq. (2.43) over M2
h we recover the same expression

as for two back-to-back hadron production in eq. (77) of ref. [24]. This is natural, as the

integrated DIFF

Da→h1h2
1 (z) ≡

∫
dM2

h D
a→h1h2
1 (z,M2

h), (2.46)

can be thought of describing the collinear fragmentation into a “parent” particle that carries

the total light-cone momentum fraction z of the pair h1h2.

The cross sections of the measurements of a hadron pair in the same hemisphere, such

as those recently performed by the BELLE collaboration [5, 30], involve a sum over all the

fragmenting quark flavors. Thus, leveraging the relatively well-determined single hadron

FFs in a combined analysis of the single hadron pair cross section with that in eq. (2.43)

would enable the flavor separation of the unpolarized DiFFs.

For example, for DiFF into π+π− pairs, the isospin and charge symmetries entail

Du→π+π−
1 = Dū→π+π−

1 ≈ Dd→π+π−
1 = Dd̄→π+π−

1 , (2.47)

Ds→π+π−
1 = Ds̄→π+π−

1 . (2.48)

For the one pair inclusive production, omitting the contributions of all the heavier flavors,

we can approximate

dσ(e+e− → (h1h2) +X) ∼
∑
q

e2
q D

q→π+π−

1 ≈ 5

9
Du→π+π−

1 (z) +
1

9
Ds→π+π−

1 (z) . (2.49)

Hence the separation of the light and strange quark DiFF contributions is not possible

without additional input. For the associated hadron production in the opposite hemisphere,

the cross section can be approximated as

dσ(e+e− → (h1h2) + π+ +X) ∼ 5

9
Du→π+π−

1 (z)Du+→π+

1 (z̄) +
1

9
Ds→π+π−

1 (z)Ds+→π+

1 (z̄),

(2.50)

where

Dq+→h
1 (z̄) ≡ Dq→h

1 (z̄) +Dq̄→h
1 (z̄). (2.51)

The unpolarized FFs to charged pions have been phenomenologically extracted from

experimental measurement by a number of different groups [31–35]. Thus the measurement

of the cross section in eq. (2.50) would allow us to extract the flavor dependence of the

DiFF Dq→π+π−

1 . Similar arguments can be used to explore other hadron channels and

combinations. For example, choosing a π+K+ pair on one side and a K− hadron on the

other side would significantly enhance the “double favored” channel (s̄→ π+K+, s→ K−)

for moderate to large values of z1, z2, and z̄, as can also be seen in hadronization models [36–

39]. The contributions of all the other quark flavors would include at least one “unfavored”

fragmentation, which will be suppressed for our chosen region of light-cone momentum

fractions. Thus, such a measurement would allow us to extract a DiFF for a specific quark

flavor, s̄→ π+K+. In principle, a global fit, using all possible measurements of the single

and dihadron fragmentations would yield the best estimates of these functions, with the

most realistic uncertainties.
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3 The azimuthal asymmetries

In this section we will discuss several asymmetries that give access to various combina-

tions of polarization-dependent FFs and DiFFs, that can be measured at BELLE and the

upcoming BELLE II experiments, similar to the measurements of the asymmetries for back-

to-back hadrons [28, 40] and back-to-back hadron pairs [22, 23].

We define the integral of the cross section in eq. (2.41), weighted with an arbitrary

function I, as

〈I〉 ≡
∫
dξ

∫
dϕR

∫
d2qT I

dσ
(
e+e− → (h1h2) + Λ +X

)
d2qT dz dϕR dM2

h dξ dz̄ dy
, (3.1)

where the unpolarized integrated cross section in eq. (2.50) is simply

dσ
(
e+e− → (h1h2) + Λ +X

)
dz dM2

h dz̄ dy
= 〈1〉. (3.2)

3.1 The asymmetry induced by the Collins effect for unpolarized Λ

For an unpolarized Λ, only the first and the last terms in eq. (2.41) contribute. In addition

to the unpolarized term, the correlation of the transverse polarizations of the fragmenting

quark and antiquark pair is described by the convolution of the Collins function H⊥,ā→Λ
1

for a Λ with the two dihadron analogues H⊥,a→h1h2
1 , H^,a→h1h2

1 for the hadron pair h1h2.

Thus, we can access this term by considering the following weighted average〈
qT
MΛ

cos(ϕq + ϕR)

〉
=

3α2
em

(2π)2Q2

B(y)

M2
ΛMh

(3.3)

×
∑
a

e2
a

∫
dξ

∫
dϕR

∫
d2qT

∫
d2kT

∫
d2k̄T δ

2(kT + k̄T − qT )qT cos(ϕq + ϕR)

×
[(
kT k̄T cos(ϕk + ϕk̄)H

⊥,a→h1h2
1 +RT k̄T cos(ϕR + ϕk̄)H

^,a→h1h2
1

)
H⊥,ā→Λ

1

]
,

where we can use the δ function to write∫
d2qT δ

2(kT + k̄T − qT ) qT cos(ϕq + ϕR) = (kT cos(ϕk + ϕR) + k̄T cos(ϕk̄ + ϕR)).

(3.4)

We further use the Fourier cosine decomposition for the DiFFs in eq. (2.38) to conclude〈
qT
MΛ

cos(ϕq + ϕR)

〉
=

3α2
em

(2π)2Q2
B(y)

∑
a

e2
a H

^,a→h1h2
1 (z,M2

h) H
⊥ā,[1]
1 (z̄), (3.5)

noting that

H^,a→h1h2
1 (z,M2

h) (3.6)

≡ z2

∫
d2kT

∫
dξ

[
|RT |
Mh

H
^,[0]
1 (z, ξ, |kT |, |RT |) +

|kT |
Mh

H
⊥,[1]
1 (z, ξ, |kT |, |RT |)

]
,
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is the same integrated IFF that enters in SIDIS [17] and in e+e− two hadron pair [23]

asymmetries, while

H
⊥ā,[1]
1 (z̄) ≡ z̄2

∫
d2k̄T

k̄2
T

2M2
Λ

H⊥,ā→Λ
1 (z, k̄2

T ), (3.7)

is the first moment of the Collins function.

The corresponding weighted azimuthal asymmetry then takes a simple form

AColl =
B(y)

A(y)

∑
a e

2
a H

^,a→h1h2
1 (z,M2

h) H
⊥ā,[1]
1 (z̄)∑

a e
2
a D

a→h1h2
1 (z,M2

h) D̄ā→Λ
1 (z̄)

. (3.8)

3.2 The asymmetries for a longitudinally polarized Λ

To devise the measurements involving the polarization of the produced Λ, it is important

to underline that the cross section expression in eq. (2.41) is a conditional probability of the

process for the given polarization SΛ. We have no a priory knowledge of this polarization,

and it cannot be measured directly on an event-by-event basis. Thus, we need to extract

the polarization sΛ that Λ acquires in the back-to-back fragmentation process, which can

be measured in experiment by considering the average angular distributions of the final

state particles. Employing the spin density matrix formalism, we can infer from general

considerations [29, 41, 42], that the cross section of this process can be expressed as

dσ

dV
= α+ β · SΛ ∼ 1 + SΛ · sΛ. (3.9)

Thus, the acquired polarization vector is simply given by

sΛ =
β

α
, (3.10)

where α and β are only functions of the momentum of Λ and the polarization of the

fragmenting quark. The latter in our work is expressed using the correlations with the

momenta of h1, h2, so that the acquired polarization sΛ only depends on the momenta of

the observed particles. Further, it is clear from eq. (3.9), that the average of the acquired

polarization over the kinematic variables is given by

〈sΛ〉 =
〈β〉
〈α〉

, (3.11)

as the probability of the process itself is given by α. The coefficients α and β can be easily

read off directly from eq. (2.41). For example, α corresponds to the first and the last terms

on the right hand side of eq. (2.41), while the longitudinal part βL of the coefficient β is

given by the terms multiplied by λΛ. In section 4 we present an example of a measurement

for the longitudinal polarization of Λ0 baryon.

Let us consider the correlations for the longitudinally polarized Λ that are manifest

in two terms in eq. (2.41). The term that involves G⊥,a→h1h2
1 and Gā→Λ

1L describes the
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correlations between the longitudinal polarizations of the fragmenting quark and anti-

quark. We can access the helicity of Λ by considering the weighted average

〈βL〉G⊥1 G1L
=

〈
qT
Mh

sin(ϕq − ϕR)

〉
=

3α2
em

(2π)2Q2
A(y)

∑
a

e2
a G

⊥,a→h1h2
1 (z,M2

h) Gā→Λ
1L (z̄),

(3.12)

where

G⊥,a→h1h2
1 (z,M2

h) (3.13)

≡ z2

∫
d2kT

k2
T

2M2
h

∫
dξ
RT
Mh

(
G
⊥,[0]
1 (z, ξ, |kT |, |RT |)−G⊥,[2]

1 (z, ξ, |kT |, |RT |)
)
,

is the same integrated helicity-dependent DiFF as in refs. [20, 23] and

Gā→Λ
1L (z̄) ≡ z̄2

∫
d2k̄T G

ā→Λ
1L (z̄, k̄2

T ), (3.14)

is the integrated helicity FF. Thus, the acquired longitudinal polarization sL of Λ is

〈sL〉sin(ϕq−ϕR) (z,M2
h , z̄, y) =

∑
a e

2
a G

⊥,a→h1h2
1 (z,M2

h) Gā→Λ
1L (z̄)∑

a e
2
a D

a→h1h2
1 (z,M2

h) D̄ā→Λ
1 (z̄)

, (3.15)

A second contribution is acquired by the correlation of the transverse polarizations of

the quark and the anti quark, which couples the two analogues of Collin DiFFs on one side

with the “Kotzinian-Mulders” type FF. The relevant weighting for this term is

〈βL〉H^
1 H
⊥
1L

=

〈
qT
MΛ

sin(ϕq + ϕR)

〉
=

3α2
em

(2π)2Q2
B(y)

∑
a

e2
a H

^,a→h1h2
1 (z,M2

h) H
⊥ā,[1]
1L (z̄),

(3.16)

where

H
⊥ā,[1]
1L (z̄) ≡ z̄2

∫
d2k̄T

k̄2
T

2M2
Λ

H⊥,ā→Λ
1L (z, k̄2

T ). (3.17)

The corresponding acquired helicity is

〈sL〉sin(ϕq+ϕR) (z,M2
h , z̄, y) =

B(y)

A(y)

∑
a e

2
a H

^,a→h1h2
1 (z,M2

h) H
⊥ā,[1]
1L (z̄)∑

a e
2
a D

a→h1h2
1 (z,M2

h) D̄ā→Λ
1 (z̄)

. (3.18)

3.3 The asymmetries for a transversely polarized Λ

Finally, we extract the correlations for the transverse polarization of Λ. The are four

relevant terms contributing to the transverse part of βT in eq. (2.41). Here we can proceed

by considering the x̂ and ŷ components of this vector, labelled βx and βy, respectively.

The transverse polarization acquired by the “polarizing” FF, D⊥1T mixes with the

contribution involving the transversity- and pretzelocity-like FFs of Λ.

〈βx〉sin(ϕq) = 〈qT sin(ϕq)〉

=
3α2

em

(2π)2Q2

∑
a

e2
a

{
−A(y)MΛD

a→h1h2
1 (z,M2

h) D
⊥ā,[1]
1T (z̄)

+B(y)MhH
⊥,a→h1h2
1 (z,M2

h) H ā→Λ
1 (z̄)

}
, (3.19)
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〈βy〉cos(ϕq) = 〈qT cos(ϕq)〉

=
3α2

em

(2π)2Q2

∑
a

e2
a

{
A(y)MΛD

a→h1h2
1 (z,M2

h) D
⊥ā,[1]
1T (z̄)

+B(y)MhH
⊥,a→h1h2
1 (z,M2

h) H ā→Λ
1 (z̄)

}
, (3.20)

where

H⊥,a→h1h2
1 (z,M2

h) (3.21)

≡ z2

∫
d2kT

∫
dξ

[
|kT ||RT |

2M2
h

H
^,[1]
1 (z, ξ, |kT |, |RT |) +

|kT |2

2M2
h

H
⊥,[0]
1 (z, ξ, |kT |, |RT |)

]
,

and

D
⊥ā,[1]
1T (z̄) ≡ z̄2

∫
d2k̄T

k̄2
T

2M2
Λ

D
⊥ā,[1]
1T (z̄, k̄2

T ), (3.22)

H ā
1 (z̄) ≡ z̄2

∫
d2k̄T

(
H ā

1T (z̄, k̄2
T ) +

k̄2
T

2M2
Λ

H⊥ā1T (z̄, k̄2
T )

)
. (3.23)

This is analogous to the associated Λ production asymmetry proposed in ref. [19] and the

additional qT weighting in our case allows us to disentangle the convolution of Λ FFs and

DiFFs into “collinear” products of the corresponding moments. Here, the contributions

involving the chiral-odd FFs, ignored in [19], enter with different relative sign to those

containing the “polarizing” FF. Thus, we can form linear combinations of the two terms

to access the contributions from the individual structure functions

〈βy〉cos(ϕq) − 〈βx〉sin(ϕq) = MΛ
3α2

em

2π2Q2
A(y)

∑
a

e2
aD

a→h1h2
1 (z,M2

h) D
⊥ā,[1]
1T (z̄), (3.24)

〈βy〉cos(ϕq) + 〈βx〉sin(ϕq) = Mh
3α2

em

2π2Q2
B(y)

∑
a

e2
aH
⊥,a→h1h2
1 (z,M2

h) H ā→Λ
1 (z̄), (3.25)

and the corresponding polarizations

〈sy〉cos(ϕq) (z,M2
h , z̄, y)− 〈sx〉sin(ϕq) (z,M2

h , z̄, y)

MΛ

= 2

∑
a e

2
aD

a→h1h2
1 (z,M2

h) D
⊥ā,[1]
1T (z̄)∑

a e
2
aD

a→h1h2
1 (z,M2

h) D̄ā→Λ
1 (z̄)

, (3.26)

〈sy〉cos(ϕq) (z,M2
h , z̄, y) + 〈sx〉sin(ϕq) (z,M2

h , z̄, y)

Mh

=
2B(y)

A(y)

∑
a e

2
aH
⊥,a→h1h2
1 (z,M2

h) H ā→Λ
1 (z̄)∑

a e
2
aD

a→h1h2
1 (z,M2

h) D̄ā→Λ
1 (z̄)

. (3.27)

It is important to stress, that here we are operating with the measured polarizations along

the x̂ and ŷ.

The contribution from the term involving G⊥,a→h1h2
1 and another “worm-gear” type

FF, Gā1T , which describes the longitudinal quark antiquark polarization correlations, also
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admixes with the contributions from several other terms when calculating the weighted

moments, for example with a weight
〈
q2
T sin(ϕq − ϕR) cos(ϕq)

〉
. Here, we omit the resulting

long and convoluted expression (even by the standards of this manuscript) for brevity.

The last contribution to the transverse polarization can be obtained using weights that

only involve the azimuthal angle ϕR and no additional factors of qT

〈βx〉sin(ϕR)
H^

1 H1
= 〈βy〉cos(ϕR)

H^
1 H1

=
3α2

em

8π2Q2
B(y)

∑
a

e2
a H

^,a→h1h2
1 (z,M2

h) H ā→Λ
1 (z̄). (3.28)

The corresponding acquired transverse polarization is

〈sT 〉sin(ϕR)
x (z,M2

h , z̄, y) = 〈sT 〉cos(ϕR)
y (z,M2

h , z̄, y) (3.29)

=
1

2

B(y)

A(y)

∑
a e

2
a H

^,a→h1h2
1 (z,M2

h) H ā
1 (z̄)∑

a e
2
a D

a→h1h2
1 (z,M2

h) D̄ā→Λ
1 (z̄)

.

This is similar to the IFF asymmetry in SIDIS, where the IFF is multiplied by the

integrated transversity PDF. Here, similar to the integrated transversity PDF, the polarized

FF H1 is a combination of the TMD “transversity” FF H1T and TMD “pretzelocity” H⊥1T ,

see eq. (3.23).

4 Treatment of the polarized Λ0

In this section we will elaborate the treatment of the measurements involving polarized

Λ0 production, where either the longitudinal or the transverse polarization is leveraged

to access the relevant structure functions in the cross section. The determination of the

final state polarization is possible for this hyperon, as it undergoes “self-analyzing” weak

decays into a baryon-meson pair. The two hadronic decay channels into p+π− and n+π0

have relative branching ratios of 64% and 36%, respectively. An important aspect of such

decays is the correlation between the polarization vector of the decaying hyperon and the

produced hadron’s momentum. In particular, taking the p + π− channel as an example,

the decay rate is described as

dN

Nd cos θ
∼ 1 + αΛSΛ cos(θ), (4.1)

where SΛ is the modulus of the polarization of the Λ0, and θ is the angle between the decay

proton momentum and the Λ0 polarization vector in its rest frame. For the longitudinal

polarization of the Λ0 this angle is calculated along the direction of the ẑ axis defined in

section I, figure 1, as we can simply boost along ẑ to the Λ0 rest frame. The decay parameter

αΛ has been measured in a number of experiments in the 60’s and 70’s [43], with the Particle

Data Group average value of αΛ = 0.642 [44], which describes the admixture of s− and p−
partial waves of the p, π− system [45].

The idea of using Λ0’s as a quark longitudinal spin polarimeter in SIDIS and e+e− →
Λ0 + X annihilation reactions was originally proposed in refs. [46–48] and for a quark

transverse spin polarimeter in SIDIS in ref. [49]. Since then a number of experimental and
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phenomenological studies of hyperon polarization in these reactions have been performed,

see for examples refs. [50–56]. It is worth mentioning that substantial longitudinal polar-

ization of Λ0 (λΛ = −0.320 for z > 0.3) was observed by ALEPH ref. [50], indicating the

large analyzing power of this measurement. Similarly, the BELLE collaboration has recently

measured a transverse polarization of the Λ0 of order 0.1 via the so-called “polarizing” frag-

mentation function ref. [57, 58], observing significant analyzing power for the transverse

polarization as well.

The important aspect of our proposed measurements is that the polarization of the

Λ0 couples with the azimuthal angles of the dihadron pair on the other side. On the

other hand, the hyperon itself is not directly detected in the experiment, but rather is

seen through its decay products. In such a decay, the polarization of the Λ0 induces

modulations of the angular distributions of the decay products. For example, for the

helicity-dependent modulations involving the helicity λΛ, the polar angle of the decay

product p will be modulated by 1 + λΛ cos(θp), where θp is the polar angle of the proton

in the rest frame of Λ0.

Thus, we need to consider the full observed final state in our process e+e− → (h1h2) +

Λ0 +X → (h1h2) + (p+π−) +X. For extraction of the asymmetry in eq. (3.15), we should

consider a weighted integral of the complete final state〈
cos(θp)

qT
Mh

sin(ϕq − ϕR)

〉
∼ αΛ G⊥,a→h1h2

1 Gā→Λ
1L , (4.2)

where the measurement of the weighted asymmetries with the detected final state hadrons

now involves also the integration over the phase space of the proton. Similar expressions

can also be derived for the components of the transverse polarization of Λ0.

Such measurements should be possible with the much improved apparatus of the

BELLE II Collaboration in the near future.

5 Conclusions

The study of the quark hadronization in e+e− experiments is a crucial part of the inter-

national efforts to map the 3-dimensional structure of the nucleon and to understand the

spin-orbit correlations in the strong interactions. The measurements of the Collins effect

and the two-hadron interference effect at BELLE [2–5] and BaBar [6] have been used to

extract the nucleon transversity PDF.

The theoretical underpinning for such measurements of the Collins effect in two back-

to-back hadron production was given by Boer and collaborators in refs. [24, 25, 28], where

the relevant asymmetry involves convolution of two Collins FFs for the produced hadrons

on each side. A measurement with a polarized hadron on one side and an unpolarized one on

the other side was proposed in ref. [19] to test the universality of the T-odd “polarizing”

FF entering the corresponding cross section. Recently, the work by [59] developed an

approach for calculations of the polarized back-to-back hadron pair production in e+e−

in an arbitrary frame and to arbitrary precision. The measurement of the spin-dependent

DiFF was first proposed in ref. [22] and recently revised and corrected in ref. [23]. Here,
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the cross section for producing two back-to-back hadron pairs includes convolutions of

two DiFFs, one for each pair involved. Note, that the unpolarized FFs can be measured in

single inclusive hadron production, while the unpolarized DiFFs are measured by detecting

two inclusive hadrons in the same jet [5].

In this work, we proposed a new inclusive measurement, where an unpolarized hadron

pair is detected back-to-back with a single hadron, that may or may not be polarized. We

derived the expression for the corresponding cross section in eq. (2.41), which involves con-

volutions of the DiFFs for the hadron pair with the FFs for the hadron on the other side. A

number of new exciting measurements were then discussed. For example, the measurement

of the unpolarized cross section will enable us to determine the flavor dependence of the

DiFF using our knowledge of the ordinary unpolarized FFs, which is not possible with the

other e+e− measurements. Moreover, we can measure a product of the Collins function of a

meson with the IFF of the hadron pair eq. (3.8), that would provide additional information

to constrain both functions. This is crucial in improving our knowledge of the transversity

PDF from SIDIS measurements involving one and two hadron inclusive final states.

The measurement of the hadron polarization dependent asymmetries gives access to

a wide variety of combinations of polarized spin 1/2 baryon FFs and polarized DiFFs, as

discussed in section 3. Here we have eight TMD FFs for the baryon convoluted with four

DiFFs for the unpolarized hadron pair, whereas in the case of two back-to-back dihadron

pairs there are only the four DiFFs involved from each side [23]. Nonetheless, further

developing the weighted asymmetry method we used in accessing the helicity-dependent

DiFFs in ref. [20], we were able to access the individual combination of TMD FFs with

DiFFs, disentangling their transverse momentum convolutions.

In section 3.2 we discussed a critical point for the measurements involving a polarized

final state hadron. This polarization is acquired during the hadronization process, in

correlation with the momenta of the observed final state particles. Using the spin density

matrix formalism, we expressed the polarization vector of Λ by utilizing the eq. (2.41).

Then the measurements of different components of this polarization when analyzed using

a particular weighted azimuthal modulations allows us to access specific combinations of

FFs with DiFFs. For example, the weighted average in eq. (3.15) extracts a product of

the helicity-dependent DiFF G⊥1 with the “collinear” helicity FF G1L when measuring the

longitudinal polarization of the Λ. Such a measurement will complement the previously

proposed measurements of G⊥1 in e+e− annihilation and SIDIS [20, 60], aimed at testing

the universality of G⊥1 . The transverse polarization-dependent modulation in eq. (3.29)

yields a product of the collinear IFF with the collinear “transversity” FF. The last one is

strikingly similar to SIDIS, where a similar modulation yields a product of the IFF with

the transversity PDF [17].

Another interesting example is the measurement of the transverse polarization com-

ponents of the hadron for the weighted azimuthal modulation in eq. (3.19), involving the

components of the transverse momentum qT , which yields an admixture of two terms. One

is the product of the unpolarized DiFF with the T-odd “polarizing” FF of Λ, while the

second is the product of the Collins-like DiFF with transversity-like FF of Λ. This is an

analogue of the associated production measurement proposed in ref. [19], where the contri-

– 16 –



J
H
E
P
1
0
(
2
0
1
8
)
0
0
8

butions of the chiral-odd functions (such as Collins function and the transversity-like FF)

were neglected. Note, that only the convolution of the chiral-odd unpolarized DiFF with

the chiral-odd ”polarizing” FF contribute to the perpendicular components of polarization

to Ph⊥, which was considered in Ref. [19]. Our results demonstrate that we can separate

the chiral-odd and chiral-even contributions by forming linear combinations of the x− and

y−components of the transverse polarization.

The measurement of the baryon polarization was discussed in section 4. Such mea-

surements for the Λ0 hyperon through the “self-analyzing” weak decays have been long

employed as polarimeters. Here, we discussed the relevant weighted asymmetries for the

full detected final state particles to measure the relevant structure functions within the

“narrow width approximation” for the treatment if the intermediate Λ0 baryon, as de-

scribed for the longitudinal polarization case in eq. (4.2).

This new process completes the set of all possible inclusive measurements with up to

two produced hadrons on each side. It presents an exciting new opportunity for exploring

the hadronization process using data already collected by the BELLE experiment, as well

as that to be taken in the upcoming BELLE II experiment. A combined global analysis of

these measurements along with the other inclusive hadron production reactions in electron-

positron annihilation will allow us to acquire a good understanding of both single hadron

and dihadron fragmentations.
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