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We calculate the intrinsic quark spin contribution to the total proton spin using overlap valence quarks on
three ensembles of 2þ 1-flavor RBC/UKQCD domain-wall configurations with different lattice spacings.
The lowest pion mass of the ensembles is around 171 MeV, which is close to the physical point. With
overlap fermions and a topological charge derived from the overlap operator, we verify the anomalous
Ward identity between nucleon states with momentum transfer. Both the connected and the disconnected
insertions of the axial-vector current are calculated. For the disconnected-insertion part, the cluster-
decomposition error reduction technique is utilized for the lattice with the largest volume and the error can
be reduced by 10%–40%. Nonperturbative renormalization is carried out and the final results are all
reported in the MS scheme at 2 GeV. We determine the total quark spin contribution to the nucleon spin to
be ΔΣ ¼ 0.405ð25Þð37Þ, which is consistent with the recent global fitting result of experimental data. The
isovector axial coupling we obtain in this study is g3A ¼ 1.254ð16Þð30Þ, which agrees well with the
experimental value of 1.2723(23).
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I. INTRODUCTION

The decomposition of the proton spin into its quark
and glue constituents has long been a puzzle ever since the
first deep inelastic scattering (DIS) experiment around
three decades ago [1,2] revealed that not all the proton
spin originates from the quark intrinsic spin as depicted in
the naive quark model, leading to the so-called “proton spin
crisis.” Now we understand that the proton spin, consisting
of quark spin, quark orbital angular momentum, glue spin,
and glue orbital angular momentum, is the result of
complicated QCD dynamics that cannot be described by
the quark model. However, the precise proportion of the
total proton spin carried by these components remains
unclear. On the experimental side, since the integration of
the spin-dependent parton distributions over the momen-
tum fraction x gives the fraction of the proton spin that is
carried by the corresponding flavor, that is,

Δqðμ2Þ ¼
Z

1

0

dxΔqðx; μ2Þ; ð1Þ

where μ is the MS scale, the global fit to the experimental
data of DIS or Drell-Yan processes for extracting the parton
distributions will provide us knowledge about the quark
spin contribution to the proton spin. Three recent exper-
imental results from D. de Florian et al. [3], the NNPDF
Collaboration [4], and the COMPASS Collaboration [5]
determine the total quark intrinsic spin contribution ΔΣ to
be 0.366þ0.042

−0.062 , 0.25(10), and [0.26, 0.36], respectively. On
the lattice side, a recent calculation [6] is carried out with
the physical pion mass, but with only one single lattice
ensemble of Nf ¼ 2 clover-improved twisted mass fer-
mions. More careful lattice studies with ensembles of
different lattice spacings and different lattice volumes are
imperative to push the results to the physical limit and to
control the corresponding systematic uncertainties.
In this work, we use overlap fermions on three domain-

wall ensembles to calculate the quark spin contribution to
the nucleon spin. Since for each quark flavor the intrinsic
spin is actually half of the corresponding axial coupling of
the nucleon, we need to calculate the axial coupling for the
flavor-diagonal case. Thus, both the connected insertions
and the disconnected insertions of the correlation functions
need to be included. The anomalous Ward identity is
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carefully checked to see if any normalization due to lattice
artifacts needs to be applied to the axial-vector current to
make the identity hold. We actually find that the same
normalization constant for the local axial-vector current as
used in the isovector case to satisfy the chiral Ward identity
also satisfies the anomalous Ward identity. This is not true
in general for nonchiral fermions. For the disconnected-
insertion part, the cluster-decomposition error reduction
(CDER) technique [7] is utilized for the lattice with the
largest volume to reduce the statistical error. For the
connected-insertion part, an improved axial-vector current
is employed such that the finite lattice spacing effect can be
reduced. All of our results are matched to the MS scheme at
2 GeV using nonperturbative renormalization. We propose
a new renormalization pattern where we separate the
connected-insertion part and the disconnected-insertion
part from the beginning, which is more natural for the
lattice calculation and offers more information than the
conventional flavor irreducible representation approach.
This paper is organized as follows. The formalism of

quark spin and anomalous Ward identity are discussed in
Sec. II. In Sec. III we describe all the numerical details
of our simulation. Then in Sec. IV, we check the axial
Ward identity to address the normalization issue. The bare
results of the disconnected contribution are shown in
Sec. V. The detailed results of the connected contribution
come in Sec. VI. We discuss the renormalization in Sec. VII
and make global fits to get the final results in Sec. VIII. A
short summary is given in Sec. IX.

II. FORMALISM OF QUARK SPIN
AND ANOMALOUS WARD IDENTITY

The quark spin contribution to the nucleon spin is
associated with the nucleon matrix element of the flavor-
singlet axial-vector current,

g0Asμ ¼
hp; sjA0

μjp; si
hp; sjp; si ; ð2Þ

where A0
μ is the flavor-singlet axial-vector current

A0
μ ¼ ψ̄uiγμγ5ψu þ ψ̄diγμγ5ψd þ ψ̄ siγμγ5ψ s: ð3Þ

The flavor u, d, and s contributions to g0A are denoted asΔu,
Δd, and Δs in Eq. (2), so that

g0A ¼ Δuþ Δdþ Δs: ð4Þ

A special property of the flavor-singlet axial-vector current
is that it satisfies the anomalous Ward identity (AWI) where
the Adler-Bell-Jackiw anomaly appears from the Jacobian
factor of the fermion determinant due to the Uð1Þ chiral
transformation [8]

∂μA0
μ ¼

X
f¼u;d;s

2mfPf − 2iNfq; ð5Þ

where the pseudoscalar density Pf and the topological
charge density operator q representing the anomaly are

Pf ¼ ψ̄fiγ5ψf; q ¼ 1

16π2
Ga

μνG̃
a
μν; ð6Þ

where Ga
μν is the gauge field strength tensor and

G̃a
μν ¼ ϵμνρσGa

ρσ. Note that notations are in Euclidean space
and the coupling constant g is absorbed in the definition of
the gauge potential Aa

μ.
As far as renormalization is concerned, it is shown that

A0
μ has a two-loop renormalization [9,10] and the topo-

logical charge has a one-loop mixture with ∂μA0
μ [10] so

that the renormalized AWI in the dimensional regulariza-
tion scheme becomes

∂μA0
μ

�
1þ γNf

1

ϵ

�
¼

X
f¼u;d;s

2mR
fP

R
f

þ
�
−2iNfqþ γNf

1

ϵ
∂μA0

μ

�
ð7Þ

with the anomalous dimension γ ¼ −ðαs=πÞ2 3
8
CF. mR and

PR are renormalized quark mass and pseudoscalar density.
We see that the α2s renormalization term on the left is the
same as that on the right from mixing. Thus, mP and
∂μA0

μ þ 2iNfq are renormalization group invariant (the
latter to second order at least), and the form of AWI is
the same with or without renormalization.
On the lattice, the AWI is preserved by the overlap

fermion that is chiral and satisfies the Ginsparg-Wilson
relation [11]. The mfPf is renormalization group invariant
since ZmZP ¼ 1 for the chiral fermion and the local version
of the topological charge qðxÞ derived from the overlap
operator is equal to 1

16π2
trcGμνG̃μνðxÞ in the continuum

[12–15], i.e.,

qðxÞ ¼ Tr

�
γ5

�
1

2
Dovðx; xÞ− 1

��
⟶
a→0

1

16π2
trcGμνG̃μνðxÞ;

ð8Þ

where Dov is the overlap operator. In the overlap case, the
chiral axial-vector current is derived [16], and one can
directly proceed to carry out the renormalization of the
chiral axial-vector current perturbatively or nonperturba-
tively. However, this chiral axial vector involves a nonlocal

kernel Kμ ¼ −i δDovðUμe
iαμðxÞÞ

δαμðxÞ jα¼0 and is somewhat involved

to implement numerically. We shall use the local current in
the present study. As such, it invokes a normalization
constant Z0

A which warrants that the unrenormalized AWI
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in its “semiclassical” form [Eq. (5)] is satisfied on the lattice
and is itself scale independent. Therefore the normalization
and renormalization takes two steps. First, one needs to find
the normalization Z0

A for the local axial-vector current that
satisfies the unrenormalized AWI

∂μZ0
AA

0
μ ¼

X
f¼u;d;s

2mfPf − 2iNfq; ð9Þ

where A0
μ ¼

P
f¼u;d;sψ̄fiγμγ5ψ̂f and Pf ¼ ψ̄fiγ5ψ̂f are the

local axial-vector current we use on the lattice and ψ̂ ¼
ð1 − 1

2
DovÞψ is for giving rise to the effective quark

propagator that conforms to the form in the continuum.
After the normalization constant Z0

A is determined, one
then takes on the renormalization procedure. We shall
discuss the determination of Z0

A in Sec. IVafter we give the
numerical details of the calculation, and we will carry out
the renormalization in Sec. VII.
Before we check the AWI on the lattice, we shall first

give some numerical details of the lattice calculation.

III. NUMERICAL DETAILS

We use overlap fermions [17] as valence quarks to
perform our calculation. Since the overlap action preserves
chiral symmetry at finite lattice spacing via the Ginsparg-
Wilson relation [18], there is no additive renormalization
for the quark mass. The effective quark propagator of the
massive overlap fermion is the inverse of operator Dc þm
[19,20] where Dc satisfying fDc; γ5g ¼ 0 is exactly chiral
and can be defined from the original overlap operator Dov

as Dc ¼ ρDov
1−Dov=2

. The overlap operator can be expressed as
Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ where ϵ is the matrix sign func-
tion andDw is the Wilson kernel with κ ¼ 0.2 (correspond-
ing to parameter ρ ¼ 1.5). As discussed above, another
great feature of the overlap operator is that the local version
of the topological charge of the gauge field can be defined
as qðxÞ ¼ Tr½γ5ð 12ρDovðx; xÞ − 1Þ� [12–15]. The Atiyah-
Singer index theorem [21] is satisfied, which relates the
total topological charge to the index of zero modes of the
overlap operator so no multiplicative renormalization is
needed for this definition of q. These two features help us to
feasibly check the AWI, which we can use as a normali-
zation condition in the disconnected-insertion case. We use
multiple partially quenched valence quark masses to cover
a wide range of pion mass using the multimass algorithm.
More details regarding the calculation of the overlap
operator and eigenmode deflation in the inversion of the
fermion matrix can be found in [22].
The three lattice ensembles we use for the calculation are

2þ 1-flavor domain-wall fermion (DWF) ensembles gen-
erated by the RBC/UKQCD Collaboration [23,24]. They
are labeled as 24I, 32I, and 32ID, and the detailed
parameters of the ensembles can be found in Table I.

We have three different lattice spacings, and the lowest pion
mass at 171 MeV is close to the physical one.
To calculate the quark spin or, in practice, to calculate the

axial coupling, we need to construct three-point correlation
functions

C3;μðtf; τÞ ¼
X
x⃗;y⃗

hχðtf; y⃗ÞAμðτ; x⃗Þχ̄ð0;GÞi; ð10Þ

where χ is the nucleon interpolation field, G denotes the
source grid, and Aμ ¼ ψ̄iγμγ5ψ̂ is the local axial-vector
current with ψ̂ ¼ ð1 − 1

2
DovÞψ for giving rise to the effective

quark propagator ðDc þmÞ−1. The correlation function can
have two kinds of current insertions, i.e., the connected
insertion (CI) and the disconnected insertion (DI), corre-
sponding to two ways of Wick contractions. They are
depicted in Fig. 1.
For the CI calculation, we use the stochastic sandwich

method (SSM) with low-mode substitution (LMS) [25] to
better control the statistical uncertainty. We use Z3 noise
grid sources with Gaussian (24I and 32I) or block smearing
(32ID) [26] coherently at tsrc ¼ 0 and tsrc ¼ 32 in one
inversion. The sinks are block smeared and located at
different positions with different separations in time from
the source. Setups regarding the valence simulation of the
CI case are listed in Table II. Technical details regarding the
LMS of random Z3 grid source with mixed momenta and
the SSM with LMS for constructing three-point functions
can be found in Refs. [25–27]. Because of the fact that the
multimass inversion algorithm is uniquely applicable to
the overlap fermion with eigenvector deflation, we calcu-
late 5–6 valence masses each for the three lattices.

TABLE I. The parameters of the 2þ 1-flavor RBC/UKQCD
configurations: label, spatial/temporal size, lattice spacing, the
degenerate light sea quark mass, strange sea quark mass, the
corresponding pion mass, and the number of configurations used
in this work.

Label L3 × T a−1 [GeV] mðsÞ
l a mðsÞ

s a mπ [MeV] Ncfg

32I 323 × 64 2.3833(86) 0.004 0.03 302 309
24I 243 × 64 1.7848(50) 0.005 0.04 337 203
32ID 323 × 64 1.3784(68) 0.001 0.045 171 200

FIG. 1. The connected insertion (left) and disconnected in-
sertion (right).
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For disconnected-insertion calculations, we use the low-
mode average (LMA) technique to calculate the quark
loops, which improves the signal-to-noise ratio particularly
for the pseudoscalar and scalar currents. The low-mode part
is calculated exactly while the high-mode part is estimated
with eight sets of Z4-noise on a 4–4–4–2 spacetime grid
with even-odd dilution and additional time shift. The same
Z3-noise grid source with smearing as in the CI case is used
in the production of the nucleon propagators. We make
multiple measurements by shifting the source time slice to
improve statistics; the spatial position of the center of the
grid is randomly chosen for each source time slice to reduce
autocorrelation. References [27–29] contain more details
regarding the DI calculation. When constructing quark
loops, we include more valence quark masses to cover the
strange region. The bare strange quark mass is determined
by the global-fit value at 2 GeV in the MS scale calculated
in our previous study [30] and the nonperturbative mass
renormalization constant calculated in [31].
To obtain the axial coupling, we construct a ratio of the

three-point correlation function to the nucleon two-point
function

Rðtf; τÞ ¼ fk
Tr½ΓpC3ðtf; τÞ�
Tr½ΓeC2ðtfÞ�

; ð11Þ

where fk is a kinematic factor that is related to the Lorentz
index of the current, Γp is the polarized projector of the
nucleon spin, Γe is the nonpolarized projector, and
C2ðtfÞ ¼

P
x⃗hχðtf; x⃗Þχ̄ð0;GÞi. The matrix element gA can

then be obtained asymptotically gA ¼ Rðtf ≫ τ; τ ≫ 0Þ.
However, at finite tf and τ, the excited states will contribute
to the ratio, and we need to extract gA by fitting the ratio to
more complicated function forms. A commonly used form
with a two-state fit reads

Rðtf; τÞ ¼ gA þ c1e−δmðtf−τÞ þ c2e−δmτ þ c3e−δmtf ; ð12Þ

which assumes only the first excited state has effects and δm
is the energy difference between the ground state and the first
excited state. In practice, higher excited-states’ contribution
can alter the value of δm, making it a free parameter,
accounting for an effective energy difference.

IV. ANOMALOUS WARD IDENTITY
ON THE LATTICE

To verify the AWI in Eq. (9), we note that there is no
flavor mixing in this unrenormalized form. Thus, one can
check it for individual flavors and, furthermore, since the
lattice calculations of matrix elements are separated in the
CI and DI cases as shown in Fig. 1, one can separately
check the chiral Ward identity for the connected matrix
elements

hp0j∂μZAðCIÞAμjpiðCIÞ ¼ hp0j2mqPjpiðCIÞ: ð13Þ

In this case, the matrix elements are for the u or d valence
quark with quark mass mq. Here, the normalization con-
stant ZAðCIÞ is due to the fact that we use the local current
in this calculation.
Similarly, the AWI for the matrix elements in the DI

case is

hp0j∂μZAðDIÞAμjpiðDIÞ ¼ hp0j2mqP − 2iqjpiðDIÞ: ð14Þ

In principle, the normalization constants ZAðCIÞ and
ZAðDIÞ can be different, especially when nonchiral fer-
mions are used in the lattice calculation and also when the
topological charge q is not calculated from the overlap
operator Dov as in Eq. (8). We shall check them in the
following.

TABLE II. The details of the overlap simulation in the valence sector for the CI case, including the name of the lattice, the grid type of
source Gsrc (the notations such as 12–12–12 denote the intervals of the grid in the three spatial directions; see Ref. [25] for more details),
the number of source grids Nsrc, the positions of sources tsrc, the grid type of sink Gsink, the number of the noises for the sink grids Nsink,
the source-sink separations (tsink − tsrc), and the bare valence quark masses mv

qa.

Lattice Gsrc Nsrc tsrc Gsink Nsink (tsink − tsrc) mv
qa

24I 12–12–12 1 (0, 32) 2–2–2 5 0.88 fm (0.00809, 0.0102, 0.0135, 0.0160, 0.0203)
3 1.11 fm
5 1.22 fm
5 1.33 fm

32I 16–16–16 1 (0, 32) 1–1–1 3 0.99 fm (0.00585, 0.00765, 0.00885, 0.0112, 0.0152)
3 1.16 fm
3 1.24 fm

32ID 16–16–16 6 (0, 32) 1–1–1 2 1.00 fm (0.0042, 0.0060, 0.011, 0.014, 0.017, 0.022)
3 1.15 fm
4 1.29 fm
5 1.43 fm

12 1.57 fm
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A. Disconnected insertion case

We shall check first the DI case that has been inves-
tigated in our previous study [28]. The AWI in the DI case
in Eq. (14) relating the nucleon matrix element of the
divergence of the axial-vector current Aμ to those of the
product of the quark mass mq and the pseudoscalar current
P and also to the topological charge term q is an important
check for lattice spin calculations involving the flavor-
diagonal matrix elements (MEs) of the axial-vector current.
This is especially true for the strange quark as it only
contributes in the DI. Only properly extracted MEs plus
correct lattice normalization will make this identity hold.
Our previous work [28] utilized the AWI via the form
factors, which is actually an extended form of the
Goldberger-Treiman relation for the flavor-singlet case at
finite momentum transfer q2 and is expressed as

gAðq2Þ þ
q2

2mN
hAðq2Þ ¼

2mq

2mN
gPðq2Þ þ 2gQðq2Þ; ð15Þ

where gA and hA are the axial and induced pseudoscalar
form factors, respectively, from the nucleon matrix element
of the axial-vector current

hp0;sjAμjp;si¼ ūðp0;sÞ½iγμγ5gAðq2Þ− iqμγ5hAðq2Þ�uðp;sÞ;
ð16Þ

and gPðq2Þ and gQðq2Þ are the pseudoscalar and anomaly
form factors defined in

hp0; sjPjp; si ¼ ūðp0; sÞiγ5uðp; sÞgPðq2Þ; ð17Þ

hp0; sj − iqjp; si ¼ ūðp0; sÞiγ5uðp; sÞmNgQðq2Þ: ð18Þ

Equations (16) and (17) have the same form separately for
the CI and DI, while Eq. (18) for the topological form factor
only appears in the DI. Equation (15) can be derived by
inserting the currents between nucleon states with momenta

p⃗ and p⃗0 and applying the divergence to the nucleon
states

∂μhp0jAμjpi ¼ ðE0 − EÞhp0jA4jpi þ iqihp0jAijpi; ð19Þ

where E and E0 are the energies of the source and sink

nucleons and qi is the momentum transfer q⃗ ¼ p⃗0 − p⃗ in
the ith direction. In the earlier study [28] we found that a
normalization factor of κA ∼ 1.4 on the axial-vector side is
needed in order to satisfy the identity that is much larger
than the isovector normalization constant1 Z3

Að24IÞ ¼
1.111ð6Þ computed by using the chiral Ward identity in
the pion two-point function case [31]. Since on the right-
hand side of Eq. (15) we have ZmZP ¼ 1, there is no
multiplicative renormalization of the topological charge
defined by the overlap operator, and, as shown previously,
the renormalized2 AWI is the same as the unrenormalized
one at the two-loop level [28], the factor κA was believed to
be a necessary normalization factor in the DI case for
compensating the violation of the AWI induced by lattice
artifacts and was used to normalize the DI axial-vector
MEs. In this study, we shall have a critical reexamination of
this issue. We also make a similar check for the light quarks
case of 24I and 32I and for the new 32ID lattice by
calculating the following ratio:

R1ðτ; tf; q2Þ ¼
2mq

2mN
gPðτ; tf; q2Þ þ 2gQðτ; tf; q2Þ

gAðτ; tf; q2Þ þ q2

2mN
hAðτ; tf; q2Þ

: ð20Þ

Note that we keep the dependence of the sink time tf and
the current time τ for all the form factors and, therefore, the
excited-state effects are not handled until we fit the
final ratio.
We also check the AWI more carefully at the ME level, in

other words, treating ∂μAμ as an operator insertion between
the nucleon states p and p0. The lattice version of the
AWI reads

X
x⃗

�X
i

hAiðτ; x⃗Þ − Aiðτ; x⃗ − îÞi þ hA4ðτ; x⃗Þ − A4ðτ − 1; x⃗Þi
�
e−iq⃗·x⃗ ¼ 2mq

2mN
hPðτ; q⃗Þi − 2ihqðτ; q⃗Þi; ð21Þ

where hAiðτ; x⃗Þi is an abbreviated form of the ME
hp0jAiðτ; x⃗Þjpi, î is the unit vector along the ith direction,
and the continuum partial derivative is replaced by the

backward difference on the lattice. This equation cannot
be checkeddirectly since themomentumprojection is always
done before we can take the spatial difference Aiðτ; x⃗Þ −
Aiðτ; x⃗ − îÞ in the three-point function calculation. However,
X
x⃗

X
i

hAiðτ; x⃗Þ − Aiðτ; x⃗ − îÞie−iq⃗·x⃗

¼ ð1 − e−iqiÞ
X
x⃗

hAiðτ; x⃗Þie−iq⃗·x⃗ ∼ iqihAiðτ; q⃗Þi ð22Þ

1We choose to call it a normalization constant rather than a
renormalization constant since it is a finite renormalization that
has no scale dependence and deviates from unity only because of
the finite lattice spacing effects.

2When we say renormalization, we mean there is a nonzero
anomalous dimension and therefore is scale dependent.
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is a good approximation if qi is small enough. So we have a
simplified form

iqihAiðτ; q⃗Þi þ hA4ðτ; q⃗Þ − A4ðτ − 1; q⃗Þi

¼ 2mq

2mN
hPðτ; q⃗Þi − 2ihqðτ; q⃗Þi; ð23Þ

which can be checked numerically. A second ratioR2 is thus
defined as

R2 ¼
2mq

2mN
hPðτ; q⃗Þi − 2ihqðτ; q⃗Þi

iqihAiðτ; q⃗Þi þ hA4ðτ; q⃗Þ − A4ðτ − 1; q⃗Þi : ð24Þ

Furthermore, for the temporal part, by inserting complete sets
of intermediate states and using the time evolution operator,
the time dependence of the ME can be formulated as

hA4ðτ; x⃗Þi ¼ hA4ð0; q⃗ÞieþΔEτ ð25Þ

up to exponential suppression of the excited-states contami-
nation, whereΔE ¼ E0 − E is the energy difference between
the sink and the source nucleon states, such that

hA4ðτ; x⃗Þ − A4ðτ − 1; x⃗Þi ∼ ΔEhA4ðτ; x⃗Þi; ð26Þ
leading to

iqihAiðτ; q⃗ÞiþΔEhA4ðτ; q⃗Þi¼ 2mqhPðτ; q⃗Þi−2ihqðτ; q⃗Þi
ð27Þ

if the excited-states contamination can be ignored or com-
pletely removed by fit. This is actually the counterpart of
Eq. (19), and we now have the third ratio to check the AWI

R3 ¼
2mq

2mN
hPðτ; q⃗Þi − 2ihqðτ; q⃗Þi

iqihAiðτ; q⃗Þi þ ΔEhA4ðτ; q⃗Þi
: ð28Þ

The numerical results of ratios R1, R2, and R3 on the
32ID lattice around the unitary point with momentum
transfer jq⃗j ¼ 2π

L are plotted in Fig. 2 as a function of t.

FIG. 2. Ratios R1, R2, and R3 on the 32ID lattice and the ratio R2 on the 24I lattice around the unitary points with momentum transfer
jq⃗j ¼ 2π

L are plotted as a function of τ − tf
2
. Three source-sink separations tf are included. The blue bands show the constant fit results of

R2. Points of different tf are shifted slightly to enhance the legibility, and the transparency of the points with tf ¼ 8a is increased for the
same purpose.
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Three tf are included so the tf dependence can be checked.
It can be seen that R3 (lower left panel) is merely slightly
different from R1 (upper left panel) and they agree with
each other quite well within errors, meaning that there
would be no difference regardless of whether we check the
AWI on the form factor level or on the ME level with the
partial derivatives replaced by energy and momentum
transfer in the latter case. This also serves as a sanity
check of our calculation. The values of R1 or R3 are far
away from 1 and are not flat versus t, making it very hard to
have a reliable fit. But the situation of R2 in the upper right
panel is much different. The points are more regular and a
value of 1.091(76) can be easily extracted by a constant fit,
which is quite consistent with the isovector normalization
constant Z3

Að32IDÞ ¼ 1.141ð1Þ computed using pion two-
point functions as in Ref. [31]. The ratio of R2 on the 24I
lattice is also calculated and shown in the lower right panel

of Fig. 2. Unlike the normalization factor kA ∼ 1.4 obtained
in the previous study through the ratio R1 by using form
factors, R2 is also consistent with the isovector normali-
zation constant Z3

Að24IÞ ¼ 1.111ð6Þwhere the value from a
constant fit is 1.074(24).
The momentum transfer dependences of R1 and R2 are

plotted in Fig. 3. Each point on the plot of R1 comes from a
two-state fit while the points on the plot of R2 come from
constant fits. In the R1 plot, except for the first two jq⃗j2 (the
point of the first jq⃗j2 is not shown in the figure since the
corresponding two-state fit fails), the values are basically
flat within errors and the fitted value of a constant fit is
1.798(35). If we believe that the ratio R1 is a proper check
of the AWI, this value should be used as a normalization
factor. In the R2 case, all the points lie on a constant line
within errors and a constant fit excluding the fourth point
gives 1.096(15), quite consistent with Z3

Að24IÞ ¼ 1.111ð6Þ.

FIG. 3. The momentum transfer dependence of R1 and R2 on the 32ID lattice at the unitary point. The blue bands are the constant fit
results. Each point comes from a fit combining different tf. The point at the first momentum transfer in the left panel is missing because
the corresponding two-state fit fails.

FIG. 4. The behavior of hA4i with respect to τ and tf (left panel) and the components of the AWI at tf ¼ 7a (right panel). The results
are from the 32ID lattice at the unitary points with momentum transfer jq⃗j ¼ 2π

L . The legend ∂4A4 stands for the hA4ðτ; q⃗Þ − A4ðτ − 1; q⃗Þi
term. Points of different tf are shifted slightly to enhance the legibility, and the transparency of the points with tf ¼ 11a in the left panel
is increased for the same purpose.
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The problem now is to understand the discrepancy and to
determine which one is correct.
Since R1 and R3 in Fig. 2 are quite similar, we shall only

compare R3 and R2. It is easy to see that the only difference
between R2 and R3 is to use hA4ðτ; q⃗Þ − A4ðτ − 1; q⃗Þi or
ΔEhA4ðτ; q⃗Þi. We have proven that they are exactly the
same if there are no excited-state effects. So it is useful to
see what hA4ðτ; q⃗Þi looks like. The left panel of Fig. 4
shows the behavior of hA4ðτ; jq⃗j ¼ 2π

L Þi as a function of τ;
no obvious plateau is discernible even if we go to relatively
larger tf, which means that the excited-states contamina-
tions are large and, in this case, even a two-state fit cannot
extract the ME reliably. To be more specific, all the
components of the AWI are plotted in the right panel of
Fig. 4. In this jq⃗j ¼ 2π

L case ΔEa ∼ 0.03, so the values of
ΔEhA4ðτ; q⃗Þi are very close to 0; however, the h∂4A4i
values are of order 0.1, which pinpoints the problem. One
can ask why the h∂4A4i case is so different since there
should also be some excited-states contamination. The
answer is that the AWI is actually a relation of the current
operators and it should hold regardless of whether the
currents are inserted between two nucleon ground states or
excited states. The only problem is that when we use
hA4ðτ; q⃗Þ − A4ðτ − 1; q⃗Þi ¼ ΔEhA4ðτ; q⃗Þi, we are assum-
ing that the ME is the ground-state ME and the ΔE is the
energy difference between two ground states which is,
apparently, not the case. We can thus conclude that if the
conditions τ ≫ 0 and tf ≫ τ are satisfied, the three ratios
will be the same; for finite τ and tf, the ratio of R2 is the
preferable check of the AWI. The results of R2 show that
the AWI is well satisfied in our case and we do not need any
extra normalization factor in addition to the isovector one
Z3
A to make the AWI hold for the DI calculations for all the

three lattices and all the quark masses. In other words, we
have Z0

A ¼ ZAðCIÞ ¼ ZAðDIÞ ¼ Z3
A.

B. CI case

We also check the chiral Ward identity in the CI case. In
fact, the violation of the chiral Ward identity in terms of
form factors at small momentum transfers in the CI case is
also observed and reported in [32], where their formula is
equivalent to checking the ratio R1. In the CI case, the
definitions of R1 and R2 are the same as those in the DI case
but without the topological charge term. The results of R1

and R2 at different tf of the 24I lattice are plotted in Fig. 5
as an example. The horizontal line in the figure indicating
Z3
A ¼ 1.111ð6Þ shows where the points of the ratios should

be if the chiral Ward identity holds. Again, the points of R1

show an obvious discrepancy. But a trend that the points are
approaching the horizontal line with larger tf can be
observed. As a contrast, the points of R2 at both tf ¼ 8a
and tf ¼ 10a do lie on the target line except for the
boundary points, showing valid Ward identity.

The results of the CI case are similar and the conclusion
is the same. The ratio R2 shows well established chiral
Ward identity while R1 shows violation. The difference of
R1 and R2 reflects how we treat the A4 term. Even if the
form factors gAðq2Þ and hAðq2Þ are calculated using Ai
only, the ratio R1 is still problematic since Eq. (19) is used
in the derivation and it assumes that the ME of A4 gives the
same form factors without excited-states contamination. A
cure to this problem is to go to large enough tf where the
excited-states contamination can be ignored. Unfortunately,
this requires much larger statistics. We will test this in the
future.

V. DISCONNECTED-INSERTION CONTRIBUTION

As is mentioned above, we use the two-state fit to extract
the MEs. Examples of the fitting on the 32ID lattice at the
unitary point can be found in Fig. 6; both the light and
strange quark results are included. We use three source-sink
separations tf ¼ 6a, 7a, and 8a, which correspond to 0.86,
1.00, and 1.15 fm, respectively, to carry out the fit. The
fitting results are shown by the cyan bands, which are
consistent with the data points of largest separation within
errors. The contact points on either the source or the sink
side are always excluded, and more points may be excluded
to have better χ2. A prior value of δm is used to stabilize the
fits. A criterion used to choose the prior value and width is
that the fitting result of δm should have statistical signifi-
cance and the final result of gA should not be too far away
from the data points of large separations. The difference of
the fitting results due to the choice of prior values is
included in the systematic uncertainty. For the 24I and 32I

FIG. 5. The ratios of R1 and R2 in the CI case at different tf.
The results are from the 24I lattice at the unitary point with
momentum transfer jq⃗j ¼ 2π

L . The horizontal line indicating Z3
A ¼

1.111ð6Þ shows that the values of R2 are consistent with this
normalization factor except for the boundary points. R1 shows a
large discrepancy and approaches the horizontal line with large
tf . Points of different tf are shifted slightly to enhance the
legibility.
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lattices, the two-state fits are done similarly. Table III lists
all the fitting setups.
The CDER technique [7] is used in order to better control

the statistical uncertainties for the 32ID lattice where the
CDER technique may improve the signal more signifi-
cantly since the size of this lattice L ∼ 4.6 fm is relatively
large, while we do not use this technique for the 24I and 32I
lattices due to their small sizes (L ∼ 2.7 fm and L ∼ 2.6 fm,
respectively). In order to use the CDER technique, the
three-point functions can be rewritten as

C3;μðtf; τ; RÞ ¼
X

x⃗;jr⃗j<R
hχðtf; x⃗ÞAμðτ; x⃗þ r⃗Þχ̄ð0;GÞi; ð29Þ

where we put a cutoff R to the distance between the quark
loop and the sink of the nucleon propagator and we can
vary R to obtain different three-point functions. As dem-
onstrated in [7], the signal will saturate after R is larger than
the corresponding correlation length, but the noise will
keep growing due to the fact that the variances of the two
disconnected operators in their vacuum expectation values
are independent of each other. Therefore an optimal cutoff

R can be found if the lattice size is larger than the
correlation length between the operators whereupon the
signal-to-noise ratio is improved. However, as is shown in
Fig. 7 where the gAðDIÞ from Eq. (29) is plotted as a
function of R, no clear plateau shows until at very large R,
especially for the light quark case, which is probably
because the correlation length is not much smaller than
the lattice size. So we cannot find an optimal R in this case.
Nevertheless, a correlated fit using the following asymp-
totic form [7]:

C3ðRÞ ¼ C3ð∞Þ þ k
ffiffiffiffi
R

p e−MR

M
ð30Þ

with k and M being free parameters helps in extracting
C3ð∞Þ properly. The blue bands in Fig. 7 show the results
of the correlated fit while the green bands show the results
of an uncorrelated fit in contrast. The reason why we need
this comparison is because the data points of different R are
strongly correlated and an uncorrelated fit will under-
estimate the error very much. To keep the correlations of
different R, we cannot do single two-state fits, respectively,
for each R. Instead, a simultaneous two-state fit combining
all the R to keep the whole correlation matrix is carried out.
The error of the correlated fit, which is not much smaller
than the error of the data points with large cutoff, is
believed to be a reasonable estimation. In this way, the final
statistical uncertainties of the MEs on the 32ID lattice can
be reduced by 10%–40% for different quark masses.

VI. CONNECTED-INSERTION CONTRIBUTION

As for the CI case, we use the improved axial-vector
current following our previous work on the 24I and 32I
lattices [26] to reduce the discretization errors on the 32ID
lattice as well. For the 24I and 32I lattices, we reanalyze the
data with the u quark and the d quark separately. Two-state

TABLE III. Setups of the two-state fits in the DI case. The
source-sink separations used in the fits, the number of points
dropped on the source side, the number of points dropped on the
sink side, and the prior value and width of δm are listed for each
lattice and for both light and strange flavors.

Lattice/flavor Separations (a)
Source
drop

Sink
drop

Prior
δma

32ID=l 6, 7, 8 2 2 0.4(0.1)
32ID=s 6, 7, 8 1 1 0.3(0.1)
24I=l 8, 9, 10, 11 2 2 0.4(0.1)
24I=s 8, 9, 10, 11 2 1 0.3(0.2)
32I=l 9,10,11,12 3 2 0.4(0.1)
32I=s 9,10,11,12 3 2 0.3(0.2)

FIG. 6. Examples of two-state fits on the 32ID lattice at the unitary point. The light quark result is on the left while the strange quark
result is on the right. Cyan bands are the fitting results from tf ¼ 6a, 7a, and 8a, which are consistent with the points of large
separations. Points of different tf are shifted slightly in the horizontal direction to enhance the legibility.
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fits are also applied to the MEs of Ai ¼ ψ̄iγiγ5ψ̂ , and the
fitting setups are also listed in Table IV. We plot the fitting
results of the 32ID lattice at the unitary point in Fig. 8 as an
example. To implement the improvement, we also need to
fit for the MEs of three more currents: A4 ¼ ψ̄iγ5γ5ψ̂ ,

Di ¼ ψ̄iσiμD
↔

μγ5ψ̂ , and D4 ¼ ψ̄iσ4iD
↔

iγ5ψ̂ . For these cur-
rents, the signal-to-noise ratio is not as good as that for the
Ai case, and no obvious excited-state contribution can be
observed; we are only able to make a constant fit combining
several separations. An example of D4 is plotted in Fig. 9;
note that we drop three points on each of the source and
sink sides.
The spatial and temporal components of the improved

axial-vector current are defined as Aim
i ¼ Ai þ gDi and

Aim
4 ¼ A4 þ gD4, where the factor g is determined by

assuming the final gA calculated from the two components
of the improved current are identical [26]. Although the
results of the currents with derivatives are noisy and the
constant fit may not be a perfect choice, it is enough for this
calculation since the improvement itself is only around 3%
or less. Plots of the improvement are shown in Fig. 10. For

the d quark case, the improvement has no effect basically,
while for the u quark case, especially for the 24I lattice,
the improvement is at the 2σ level and the improved data
points are closer to the points of the other two lattices
around a similar pion mass, manifesting smaller lattice
spacing effects.

VII. RENORMALIZATION

The renormalization of the axial-vector current is indis-
pensable for comparing our result with experiment and
phenomenology. The scale-independent isovector normali-
zation constant ZAðCIÞ can be calculated by imposing
the chiral Ward identity in CI as in Eq. (13) or between
the vacuum and a pion state [31]. There is no difference
between the u and d quark in this case, as can be seen in the
RI/MOM nonperturbative procedure. Hence, ZAðCIÞ ¼ Z3

A,
the isovector normalization constant. Since we adopt the
mass-independent renormalization scheme, it is also the
same as the octet renormalization Z8

A. We shall define ZA ≡
Z3
A ¼ Z8

A as conventionally used in the literature. After
checking the AWI in the DI, we concluded in Sec. IV that
the axial-vector current with the normalization of ZAðCIÞ
satisfies the AWI; thus there is no additional normalization
factor for the AWI, and ZAðDIÞ ¼ ZAðCIÞ ¼ ZA is the only
normalization constant as far as tree-level AWI is con-
cerned. Through the chiral Ward identity in the CI, we can
determine ZA to a high precision. Since we have calculated
MEs of both CI and DI, the disconnected part of vertex
functions also needs to be computed and the corresponding
renormalization can be obtained by the lattice nonperturba-
tive approach in the RI/MOM scheme [33]. This part
contains a scale-dependent DI piece and also mixing effects
and is referred to as renormalization, to be distinguished
from the normalization, discussed so far, in upholding the
AWI at the tree level.

TABLE IV. Setups of the two-state fits in the CI case for the
current Ai ¼ ψ̄γ5γiψ̂ . The source-sink separations used in the fits,
the number of points dropped on the source side, the number of
points dropped on the sink side, and the prior value and width of
δm are listed for each lattice and for both u and d quarks.

Lattice/flavor Separations (a)
Source
drop

Sink
drop

Prior
δma

32ID=u 7, 8, 9, 10, 11 3 2 0.35(0.1)
32ID=d 7, 8, 9, 10, 11 2 2 0.35(0.1)
24I=u 8, 10, 11, 12 2 1 0.3(0.1)
24I=d 8, 10, 11, 12 3 1 0.3(0.1)
32I=u 12, 14, 15 2 2 0.2(0.1)
32I=d 12, 14, 15 4 3 � � �

FIG. 7. The R dependence of the axial coupling of the 32ID lattice at the unitary point. The left panel is for the light quark case, and the
right panel is for the strange quark case. Blue bands and green bands are for correlated fit and uncorrelated fit, respectively.
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A. Formalisms

The axial-vector coupling has conventionally been clas-
sified as the isovector g3A ¼ Δu − Δd, the octet g8A ¼ Δuþ
Δd − 2Δs through the diagonal SUð3Þ chiral transforma-
tion, and the singlet g0A ¼ Δuþ Δdþ Δs through the U(1)
transformation, and their renormalization follows. One
can obtain the renormalized Δu, Δd, and Δs in term of
their unrenormalized counterparts through these flavor-
irreducible representations, and the details are given in
Ref. [34]. On the other hand, the lattice calculations are
carried out in terms of flavors and MEs in the CI and DI. It
is natural to use them as the basis in renormalization. As we
shall see, this has the advantage of preserving the CI piece
that is scale independent and can be compared in different
lattice calculations. Moreover, it is physical and can be
extracted from the global fitting of the polarized parton
distribution function (PDF).

FIG. 9. Constant fit example for the d quark case of current D4.
Points of different tf are shifted slightly in the horizontal
direction to enhance the legibility.

FIG. 10. The comparison of the MEs before and after the
improvement as a function of pion mass squared. The top panel is
for the d quark and the bottom panel is for the u quark. Points of
the unimproved results are shifted slightly in the horizontal
direction to enhance the legibility.

FIG. 8. Two-state fit examples for the d quark and the u quark, respectively, on the 32ID lattice. The labels gdA;i and g
u
A;i denote the axial

couplings for d and u quarks calculated from current Ai ¼ ψ̄ iγiγ5ψ̂ . Points of different tf are shifted slightly in the horizontal direction to
enhance the legibility.
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In the RI/MOM renormalization scheme, the renormalized quantities are related to the unrenormalized ones through the
vertex and the field renormalization. The most general form from the lattice classification is the following:

0
BBBBBB@

ΔuðCIÞ
ΔdðCIÞ
ΔuðDIÞ
ΔdðDIÞ
ΔsðDIÞ

1
CCCCCCA

¼

0
BBBBBB@

ΣC 0 0 0 0

0 ΣC 0 0 0

ΣD ΣD ΣC þ ΣD ΣD ΣD

ΣD ΣD ΣD ΣC þ ΣD ΣD

ΣD ΣD ΣC ΣC ΣC þ ΣD

1
CCCCCCA

0
BBBBBB@

ΔuRIðCIÞ
ΔdRIðCIÞ
ΔuRIðDIÞ
ΔdRIðDIÞ
ΔsRIðDIÞ

1
CCCCCCA
; ð31Þ

where Δfðf ¼ u; d; sÞ is the bare axial-vector current
matrix element for a particular flavor f and ΔfRI is the
corresponding renormalized one in the RI scheme. ΣC or
ΣD in the matrix is defined by the following trace indicating
the renormalization condition:

ΣC=D ¼ Z−1
q

1

12
Tr½ΛC=DðpÞΛtreeðpÞ−1�; ð32Þ

where Zq is the quark field renormalization constant,
ΛC=DðpÞ is the connected or disconnected part of the
vertex function, and ΛtreeðpÞ is the tree-level vertex. The
vertex function ΛC=DðpÞ is the following amputated
Green’s function:

ΛC=DðpÞ ¼ S−1ðpÞGA;C=DðpÞS−1ðpÞ; ð33Þ
where S−1ðpÞ is a quark propagator in the momentum space
in the Landau gauge and GA;C=DðpÞ is the connected piece
or the disconnected piece of the forward Green’s function
GAðpÞ ¼

P
x;ye

−ip·ðx−yÞhψðxÞΓAψ̄ðyÞi with ΓA ¼ γμγ5. To
be more specific, the two ways of Wick contraction of
GAðpÞ lead to two kinds of the vertex function that are the
connected part ΛC, where the quark fields in the bilinear

operator contract with the other two external quark fields,
and the disconnected one ΛD, where the quark fields in the
bilinear operator contract with each other. Since only in ΛD
can the flavor of the bilinear operator be different from that
of the external legs, the off-diagonal entries of the matrix in
Eq. (31) that represent the flavor mixing effect contain ΣD
alone. We should stress that the entries of zero reflect the
fact that the CI MEs do not receive mixing from the DIs. On
the other hand, the DI MEs receive contributions from both
CI and DI. These equations are defined in the quark
massless limit so that the RI-MOM is a mass-independent
renormalization scheme. In practice, we do calculations at
finite quark masses and then extrapolate to the chiral limit.
In principle, Zq can be determined by considering the
derivative of the quark propagator with respect to the
discretized momenta. However, Zq so determined is known
to have a large discretization error. We shall use ZA from
the chiral Ward identity as an input; therefore, we have
ΣC ¼ 1

ZA
and Zq is determined via Eq. (32) instead as

employed in Ref. [31].
The renormalization constants come from the inverse of

the matrix in Eq. (31). The renormalized quark spins in the
RI scheme are

0
BBBBBB@

ΔuRIðCIÞ
ΔdRIðCIÞ
ΔuRIðDIÞ
ΔdRIðDIÞ
ΔsRIðDIÞ

1
CCCCCCA

¼

0
BBBBBB@

ZA 0 0 0 0

0 ZA 0 0 0

ZD;RI
A ZD;RI

A ZA þ ZD;RI
A ZD;RI

A ZD;RI
A

ZD;RI
A ZD;RI

A ZD;RI
A ZA þ ZD;RI

A ZD;RI
A

ZD;RI
A ZD;RI

A ZD;RI
A ZD;RI

A ZA þ ZD;RI
A

1
CCCCCCA

0
BBBBBB@

ΔuðCIÞ
ΔdðCIÞ
ΔuðDIÞ
ΔdðDIÞ
ΔsðDIÞ

1
CCCCCCA
; ð34Þ

where

ZD;RI
A ≡ −ZA

�
ΣD

ΣC þ NfΣD

�
; ZA ¼ 1

ΣC
: ð35Þ

In the present calculation, Nf ¼ 3.
To compare with experiments, we need to match the

results from the above RI scheme to that of MS at 2 GeV.
As we see from Sec. II, it entails a two-loop perturbative

calculation of the axial-vector current in the RI and MS
schemes, respectively. On the other hand, as it is shown in
Eq. (7), this is the same renormalization constant from the
one-loop mixing of the topological charge. We carry out
the simpler one-loop mixing calculation of the topological
charge for the matching factor from the RI scheme at
momentum p to the MS scheme at scale μ based on
PACKAGE-X [35,36], and this matching ratio can be repre-
sented as a matrix Rm that needs to be
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Rm ¼

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

fm fm 1þ fm fm fm
fm fm fm 1þ fm fm
fm fm fm fm 1þ fm

1
CCCCCCCCA
; ð36Þ

where fm ¼ ðαs
4πÞ24CFð− 3

2
logðμ2p2Þ þ 7

2
Þ with CF ¼ 4=3.

Thus, after Rm is multiplied to the renormalization matrix in Eq. (34), the renormalized quark spin in the MS scheme is

0
BBBBBBBB@

ΔuNðCIÞ
ΔdNðCIÞ

ΔuMSðDIÞðμÞ
ΔdMSðDIÞðμÞ
ΔsMSðDIÞðμÞ

1
CCCCCCCCA

¼

0
BBBBBBBB@

ZA 0 0 0 0

0 ZA 0 0 0

ZD;MS
A ZD;MS

A ZA þ ZD;MS
A ZD;MS

A ZD;MS
A

ZD;MS
A ZD;MS

A ZD;MS
A ZA þ ZD;MS

A ZD;MS
A

ZD;MS
A ZD;MS

A ZD;MS
A ZD;MSI

A ZA þ ZD;MS
A

1
CCCCCCCCA

0
BBBBBBBB@

ΔuðCIÞ
ΔdðCIÞ
ΔuðDIÞ
ΔdðDIÞ
ΔsðDIÞ

1
CCCCCCCCA
; ð37Þ

where the notations of ΔuNðCIÞ and ΔdNðCIÞ mean they
have normalization only and

ZD;MS
A ¼ ZD;RI

A þ fm þ NffmZ
D;RI
A : ð38Þ

In practice, ZD;MS
A are to be evolved to a given scale such

as 2 GeV for each p2a2 in RI and extrapolated to p2a2 ¼ 0.
This involves an evolution

μ2
d
dμ2

log
�
ZD;MS
A ðμÞ

�
¼ γðαsÞ ¼ −

X
i

γiα
iþ1
s : ð39Þ

For the axial-vector current, the anomalous dimensions are

γ0 ¼ 0; γ1 ¼
1

ð4πÞ2 6CFNf: ð40Þ

It is shown in [34] that, at two-loop order, the evolution of
the flavor-singlet renormalization factor is given by

ZA þ 3ZD;MS
A ðμÞ

ZA þ 3ZD;MS
A ðμ0Þ

¼
�
β0 þ β1αsðμÞ
β0 þ β1αsðμ0Þ

�
γ1=β1

; ð41Þ

where ZA þ 3ZD;MS
A ðμÞ is the renormalization constant for

the flavor-singlet case which we will show later, and the
relevant constants are β0¼ 1

4πð113 CA−4
3
TFNfÞ¼ 1

4πð11−2
3
NfÞ

and β1 ¼ 1
ð4πÞ2 ð343 C2

A − 20
3
CATFNf − 4CFTFNfÞ ¼

1
ð4πÞ2 ð102 − 38

3
NfÞ with CA ¼ 3 and TF ¼ 1

2
. The evolu-

tion of αs at the two-loop level is given in [37]

αsðμÞ ¼−
β0
β1

1

1þW−1ðζÞ
; ζ¼−

β20
eβ1

�
Λ2

μ2

�
β2
0
=β1

; ð42Þ

whereW−1 is the lower branch of the Lambert function and
Λ is set to be the particle data group (PDG) value
332(19) MeV.
The final results of the renormalized u=d quark spin can

be decomposed into the CI part and the DI part for each
flavor

ðΔu=ΔdÞMSðμÞ ¼ ðΔu=ΔdÞNðCIÞ þ ðΔu=ΔdÞMSðDIÞðμÞ;
ð43Þ

where the connected insertion part

ðΔu=ΔdÞNðCIÞ ¼ ZAðΔu=ΔdÞðCIÞ ð44Þ

is scale independent. We should caution that this is true for
the axial-vector case due to the chiral Ward identity. This is
not true in general, such as for the case of the scalar and the
energy-momentum tensor matrix elements where the CI
parts are also scale dependent. On the other hand, the
disconnected insertion parts depend on the MS scale of μ,

ðΔu=ΔdÞMSðDIÞðμÞ ¼ ZAðΔu=ΔdÞðDIÞ þ ZD;MS
A ðμÞΣ;

ΔsMSðμÞ ¼ ZAΔsþ ZD;MS
A ðμÞΣ; ð45Þ

where
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Σ ¼ Δuþ Δdþ Δs ¼ ΔuðCIÞ þ ΔdðCIÞ
þ ðΔuþ Δuþ ΔsÞðDIÞ: ð46Þ

This decomposition of the quark spin in terms of flavor,
CI, and DI is common for all renormalization schemes, and
is not limited to the RI or MS scheme. When the CI and DI
components are added together from Eq. (37) to get the
total matrix elements, one arrives at a simpler expression

ΔfMSðμÞ ¼ ZAΔf þ ZD;MS
A ðμÞΣ; ð47Þ

where f ¼ u, d, s. In terms of the flavor irreducible
representations, they are

g3A ¼ ΔuMS − ΔdMS ¼ ZAðΔu − ΔdÞ; ð48Þ

g8A ¼ ΔuMS þ ΔdMS − 2ΔsMS ¼ ZAðΔuþ Δd − 2ΔsÞ;
ð49Þ

g0;MS
A ðμÞ ¼ ΔuMS þ ΔdMS þ ΔsMS ¼ ðZA þ 3ZD;MS

A ðμÞÞΣ:
ð50Þ

Equation (47) can be derived by starting the renormal-
ization from the combined CI and DI matrix elements so
that Eq. (37) becomes

0
BB@

ΔuMSðμÞ
ΔdMSðμÞ
ΔsMSðμÞ

1
CCA ¼

0
BBB@

ZA þ ZD;MS
A ðμÞ ZD;MS

A ðμÞ ZD;MS
A ðμÞ

ZD;MS
A ðμÞ ZA þ ZD;MS

A ðμÞ ZD;MS
A ðμÞ

ZD;MS
A ðμÞ ZD;MSI

A ðμÞ ZA þ ZD;MS
A ðμÞ

1
CCCA

0
BB@

Δu
Δd
Δs

1
CCA: ð51Þ

Similarly, Eq. (47) for the renormalized quark spin for each flavor can be derived from the basis of flavors irreducible
representations g3A, g

8
A, and g0A,

0
BB@

g3A
g8A

g0;MS
A ðμÞ

1
CCA ¼

0
BBB@

ZA 0 0

0 ZA 0

0 0 ZA þ NfZ
D;MS
A ðμÞ

1
CCCA

0
BB@

Δu − Δd
Δuþ Δd − 2Δs
Δuþ Δdþ Δs

1
CCA: ð52Þ

This has been worked out in [34] with the same results.
It is not surprising that one arrives at the same renor-

malized results in Eq. (47) irrespective of the starting basis
in Eq. (37), (51), or (52), since they involve linear
equations. Equation (52) is the conventional way of
presenting the renormalized results in both experiments
and phenomenology. However, we should stress that there
are advantages of separating them further in terms of CI and
DI parts as in Eqs. (43)–(45) for each flavor. First of all, we
note that the CI parts are renormalization group invariant
due to the chiral Ward identity, and they are easier to
calculate on the lattice than those of the DI parts so that they
can be readily compared from lattice calculations involving
different systematics owing to different actions and lattice
parameters. More importantly, they can be deduced from
experiments. The parton degrees of freedom of the nucleon
structure functions in the DIS have been classified in the
Euclidean path-integral formalism of the hadronic tensor
[38,39]. It is found that there is a connected-sea parton that
is in the connected insertion of the current-current corre-
lator in addition to the disconnected-sea partons in the

corresponding disconnected insertion. The former is respon-
sible for the Gottfried sum-rule violation [38]. These two
sea partons have not been separated in the global fittings so
far. However, it is demonstrated, in one example, that by
combining the strange parton distribution from the semi-
inclusive DIS experiment of HERMES, the global fitting
result of ūðxÞ þ d̄ðxÞ, and the lattice calculation of the ratio
of hxis

hxiuðDIÞ, one can separate the connected-sea from the
disconnected-sea distribution of the u and d partons [40]. It
is shown that in the operator product expansion, it is the
moments of the combined connected-sea and valence parton
distributions that correspond to the local matrix elements of
the CI in the lattice calculation [39]. The parton evolution
equations with separate connected- and disconected-sea
partons are formulated [41]. Provided that future global
fitting takes this separation into account when fitting
experiments at different Q2, one can obtain the moments
of the valence and connected sea to extractΔuðCIÞ,ΔdðCIÞ,
and other moments from the unpolarized and polarized
partons and compare directly with the lattice calculation of
moments.
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B. Numerical results of the renormalization

The results of ZA on the 24I and 32I lattices have been
obtained in our previous study [31] to be 1.111(6) and
1.086(2) at the massless limit for both valence and sea
quarks. The ZA on the 32ID lattice is calculated in this

study using the same strategy: ZA ¼ 2mqh0jPjπi
mπh0jA4jπi where P and

A4 are the pseudoscalar quark bilinear operator and the
temporal component of the axial-vector operator,
respectively. Pion two-point correlators are calculated to
obtain the corresponding MEs. Figure 11 shows the ratio
of ZA as a function of Euclidean time of the pion correlators
at the unitary point in the left panel and the chiral
extrapolation in the right panel. The final value we get
is ZAð32IDÞ ¼ 1.141ð1Þ.
The results of ZD;RI

A and ZD;MS
A are plotted in Figs. 12–14

for the three lattices we use, respectively. In each figure, the

left panel shows the a2p2 dependence of ZD;RI
A and also the

remaining a2p2 effects of ZD;MS
A after we match to the MS

scheme at μ ¼ 2 GeV from the RI-MOM results at p2 scale.
All the ZD;RI

A in the figures are already extrapolated to the
chiral limit by a linear fit to mqa. The right panel of these
figures shows this linear extrapolation for three typical
values of a2p2. The blue bands show the linear fit results
of either the a2p2 dependence or the maa dependence; all
the χ2=d:o:f. of the fits are less than 1. For the fitting of the
a2p2 dependence, small a2p2 values are excluded since the
renormalization scale of these points is not large enough
such that the two-loop matching factor can have a large
truncation error. The final values we achieve at 2 GeV are

ZD;MS
A ð32IÞ¼ 0.01148ð16Þ, ZD;MS

A ð24IÞ¼0.01517ð88Þ, and
ZD;MS
A ð32IDÞ ¼ 0.01709ð45Þ, respectively.

FIG. 11. ZA on the 32ID lattice at the unitary point as a function of t is shown in the left panel. The corresponding chiral extrapolation
is shown in the right panel.

FIG. 12. Renormalization calculation on the 32I lattice. The left panel shows the a2p2 dependence of ZD;RI
A and also the remaining

a2p2 effects of ZD;MS
A after matching to the MS scheme at μ ¼ 2 GeV. The blue band of the left plot shows the linear extrapolation of

ZD;M̄S
A ; the first two points are not included. The right panel shows themqa dependence and the linear chiral extrapolation of ΣD at three

typical a2p2 values.
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The CDER technique is also used in the calculation of all
the disconnected parts of the vertex functions. Since the
overall correction of this part is small, we do not need very
precise results, and so no aggressive cutoff is applied. In
practice, the cutoffs are chosen to be 22a, 38a, and 15a for
the 24I, 32I, and 32ID lattices, respectively. The improve-
ment of the signal-to-noise ratio is ∼50% or less. The
criterion of choosing the cutoff is based on the χ2 of the
linear fit with respect to a2p2, which is described in detail
in Ref. [42].

VIII. GLOBAL FITTING AND RESULTS

Having the bare MEs and the renormalization constants
we obtained in the previous sections, we can now carry out
the global fitting to push our results to the physical pion
point, the continuum limit, and the infinite volume limit.
The functional form used is

gA ¼ c0 þ cI1=c
ID
1 a2 þ c2ðm2

π;v −m2
π;pÞ

þ c3ðm2
π;s −m2

π;pÞ þ c4e−mπ;vL; ð53Þ

where m2
π;v means the valence pion mass, m2

π;s means the
sea pion mass, and L is the size of the lattice. We have two
m2

π terms in the fitting since we are using partially quenched
valence quark masses. We use two coefficients cI1=c

ID
1 for

the lattice spacing dependence term which reflects the fact
that the ensembles we are using are generated with two
slightly different gauge actions (Iwasaki for 24I and 32I and
Iwasaki plus DSDR for 32ID). We use the form as
(m2

π;v −m2
π;p) where m2

π;p is the physical pion mass in

order to let c0 ¼ gphyA be the value in the physical limit.
However, not all the coefficients in the fitting function have
statistical significance during the fit, meaning that the
lattice data have no constraint on the corresponding term,
or in other words, the effect of the corresponding term is
weak enough to be ignored with the current statistical
uncertainty. To be specific, the coefficient c3 has no
statistical significance in all the cases, so we exclude this
term in all fittings to avoid overfitting. The difference
between the results with and without the c3 term is included
in the systematic uncertainties. The other four terms
(although not all of them have signals) are all kept in

FIG. 13. The same as Fig. 12 but for the 24I lattice.

FIG. 14. The same as Fig. 12 but for the 32ID lattice.
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the fitting such that our final predictions are in the physical
limit. Since we use the improved axial-vector current and
the finite lattice spacing effects are very weak, additional
prior values for the coefficients of the a2 terms are used to

guarantee stable results. We use the fitting results without
separating the lattice spacing dependence into two groups
as the central value of the prior and the widths are set to be
100% of the central value. The final results of the

TABLE V. The results of the coefficients and the corresponding χ2=d:o:f. in the global fitting for the DI case.
Results for both the light quark and the strange quark are listed.

c0 cI1=c
ID
1

c2 c4 χ2=d:o:f.

l −0.070ð12Þ 0.64ð79Þ=0.97ð44Þ 0.131(51) 0.11(31) 0.39
s −0.035ð06Þ 0.20ð29Þ=0.35ð21Þ 0.024(29) −0.06ð23Þ 0.41

TABLE VI. The results of the coefficients and the corresponding χ2=d:o:f. in the global fitting for the CI case for
both d and u quarks.

c0 cI1=c
ID
1

c2 c4 χ2=d:o:f.

d −0.337ð10Þ −0.087ð90Þ= − 0.006ð90Þ 0.25(10) −0.17ð48Þ 0.15
u 0.917(13) 0.060ð60Þ=0.061ð60Þ −0.01ð11Þ −0.56ð51Þ 0.04

FIG. 15. The global fit of the DI case for both light and strange quarks.

FIG. 16. The global fit of the CI case for both d and u quarks.
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coefficients of the DI case are listed in Table V; corre-
sponding results are also collected in Table VI for the
CI case.
The final results of global fitting are shown in Figs. 15

and 16, respectively, for DI and CI. The blue bands show
the fitting results with only valence pion mass dependence.
Table VII lists the MS numbers at 2 GeV with both
statistical and systematic errors. The systematic errors
are estimated by combining the systematic uncertainties
coming from the CDER technique, the fitting windows and
function forms, the extrapolations, and the excited-states
contamination. To be specific, for the CI case, the system-
atic error coming from varying fitting windows and
function forms is estimated to be 3%. For the DI case,
the total systematic error is estimated to be 20%. The final
errors of g3A and ΔΣ are combined from the errors of Δu,
Δd, and Δs in quadrature. Two sets of results from recent
lattice calculations and three sets of results from recent
global fittings of experiments are also listed in Table VII for
comparison. The results from de Florian et al. [3] and
NNPDFpol1.1 [4] are at Q2 ¼ 10 GeV2, and the integra-
tion range over the momentum fraction is from 10−3 to 1.
The COMPASS results [5] are at scale Q2 ¼ 3 GeV2. All
the lattice results are calculated in the MS scheme at
μ ¼ 2 GeV. Since the evolution of ΔΣ involves a two-loop
anomalous dimension [Eq. (39)], it does not vary much
from μ ¼ 2 GeV to μ ¼ 3 GeV. The calculation by
Alexandrou et al. [6] is carried out on one ensemble at
the physical point with two-flavor clover-improved twisted
mass fermions, and the calculation by Green et al. [34] is on
one ensemble with 2þ 1-flavor clover fermions at
mπ ¼ 317 MeV. The total quark spin contribution of our
present calculation is Σ ¼ 0.405ð25Þð37Þ, which agrees
with that of Alexandrou et al. (∼0.402) and is consistent
with the experimental results. The isovector g3A ¼
1.254ð16Þð30Þ agrees with the PDG value of 1.2723(23)
within one sigma. It has a combined statistical and
systematic error of ∼3%. This is consistent with the recent
percent-level lattice calculation [43] at 1.271(13), but in
contrast with the other two lattice calculations in Table VII,
which are lower than the experimental value. There is

another lattice calculation from the JLQCD Collaboration
[44] that uses dynamical overlap fermions at a single lattice
spacing with four pion masses in the range 290-540 MeV.
Their results gA ¼ 1.123ð28Þð95Þ, Δs ¼ −0.046ð26Þð9Þ,
and ΔΣ ¼ 0.398ð86Þð99Þ are all consistent with ours.

IX. SUMMARY

In this work, we calculate the quark spin using overlap
valences on three RBC/UKQCD domain-wall ensembles
24I, 32I, and 32ID. The pion mass of 32ID is around
171 MeV, which is close to the physical point. The
anomalous Ward identity is checked carefully, and we find
that the identity holds very well in our calculation with
normalized axial-vector current if the divergence of the
axial-vector current is inserted as an operator between
nucleon states. This is an important check indicating that
the lattice artifacts are under control. For the disconnected-
insertion part, the CDER technique is used for the 32ID
lattice when constructing three-point functions and the
statistical error can be reduced by 10%–40%. The DI
contributions to the light and strange quarks ΔlðDIÞ
and ΔsðDIÞ are determined to be −0.070ð12Þð15Þ and
−0.035ð6Þð7Þ, respectively. For the connected-insertion
part, we use the improved axial-vector current aiming to
reduce the finite lattice spacing effects. The results of the CI
contribution to u and d quarks ΔuðCIÞ and ΔdðCIÞ are
0.917(13)(28) and −0.337ð10Þð10Þ, respectively. As we
mentioned in Sec. VII, they are scale independent due to
the chiral Ward identity and can be compared to other
lattice calculations. They can be extracted from deep
inelastic scattering, provided the connected-sea and dis-
connected-sea partons are separated in the global fit [41].
Nonperturbative renormalization is carried out so the
reported results are all in the MS scheme at 2 GeV scale.
The numerical results are collected in Table VII; the total
intrinsic quark spin contribution is ΔΣ ¼ 0.405ð25Þð37Þ,
which is consistent with the recent global fitting results of
experimental data [3–5]. The isovector g3A ¼ 1.254ð16Þð30Þ
with ∼3% combined statistical and systematic error is
within one sigma of that of the experimental value at
1.2723(23).

TABLE VII. The final results of quark spin matched to the M̄S scheme at 2 GeV. The errors of g3A andΔΣ are combined from the errors
of Δu, Δd, and Δs in quadrature. Results from two recent lattice calculations by Green et al. [34] and the Cyprus group [6] and three
experimental results from de Florian et al. [3], the NNPDF Collaboration [4], and the COMPASS Collaboration [5] are also listed for
comparison.

Δu Δd Δs g3A g8A ΔΣ

de Florian et al. (Q2 ¼ 10 GeV2) 0.793þ0.028
−0.034 −0.416þ0.035

−0.025 −0.012þ0.056
−0.062 0.366þ0.042

−0.062
NNPDFpol1.1 (Q2 ¼ 10 GeV2) 0.76(4) −0.41ð4Þ −0.10ð8Þ 0.25(10)
COMPASS (Q2 ¼ 3 GeV2) [0.82, 0.85] ½−0.45;−0.42� ½−0.11;−0.08� 1.22(5)(10) [0.26, 0.36]
Green et al. 0.863(7)(14) −0.345ð6Þð9Þ −0.0240ð21Þð11Þ 1.206(7)(21) 0.565(11)(13) 0.494(11)(15)
Alexandrou et al. 0.830(26)(4) −0.386ð16Þð6Þ −0.042ð10Þð2Þ 1.216(31)(7) 0.526(39)(10) 0.402(34)(10)
χQCD (this work) 0.847(18)(32) −0.407ð16Þð18Þ −0.035ð6Þð7Þ 1.254(16)(30) 0.510(27)(39) 0.405(25)(37)
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When checking the axial Ward identity, we find that the
effects of the excited states are crucial to understand the
violation of the extended Goldberger-Treiman relation and
even a two-term fit cannot always extract the MEs
unbiasedly, so our estimations of the systematic uncertain-
ties are relatively large. Our results can be further improved
by carrying out the same calculation at the physical point
directly and by using larger source-sink separations to
reduce the excited-states contamination.
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