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In this paper, we show the existence of magnetic monopoles in the pure SU(2) Yang—Mills
theory when a gauge-invariant mass term is introduced. This result follows from the recent
proposal for obtaining gauge field configurations in the Yang—Mills theory from the solutions of
the field equations in the “complementary” gauge—scalar model. The gauge-invariant mass term
is obtained through a change of variables and a gauge-independent description of the Brout—
Englert—Higgs mechanism, which relies neither on the spontaneous breaking of gauge symmetry
nor on the assumptions of the nonvanishing vacuum expectation value of the scalar field. We solve
under the static and spherically symmetric ansatz the field equations of the SU (2) Yang—Mills
theory coupled to a single adjoint scalar field whose radial degree of freedom is eliminated.
We show that the solution can be identified with the gauge field configuration of a magnetic
monopole with a minimum magnetic charge in the massive Yang—Mills theory. Moreover, we
compare the magnetic monopole of the massive Yang—Mills theory obtained in this way with
the Wu—Yang magnetic monopole in the pure Yang—Mills theory and the ’t Hooft—Polyakov
magnetic monopole in the Georgi—Glashow gauge—scalar model.

Subject Index B03

1. Introduction

In high-energy physics, quark confinement is a long-standing problem to be solved in the framework
of quantum chromodynamics (QCD). The dual superconductivity picture [1-3] for the QCD vacuum
is known as one of the most promising scenarios for quark confinement. For this hypothesis to be
realized, however, condensations of some magnetic objects are indispensable. However, the relevant
magnetic objects are not included in the action of QCD. Therefore, we begin our arguments by
showing the existence of magnetic monopoles in the Yang—Mills theory even in the absence of the
usual scalar field. Such magnetic monopoles in the pure Yang—Mills theory, which we call Yang—Mills
magnetic monopoles, should be compared with the ’t Hooft—Polyakov magnetic monopole [4-7] in
the Georgi—Glashow model, which includes the scalar field in the action from the beginning; see,
e.g., Refs. [8-12] for reviews of magnetic monopoles. The Yang—Mills magnetic monopoles are
expected to be obtained as topological defects or topological solitons afterwards, since they are not
included in the original QCD action.
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Nevertheless, we know [10-12] that the pure Yang—Mills theory with no scalar fields has the
topological soliton only in 4D Euclidean space. Indeed, such topological solitons are known as
instantons and anti-instantons, in agreement with the nontrivial homotopy group 73(S%) = Z. This
statement is no longer true once we introduce the mass term to the Yang—Mills theory, which we call
the massive Yang—Mills theory hereafter. In the massive Yang—Mills theory, it is shown that there
exists the other topological soliton suggested from the nontrivial homotopy group 72 (S?) = Z. This
is nothing but a magnetic monopole. It is reasonable to consider the massive Yang—Mills theory, in
light of the conjecture that the quantum Yang—Muills theory has a mass gap, even if the classical Yang—
Mills theory is a conformal theory with no mass scale [13]. Indeed, recent investigations arrived at
a consensus that gluons behave as massive particles in the low-energy (momentum) region, which
is called the decoupling solution [14-21]. In view of these, it is worth investigating the existence of
magnetic monopole configurations in the massive Yang—Mills theory. However, a naive mass term
for the gluon field breaks the gauge symmetry.

Recently, it has been shown that the gauge-invariant mass term of the Yang—Mills field can be
introduced by combining the change of variables and a gauge-independent description of the Brout—
Englert—Higgs (BEH) mechanism [22], which neither relies on the spontaneous breaking of gauge
symmetry nor on the assumptions of the nonvanishing vacuum expectation value of the scalar field.
The gauge-independent BEH mechanism [22] with a single adjoint scalar field ¢(x) leads to the
separation of the gauge field .o (x) into the massive mode # (x) and the residual mode 2 (x) in the
gauge—scalar model,

o (x) = W)+ Bx), (1)

where % (x) transforms in the same way as the original gauge field 2 (x) and # (x) transforms in
the adjoint way under the gauge transformation % (x) — U (x)# (x)U~!(x). Here # (x) and # (x)
are written in terms of .o/ (x) and ¢ (x) [22]. For preceding works related to the gauge-invariant mass
term for the non-Abelian gauge field, see Ref. [23] and references therein.

This fact provides a natural understanding of the gauge field decomposition in the Yang—Mills
theory called the Cho—Duan—Ge—Faddeev—Niemi—Shabanov (CDGFNS) decomposition (Refs. [24—
36] andY. M. Cho, unpublished preprint) and the subsequent reformulations of the Yang—Mills theory
using the new field variables [37-39]; see, e.g., Ref. [40] for areview. In the CDGFNS decomposition,
indeed, the gauge field <7 (x) is decomposed into two pieces:

A (x) = Z(x) + 7V (x), (2)

where 7#'(x) is called the restricted (or residual) field, which transforms in the same way as
the original gauge field <7 (x), and 2 (x) is called the remaining (or coset) field, which trans-
forms in the adjoint way under the gauge transformation 2 (x) — U(x).2 (x)U~'(x). The
key ingredient in the CDGFNS decomposition is the so-called color direction field n(x), which
transforms in the adjoint way under the local gauge transformation n(x) — Ux)n(x)U~!(x).
However, introducing the color field is a difficult part in understanding the CDGFNS
decomposition.

According to the gauge-independent BEH mechanism, the color field #(x) in the reformulated
Yang—-Mills theory follows from the normalized adjoint scalar field (i(x) in the “complementary”
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gauge—scalar model':

P (x) — n(x). (3)

This way of introducing the color field will facilitate understanding of the role of the color field
itself. The remaining field 2 (x) is identified with the massive mode # (x), and the restricted field
¥ (x) with the residual mode Z(x). Consequently, a gauge-invariant mass term M é-tr(% wZH) in
the reformulated Yang—Mills theory follows according to the gauge-independent BEH mechanism
from the kinetic term of the gauge—scalar model:

(DulANP) - (P ANP) = Mg tr(W W) = Mot (2, 2. 4)

Consequently, we can introduce a gauge-invariant mass term M étr(% w2 1) in the pure Yang—Mills
theory.

To obtain the pure Yang—Mills theory from the complementary gauge—scalar model, we must solve
an issue. The naively extended Yang—Mills theory written in terms of the field variables (<7, n) has
extra degrees of freedom originating from the color field n(x) if we wish to obtain the gauge theory
that is equipollent to the original Yang—Mills theory. For this purpose, we impose an additional
condition to relate the gauge field .o/ (x) and the color field n(x) in such a way that the color field is
given as a functional in terms of the gauge field: » = n[.</]. This condition is called the reduction
condition. By using the resulting color field, we can define the magnetic charge in a gauge-invariant
way.

Such color field configurations satisfying the reduction condition are obtained from the field
equations of the complementary gauge—scalar model, since it is shown [22] that the simultaneous
solutions of the coupled field equations in the “complementary” gauge—scalar model automatically
satisfy the reduction condition. Thus, we can construct gauge-invariant magnetic monopoles in the
massive Yang—Mills theory using the color field obtained in this way.

We show in this paper that magnetic monopoles do exist in the pure SU (2) Yang—Mills theory with
a gauge-invariant mass term. In fact, we solve under the static and spherically symmetric ansatz the
field equations of the SU (2) gauge—scalar model with an adjoint scalar field whose radial degree of
freedom is eliminated to be identified with the color direction field in the pure Yang—Mills theory.
Then we obtain a gauge field configuration for a magnetic monopole with a minimum magnetic
charge in the massive SU (2) Yang—Mills theory. In particular, we compare the magnetic monopole
obtained in this way in the massive Yang—Mills theory with the Wu—Yang magnetic monopole [44] in
the pure Yang—Mills theory and the 't Hooft—Polyakov magnetic monopole in the Georgi—Glashow
gauge—scalar model.

It should be remarked that, within the framework of the reformulated Yang—Mills theory, the
configurations of the color field n[.27] have been obtained by solving the reduction condition for a
given configuration of the gauge field .27 (x), e.g., instantons and merons in Refs. [45-47]. We now
revisit this problem from the opposite direction such that the gauge field configurations are obtained
for a given configuration of the color field or the normalized scalar field.

! The “complementarity” originates from the confinement-Higgs complementarity in the gauge—scalar
model that says that there is no phase transition between the two phases, confinement and Higgs, which are
analytically connected in the phase diagram [41-43]. See Ref. [23] for the precise definition and more details
on “complementarity”.
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This paper is organized as follows. In Sect. 2, we review how to obtain the gauge-invariant massive
Yang—Mills theory (Yang—Mills theory with a gauge-invariant mass term) by starting from the “com-
plementary” SU (2) gauge—adjoint scalar model with a fixed radial degree of freedom. In Sect. 3, we
summarize the essentials for the ’t Hooft—Polyakov magnetic monopole. In Sect. 4, we show by using
the scaling argument due to Derrick [48] that there can exist magnetic monopoles in the massive
Yang—Mills theory. In Sect. 5, we obtain the magnetic monopole solution with a minimum magnetic
charge under the static and spherically symmetric ansatz. In Sect. 6, we discuss the short-distance
and long-distance behavior of the gauge field and the chromo-magnetic field, in comparison with the
’t Hooft—Polyakov magnetic monopole. For the gauge field, we also perform a decomposition based
on the reformulation to investigate how the respective decomposed field behaves in the short-distance
and long-distance regions. In the final section, we discuss how the magnetic monopoles obtained in
the massive Yang—Mills theory are responsible for quark confinement from the viewpoint of the dual
superconductivity and are consistent with the existence of a mass gap. In Appendix A, we explain
the method used for numerically solving the monopole equation.

2. The massive Yang—Mills theory “complementary” to the gauge—adjoint scalar
model

In this section, we review the procedure [22] for obtaining the massive SU (2) Yang—Mills theory
from the “complementary” SU (2) gauge—adjoint scalar model described by the Lagrangian density

& = _% FA, Tt 4 % (2,81 1¢%) (2€ [ 216C) + u (p9" —1?), (5)

with
Fh, ) =0, () — 8, (x) — ge®BC 7B (x0) 7 (x), (6)
2, °1.719" (x) =0, (x) — g’ ()9 (x), (7

where # = u(x) is the Lagrange multiplier field to incorporate the radially fixed constraint
¢t =1 @=1,23,v>0). 8)

In what follows, we introduce, respectively, the inner and exterior products for the Lie-algebra-valued
fields by

P-Q:=P10Y, PxQ:=eBT,PEQC, ©)

with the generator of the Lie algebra 7.
To begin with, we construct a composite vector boson field 2, (x) from <7, (x) and $(x) as

g2, () 1= d(x) X DA 1P (x), (10)

which can be considered as identifying the normalized scalar field
N 1
$@) =~ (), (11
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gauge-scalar model ———Jp Radial Fixing —— P Field Equations

(in the preceding works)

Extended Yang-Mills . - pure Yang-Mills
——p Reduction Condition )
Theory Theory (massive)

Fig. 1. The outline to obtain the massive Yang—Mills theory from the “complementary” gauge—scalar model.
The double-lined arrow stands for our approach in this paper. The dotted box shows the approach in Refs.
[39,40].

and the color field n(x) in Refs. [39,40] (the dotted blue box in Fig. 1). Notice that 2, (x) transforms
in the adjoint way under the gauge transformation U (x) € G = SU(2):

g2,(0) = g2,(0) = (1) x Zu[/'1$ (v) = U@ UT®) x U@ Zu[ 1)U (x)
=U®)$x) x Zu[1p@)UTx) = U@ 2,0 UT (x). (12)

Moreover, the kinetic term of the scalar field is identical to the mass term of the vector field 2, (x):
1 1
SOl A1 - Dul 1 = oMo 2oy 2, My = gv, (13)

as long as the radial degree of freedom of the scalar field is fixed [22]. It is clear that by observing
Eq. (12) the obtained mass term of 2, (x) is gauge invariant. Therefore, 2}, (x) can become massive
without breaking the original gauge symmetry. This gives a gauge-independent definition of the
massive modes of the gauge field in the operator level. It should be emphasized that we do not
choose a specific vacuum of ¢(x) and hence no spontaneous symmetry breaking occurs.

By using the definition of the massive vector field .2, (x), the original gauge field .7, (x) is separated
into two pieces:

o, (x) = PV (x) + Zu(x), (14)

where the field 7, (x) can be written in terms of %7, (x) and (;S(x):

V(%) = 2, (x) — g 25(%) = geu(DP(x) — P(x) X Jup (), cu(x) = F(x) - (). (15)

Then, we regard a set of field variables {c,, (x), 2, (x), &(x)} as being obtained from {.<7, (x), (;S(X)}
based on a change of variables:

(,(x), p()} = {cu(x), Z;,(x), (X))}, (16)

and identify c, (x), 2, (x), and (;S(x) with the fundamental field variables for describing the massive
Yang—Mills theory anew, which means that we should perform the quantization with respect to the
variables {c, (x), Z,(x), (;S(x)} appearing in the path-integral measure.

In the gauge—scalar model, <7, (x) and (?)(x) are independent; however, the Yang—Mills theory
should be described by 7, (x) alone. Hence the scalar field ¢ (x) must be supplied by the gauge field
<7, (x) due to the strong interactions, or, in other words, ¢ (x) should be given as a functional of the
gauge field .7, (x).
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Moreover, notice that the degrees of freedom of the original gauge field szflf (%) in pure SU(2)
Yang—Mills theory in D-dimensional space-time are [%/f (x)] = 3 x D = 3D. Here, we have omitted
the infinite degrees of freedom of the space-time points. On the other hand, the new field variables
have [c,(x)] = D, [(;S(x)] =2, [Z ;f (x)] = 2 x D = 2D, respectively?. We can therefore observe
that the theory with the new field variables has two extra degrees of freedom if we wish to obtain
the (pure) Yang—Mills theory from the “complementary” gauge—scalar model. These are eliminated
by imposing the two constraints that we call the reduction condition. We choose, e.g.,

X(X) = () X D[ A 1D, 1(x) = 0. (17)

The reduction condition indeed eliminates the two extra degrees of freedom introduced by the radially
fixed scalar field into the Yang—Mills theory, since

XX - $(x) = 0. (18)

Following the Faddeev—Popov procedure, we insert unity into the functional integral to incorporate
the reduction condition:

1_/Dx 8 ( /DOS ) AT, (19)

where x? := x[</,¢°] is the reduction condition written in terms of <7, (x) and ¢, which is the

local rotation of ¢(x) by @ = 0(x) = 84 (x)Ty, and A™4 := det denotes the Faddeev—Popov
determinant associated with the reduction condition x = 0. Then, we obtain

_ f DD 8 (x) A% exp (iSyml/] + iSkin[ 7, $1)

= / DDD 2 T8 (%) A exp [iSym[ ¥ + 2]+ iSul 21} . (20)

The Jacobian J associated with the change of variables is equal to one: J = 1 [40]. Therefore, we
obtain the massive Yang—Mills theory that keeps the original gauge symmetry:

1 1
ngM——ZJ/w["//—I-%] FNY + 2+ M %M-%M, Mgy :=gv > 0. (21)

The obtained massive Yang—Mills theory indeed has the same degrees of freedom as the usual Yang—
Muills theory because the massive vector boson 2, (x) is constructed by combining the original gauge
field .27, (x) and the normalized scalar field (i&(x) where (fi(x) is now a (complicated) functional of
<7, (x) through the reduction condition (17).

It should be remarked that the solutions of the field equations of the gauge—scalar model satisfy the
reduction condition automatically. (But the converse is not true.) The field equations besides Eq. (8)
are obtained as

PN ATy +2¢ x Dol 1¢ =0, (22)
DA D[ A1 — 2up = 0. (23)

2 The massive vector field 2, (x) obeys the condition

2,(x) - $(x) = 0.
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configurations satisfying

the reduction condition

solutions of the field equations

of the gauge-scalar model

Fig. 2. The relation between the solutions of the field equations of the gauge—scalar model and the reduction
condition.

To eliminate the Lagrange multiplier field « in Eq. (23) we take the inner product of Eq. (23) and
¢ (x) and use Eq. (8) to obtain

1 N N
u=559 (2ANA19) = 3¢ - (2"[A19,1513). 24)
v 2
The field equations (22) and (23) are rewritten in terms of .27, (x) and (;S(x):
DAV F s + 8’ x Dl /1§ =0, (25)
DA 1Dl A1~ (- P'1A19,719) § = 0. (26)

By applying the covariant derivative 2V[.27] to Eq. (25), the reduction condition is naturally induced:
0= —2" AP A Ty = gv°h x D' 1/1D [ 1 = gV’ x. (27)

Moreover, by taking the exterior product of Eq. (26) and ¢ (x), the reduction condition is induced
again:

0= x PGl 1b— ($- 2'[A19,1510) ($ x $)
= ¢ x D' A DA 1p = X. (28)

Hence, the simultaneous solutions of the coupled field equations (25) and (26) automatically satisfy
the reduction condition (17). Figure 2 shows the relation between the solutions of the field equations
of the gauge—adjoint scalar model and the reduction condition. From this relation, we find that the
solutions of the coupled field equations of the gauge—scalar model (25) and (26) can play the very
important role of the configurations satisfying the reduction condition (17) in a massive Yang—Mills
theory through the path integral (20).

3. The Georgi—-Glashow model and the ’t Hooft—Polyakov monopole: radially
variable case

In this section, we shall summarize the essence of the Georgi—Glashow model. We introduce the
Georgi—Glashow model by the Lagrangian density:
1 1 2,2

A
o6 = — 3 Fus - T+ (TulA19) - (7M1719) =~

4 2 @) @
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We take the standard static and spherically symmetric ansatz for the ’t Hooft—Polyakov monopole
with a unit magnetic charge [4-7]:

x4
() = V), (30)

k
, ‘ 1—
g 64()(?) =0, gﬂfjA(x) = e]Akx—ﬂ
r r

where 7 is the 3D radius 7 := /x% + y? + z2. The profile functions f(r) and A(r) are unknown
functions to be determined by solving the field equations.
In the spherically symmetric case, we can rewrite the Lagrangian Lgg,

m ~ ~
0

in terms of the redefined Lagrangian density .E”Gc;:

N 205 — 112
Zog = ‘;_’;[_fa(r) _ (f(rz)Tl) ; gV () — @V 2R () — g4v4r2 (R (r) — 1)2].
(32)
By rescaling
r— p=gvr, (33)

with p now being dimensionless, .-ZGg is cast into

(o) — 1)?

~ 1 )\'2
Lo = 4nv2[—f/2(p) R I S0P (0) =2 () (p) = -0 (W (p) = 1)2}. (34)

The field equations are obtained as

Lo —1e
0?2

f(p) = + £ (p)H*(p), (35)

(0% (0)) =22 (P)h(p) + 32 p* (K (p) — h(p)). (36)

We assume asymptotic behavior for small p as the power series in p:

[y =1+ Fup", hip) =) Hup" (37)

n=0
By substituting these series expansions into the field equations (35) and (36), we can determine the
coefficients as
3F2 4+ H? 14F3 4+ 12F,H? + AH?
— 1 — o2 2 1 4 2 1 Lpo g,
f(p) 20— P 120 p° +
AH +4FH) 5 48FFH| + 8AFoH) + A2H) + 2(5A + 2)H;
o 77 280 e

(3%)

h(p) = Hip — (39)

4. Scaling argument of the massive Yang—Mills theory and the Georgi—Glashow
model

In this section we examine the existence of the static and stable configuration in the massive Yang—
Mills theory. For this purpose, we follow the scaling argument due to Derrick [48]. In this section
only, we consider an arbitrary spatial dimension d.
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In the gauge—adjoint scalar model with a radial-fixing constraint, the static energy £ can be written
after eliminating the Lagrange multiplier field u(x) as

E= /ddx[iﬁjk e+ (91 (90018) + 2 (1-6-8) - %M%[%lfi]- (40)

By rescaling the spatial variable x as x — pux, the fields are transformed as ®(x) — d™M(x) in
general: For the scalar and the vector field,

$" o) = p(ux), P (%) = (), (41)

which yields

(21018)" ) = 1 (2118) (w1, FL ) = w2 T ). (“2)
Then the scaled energy £(u, d) obeys
E(u,d) = 1 E4 + 1> Es, (43)
where
Eyi= / dx 3T T, (44)

A

B | azﬂ’x[vz—2 (211) - (21538) + = (1 —&-&)&-@j[m@j[m(p]. (45)

For the massive Yang—Mills theory (21), the scaled energy £ (i, d) obeys the same equation as Eq.
(43) with the replacement:

1 1
Bvi= [a i 7 S B [ @l M2 2 (46)
We find that £(u, d) has a stationary point in 2 < d < 4 spatial dimensions:

dE(u,d) ~ [d-2m
o VM aaEs @

implying that there can exist a stable configuration with a finite energy that differs from the vacuum
configuration. It should be noticed that such a stable configuration can exist only ind = 3. Therefore,
we can obtain the static topological soliton in the (3 + 1)-dimensional massive Yang—Mills theory.
The explicit construction is given in the next section.

This result should be compared with the pure (massless) Yang—Mills theory and the SU (2) Georgi—
Glashow model: The scaled energies for these theories are respectively given by

Eym(u,d) = n*~9Ey, (48)
Ego(u,d) = u*Eq + 1>~ Ey + n K, (49)

where Ey in Egg (i, d) comes from the potential term:

2.2
Eo = / dx kTg (B) - p(x) —12)’. (50)
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Notice that for the pure (massless) Yang—Mills theory only the term of the gauge field exists and
hence there is no stationary point under the scaling, which implies the non-existence of the static
and stable soliton solutions in the (3 + 1)-dimensional massless Yang—Mills theory. For the Georgi—
Glashow model, the scaling argument does not prohibit the existence of the static soliton solution;
i.e., indeed, there exists the 't Hooft—Polyakov magnetic monopole for d = 3.

5. The magnetic monopole solution in the massive Yang—Mills theory

Because of the constraint (8) the normalized scalar field dA)(x) takes the value in the target space of
the 2D sphere S2. Then, by regarding qAS(x) as the map

G) : Spiys = Sargers (51)

there could exist topological soliton solutions related to the nontrivial homotopy group 7 (S?) = Z.
We adopt the same ansatz as the 't Hooft—Polyakov monopole:

k
. 1—
g =0, gt = o= L1ZTO (52)
r r
and’
xA . xA
¢ =v_h() = ¢ = —h), (53)
The profile functions /() and A(r) are unknown functions to be determined by solving the field
equations.
We redefine the Lagrangian density .Z by . = 4nr?.%:
~ 4 2y =% 1
L = il —f’z(r)——(f @) ) ——gzvzrzh'z(r) —gzvzfz(r)hz(r)—i—ugzvzr2 (hz(r) — 1) , (54)
g2 2r2 2

where the prime denotes a derivative with respect to 7.
The equations for the profile functions /() and A(r) are obtained as

30 —

1) =w + gV (D (), (55)
(2K () =212 h(r) = 2ur*h(r), (56)
W) —1=0. (57)

Equation (57) comes from the constraint and can be solved:

h(r) = 1. (58)

3 It should be noted that in this setup the reduction condition (17) is automatically satisfied due to its tensor
structure (without knowing the profile functions):

N ~ N A\ C
X =& x P11 = " Td" (~HA%1519)

r.r

B x€ |:d2h(r) 2dh(r)

__ _apcp XX 2 2 _ _
= —""Ty——h(r) i T — r—zh(r)f (r)] =0, T,=—.
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By substituting Eq. (58) into the other equations, we have

3(6) —
7 =TT 2y, (59)
0=1%(r) — ur. (60)

Thus we can determine the Lagrange multiplier field # = u(r) by

; (61)

once the remaining equation (59), which we call the monopole equation, is solved. By rescaling
r — p := Mgr, the monopole equation reads

_ L) =)

f"(p) pe +£(p). (62)

First, we examine the asymptotic behavior of /(). The static energy F is given by

00 2 _1)2
E= ‘;_’2’/ dr[f’z(r) Lo +g2v2f2(r)i|
0

272

ArMy [ 2(p) — 1)?
_ nzx/ dp|:f’2(,0)+ Y (,0)2 ) +f2(p)i|’ 63)
g 0 2p

where in the second equality we have rescaled » — p. One can find the boundary conditions for
f (p) by requiring the energy £ to be finite:

70 5 214002, (o) =S 0+ 0007, (64)

For small p, we further require

o) 222 1+ 0%, a > 1, (65)

so that the gauge field sz/jA (x) becomes non-singular at the origin.

Here, one finds that f'(p) = 0 is a solution of the monopole equation (62). This is nothing but
the Wu—Yang magnetic monopole. However, this solution yielding .2;(x) = 0 does not satisfy the
boundary condition (64) for p ~ 0, which leads to infinite energy £ = co. Conversely, the solution
f(p) # 0 means 2, (x) # 0, which yields a finite energy £ < oo.

In order to obtain the asymptotic behavior of /' (p) for small p, let us define /' (p) = 1 4+ g(p) with
lg(p)] <« 1 and linearize the monopole equation (62):

p*g" (p) — 2g(p) — pg(p) = p*. (66)

The linear differential equation (66) for g(p) has the following general solution:
inh h
g(p) =C (coshp _ ,0> + G (COS p_ sinh ,0)
P o

inh h
1+ (cosh,o _ s p) Chi p + (COS P _ sinh ,0) Shi p, (67)
p p
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where we have introduced the hyperbolic cosine and sine integral Chi x and Shi x respectively,
defined with the Euler constant y by

sinh ¢

Chix:=y+10gx+/xdtco5h+_l, Shix:=fxdt (68)
0 0
Here the first two terms of Eq. (67) correspond to the general solution consisting of two independent
special solutions (cosh p — %) and (@ — sinh p) of the homogeneous equation obtained by
eliminating the inhomogeneous term p? of Eq. (66), and the remaining terms represent a special
solution of the inhomogeneous equation (66).

Under the boundary conditions g(0) = 0 and g’(0) = 0, we can determine only one coefficient
C, =0:

inh inh h
2(p) = C) (cosh o—F ) 1+ (cosh Pt ) Chi p + (COS P _ sinh ,0) Shi p. (69)
P P P
The Taylor expansion of the solution (69) around the origin p = 0 has the form

~ 1 ~ 1
g(p) = Cp? + 3p%logp + O(p"), C =5 (=4+3y +3C). (70)
Thus, under the boundary conditions /' (0) = 1 and f"(0) = 0, we can set the asymptotic form of
f(p) around the origin:

~ 1
f<p>=1+Cp2+§p210gp+-~ (p ~0), (71)

where C is arbitrary at this stage. Notice that the extra logarithmic behavior of f(p) appears. This

is due to the radially fixed constraint #(0) = 1, and the singularity at the origin should be cured by

f(p) itself. In the case of the ’t Hooft—Polyakov monopoles, on the other hand, the field equations are

satisfied by the power series in p, Egs. (38) and (39), without the logarithmic terms for 0 < A < oo.
For large p, we adopt the asymptotic form:

f()=e"> Dyp™" (p~o00). (72)
n=0

In a similar way to the above, we can determine the coefficients D, as

1@ =00 (1= 5 o o), (73)
where the overall factor Dy is arbitrary at this stage. The monopole equation (62) can be solved in
a numerical way; see Appendix A for details. The coefficients C and Dy can be determined in a
numerical way as well.

Figure 3 shows the obtained solution f'(p) of the monopole equation (62) and a corresponding
scalar profile function /(p) as a function of p, which should be compared with the usual 't Hooft—
Polyakov monopole solution. The ’t Hooft—Polyakov monopole solution with a large coupling . > 1
approaches the Yang—Mills magnetic monopole except for in the neighborhood of the origin p ~ 0:
In the ’t Hooft—Polyakov monopole, the scalar profile function iqp (p) starts from zero, Agp(0) = 0,
even in the limit A — oo, while the scalar profile function of the Yang—Mills magnetic monopole
has a constant value 4(0) = 1 due to the constraint (57).
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Fig. 3. (Top) The solution f* of the Yang—Mills monopole equation (62) as a function of p = Mg to be
compared with the ’t Hooft—Polyakov monopole solutions (for A = 0, 1, 102, 10°, and 107) and the Wu—Yang
magnetic monopole with /' = 0. (Bottom left) The corresponding solution / for the scalar field as a function of
p. The radially fixed constraint #(p) = 1 holds even at the origin p = 0 in the Yang—Mills monopole, while the
naive A — oo limit of the ’t Hooft-Polyakov monopole approaches the limit value, 4yp(p0) — 1, for p > 0.
(Bottom right) An enlarged figure for 4(p) around the origin p = 0: the Yang—Mills monopole # = 1 is to be
compared with the ’t Hooft-Polyakov monopole with Ap(0) = 0 in the case of A = 102, 10%, and 107,

From this numerical solution, we can calculate the static energy or the rest mass of a magnetic

ArMy [ (f2(p) — 1)?
g’ fo 2p2
This result also shows that the obtained solution f (o) is different from the Bogomol’nyi—Prasad—
Sommerfield (BPS) monopole [49,50]: By definition, the energy in the BPS limit is given by

monopole £ as

dn M

gz“"“" x 1.78206.  (74)

E =

dp [f/z(p) + +f2(p)] ~

4 4 M
E=2 00 My =g (75)
g g
We define the energy density e(p) by
o M 4o M 0
E = /d3x FC(r) :/ dp 471,02—‘2%%”(,0) _ 7 2‘%/ dp e(p), (76)
0 g g 0
where .77 (r) is the Hamiltonian density. The energy density e(p) can be written as
2 2
(p) D7 1
e(p) =1(p) + (fT + P ) + IR () + PPV ). 7

Figure 4 is a plot of the energy density e(p) as a function of p obtained from the solution f'(p),
which should also be compared with the case of the 't Hooft—Polyakov monopoles. One can find
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Fig.4. (Left panel) The energy density e of the Yang—Mills monopole as a function of p = M4 to be
compared with the ’t Hooft-Polyakov monopoles (for & = 0, 1, 10?, 103, and 107) and the Wu—Yang magnetic
monopole (diverging at the origin). (Right panel) An enlarged figure for e around the origin p =~ 0: the
Yang-Mills solution is to be compared with the ’t Hooft-Polyakov monopole with A = 102,103, and 107.

that the energy density of the Yang—Mills monopole is very different from the 't Hooft—Polyakov
solution at the origin even in the limit of A — oo even though they have the same energy value. This
is caused by the radially fixed condition: In the 't Hooft—Polyakov case, e(0) = 0 originates from
h(0) = 0, which persists even in the limit A — oo, while in our case, #(0) = 1 with no potential
term ¥ (h*) = 0, the contribution from the fourth term in Eq. (77) for e(p) survives at the origin due
to f(0) = 1.

Based on Eq. (74), we estimate the static mass of the Yang—Mills monopole as
E =0.93+0.04GeV, (78)

where we have used the value for the off-diagonal gluon mass M 9~ = 1.2 GeV obtained by previous
studies on a lattice [51] and the typical value of the running coupling constant a(p) := g2(p) /4w ~
2.31+0.1atp >~ Mg ~ 1.2 GeV obtained in Refs. [52,53]. This result should be compared with the
SU(5) grand unified theory (GUT) monopole [54] and the SU (2) x U(1) electroweak monopoles
(Cho—Maison monopoles) [55,56]. For the GUT monopole, the monopole mass exists around 10'4—
10'3 TeV for the SU(5) GUT scale 10!3 TeV. The mass of the electroweak monopole is estimated
as 4-7TeV, which is much heavier than the mass of the W boson mw ~ 80 GeV because of the
smallness of the running coupling constant o (p) ~ 0.12 at the weak scale, p >~ mz =~ 91 GeV.

The Yang—Mills monopole mass, 0.93 GeV, obtained in this paper corresponds to the heaviest one
in the family of 't Hooft—Polyakov monopoles in the Georgi—Glashow model, since the energy (76)
is monotonically increasing in the coupling constant A, while the lightest mass, 0.52 GeV, occurs if
the coupling A vanishes, namely, in the BPS limit. It should be noted that the Yang—Mills monopole
mass £ ~ 0.93GeV and the off-diagonal gluon mass My =~ 1.2 GeV are of the same order as
the typical scale of the strong interactions: O(1). In view of these, the existence of the Yang—Mills
monopole with a reasonable mass is a remarkable step for quark confinement to be realized due to
condensation of the relevant Yang—Mills monopoles according to the dual superconductor picture,
although we need more serious investigations to conclude whether or not the interactions among
monopoles are indeed sufficient for realizing monopole condensations, as examined in the 3D case
by Polyakov [57].
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6. Behavior of the gauge and chromo-magnetic fields
6.1. The gauge field
We shall separate the gauge field .27, (x) into two pieces:

vQ{u (x) = 7//1,(35) + f%u(x)a (79)
where
g2y =0x DulAP, gV =gy —gLy =g )b+ 0. x ¢. (80)
In the present ansatz, by using the normalized scalar field (Ab(x) with 4(r) = +1 and the Pauli matrices
Ty = 504,
. o
po) ==, (81)
r 2
they are explicitly written as
JAkxk &, JAkxk
g%(x) = 7‘—27’ g:%(X) = - }"2 Tf(r): (82)
and their time components vanish: #(x) = 0, Zo(x) = 0.
In what follows, we adopt the polar coordinate system (7, 9, ¢) for the spatial coordinates:
g (x) =0, gapy(x) =Ar)Ty, gy(x)=Ar)Ty, (83)
ghx) =0, g¥x)=VTy, gVx)=V()T,, (84)
gar(x) =0, gZyx) =X(NTy, gZyx)=XT,, (85)
where we have defined
1 0 e 1 [ —sinf® cosfe ¥
Ty = = . T, = = . 86
=3 (—ie"/’ 0 ) ) (cos fe'? sin 6 )’ (86)
and
Mgr) Mgr)
A(r) = / , V()= ,X()——f " 87)

Figure 5 is a plot of the fields 4, V, and X as functions of p = M 4-r, which shows that the original
gauge field 7 (x) is indeed regular at the origin:

A(r) = M?Z-[—ar - %rlog(Mg-r) + O(r3):|, (88)

as is expected. On the other hand, the fields ¥ (x) and 2 (x) diverge at the origin » = 0.
We perform a singular gauge transformation, which makes (i(x) diagonal: qASoo = %03:
2 \sinfe’® —cosh 0 -1

b = 5 ( 008 Smgew) - W= U 0 = (1 X ) = b (89)
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Fig. 5. The behavior of 4, V', and X as functions of p = M 5-r. Here A(x) = V (x) + X (x), where V' (x) agrees
with the Wu—Yang monopole and X (x) corresponds to the massive mode.

or equivalently ¢4 (x) = §43. Sucha gauge transformation can be done by using the following SU (2)
matrix U (x):

0 in 2o

COS sSin e

U) = (_ <in Qzeiw C(fs 0 ) e SU(2). (90)
2 2

As mentioned before, 2, (x) is transformed in an adjoint way:
Zu(x) = 2, (x) = U®) 2,0 U™ (v), 91)

while, as a consequence, 7}, (x) has the same gauge transformation property as the original gauge
field .27, (x):

Vu(x) > ¥ = U) (%(x) + ;—%) U~ (x). (92)

Thus, ¥ (x) and 2 (x) are transformed by U (x) as

W =0, ghw =0, ghw =y 93)

52700 =0, g2y ="10 g = SH g, (04
where we have defined

Ty :=Ticosp+Trsing, T_:=Tising —Thcosp, Ty= OZ—A. (95)

One can find that the field ¥ (x) is nothing but the Wu—Yang potential [44], which has singularities
of the Dirac string type [58] located on the negative part of the z-axis. Moreover, we find that by
recalling f(M 2r) ox exp(—M g4r) atr ~ oo the field 2 (x) indeed falls off exponentially, and hence
we can identify 2 (x) with the massive (or high-energy) mode.

For the Yang—Mills magnetic monopole obtained in the massive Yang—Mills theory, we do not need
to introduce artificial regularization by hand to remedy the short-distance (or ultraviolet) singularity
and instability of the Wu—Yang magnetic monopole in the pure massless Yang—Mills theory as worked
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out in Refs. [S9-61]. The regularized solution of the Yang—M ills field equation was obtained so that
the Wu—Yang solution for » > ry and another solution for » < rq are connected at » = ry to make
the energy finite; see pp. 503—504 and Appendix B of Ref. [61]. The Yang—Mills magnetic monopole
</ (x) obtained in this paper approaches the Wu—Yang type 7# (x) for large , while for small r it
approaches the regular form and the energy becomes finite. This is attributed to the behavior of the
massive mode 2 (x). For large r, 2 (x) falls off quickly to guarantee <7 (x) >~ ¥ (x), while for small
r, 2 (x) also becomes singular but with a signature opposite to #(x) to cancel the singularity of
¥ (x), leading to a finite Yang—Mills field, <7 (x) = ¥'(x) + 2 (x) =~ 0 near x = 0.

6.2. The chromo-magnetic field

We examine the magnetic charge ¢, obtained by the chromo-magnetic field %f x):

1 xAy 3 XA\ df Mor)
Ay A\ _ 2
g8A; (x) = Efjklgﬁk[(x) =i (1—f*(Mgr)) — (T T3 ) dr (96)
The magnetic charge g, and its density p,,(r) are defined by
A\ 4 4 [® A
qm = /d3x %f <%’[%]¢) = ?/0 dr pm(@), pm(r) = rZ%f (.@j[szi](b) : 97)

The magnetic charge density p,,(7) can be written in terms of the profile functions f (M 2r) (and
h(Mgr)):

d
Pm(r) = E[h(MM (1 =f*(Mgr))]. (98)

From the definition of ¢, this chromo-magnetic field 93}4 (x) indeed has a nontrivial magnetic charge
qm:
4 [° 4o [ d
ani= [ dr o) = [ ar SO (1= £2000)]
g Jo g Jo dr

4
=§[h(M3ﬂ”) (1—f2Myr))]

® 4

= (99)
r=0 g

In the top panel of Fig. 6 we give the magnetic charge density p,,(r), which is also compared with
the ’t Hooft—Polyakov magnetic monopole. We observe that the Yang—Mills magnetic monopole is
more localized in the vicinity of the origin than any ’t Hooft—Polyakov magnetic monopole, and is
the same size as the A = oo 't Hooft—Polyakov monopole.

In order to investigate the behavior of the chromo-magnetic field %’f (x) around » &~ 0, we turn to
the polar coordinate representation:

B, ) 1 —f2(Myr) 1 cos6 singe™™
EXrX) = r2 2 \sinfe® —cos6 |’
Byx) = — Ldf (Mgr) 1 sin @ —cosfe ¥
£X%0 Ty dr 2 \ — coshe® —siné
ldfMar)1 [ 0  ie” ™
By(x) = ———— T~ — . . 100
8% r dr 2\ —ie'¥ 0 (100)
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Fig. 6. The short-distance behavior of (top) the magnetic charge density p,,, (bottom left) the gauge-invariant
chromo-magnetic field B, := %, - ¢, as functions of p = My r. (Bottom right) An enlarged figure around
the origin p ~ 0 of the chromo-magnetic field of the Yang—Mills monopole to be compared with the ’t
Hooft-Polyakov monopole at large values of A; e.g., A = 10?,10%, and 10. For the Wu—Yang monopole,
the magnetic charge density is proportional to the delta function: p,, o< §(x). Here, the magnetic field of the
’t Hooft—Polyakov monopole is finite at the origin, while the magnetic field of the Yang—Mills monopole is
divergent logarithmically at the origin.

Then, % (x) is transformed by U (x) in Eq. (90), Z(x) — &' (x) = Ux)Bx)U "' (x):

1 —f2(Mar 1df (Mgr 1df (Mgyr
g B = LMD by = LY g = LMD g
r dr r dr
For %(x) to be gauge invariant, we take the inner product %’ - (i)ooz
. 1 —f2(Myr - A
gB.(x) - bo = # gBY () - boo = B, (%) - §oy = 0. (102)

We find that in the radially fixed case of Yang—Mills theory, the chromo-magnetic field diverges at
the origin due to its logarithmic behavior:

_ s
gRB.(x) - (ioo = M = Méf [—% log(M r) + (finite terms)]. (103)

See the panels in the second line of Fig. 6. This magnetic field %/ (x) - (;500 should be compared with
that of the ’t Hooft—Polyakov monopole, which has a finite value even at the origin.

It should be noticed that we have included the volume element 47772 in the definition of the energy
and magnetic charge densities because we started from the Lagrangian including 477 2. By excluding
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the factor 7> from the energy and magnetic charge densities, in the radially fixed case, they diverge
at the origin » = 0 due to the logarithmic term log(M 2-r). This divergence, however, is not essential
for the calculation of the physical quantities, since, for instance, in order to evaluate the magnetic
charge ¢,, we need the volume element 47772, which makes the divergence disappear.

7. Conclusion and discussion

In this paper we have constructed the magnetic monopole configuration in the SU (2) Yang—Mills
theory even in the absence of the scalar field by incorporating a gauge-invariant mass term. Such a
gauge-invariant mass term is obtained through a gauge-independent description of the BEH mecha-
nism proposed in Ref. [22]. The procedure for obtaining the relevant magnetic monopole is guided
by the “complementarity” between the SU(2) gauge—adjoint scalar model with the radial-fixing
constraint and the massive SU (2) Yang—Mills theory [22]. In fact, we have obtained the static and
spherically symmetric magnetic monopole configuration in the SU (2) massive Yang—Mills theory by
solving the field equations of the “complementary” SU (2) gauge—adjoint scalar model with a radially
fixed scalar field. We have found that the static energy or the rest mass of the obtained Yang—Mills
magnetic monopole is finite and proportional to the mass M 2 of the massive components .2 of the
Yang—Mills gauge field <7

In the long-distance region, we observed that the Yang—Mills magnetic monopole configuration
&/ reduces to the restricted field ¥/, which agrees with the Wu—Yang magnetic monopole as a
consequence of the suppression of the massive modes 2" in the long-distance region. This feature is
similar to the usual 't Hooft—Polyakov monopoles. In the short-distance region, on the other hand,
the Wu—Yang magnetic monopole becomes singular, while the 't Hooft—Polyakov monopole remains
non-singular even at the origin. In the Yang—Mills magnetic monopole, we found that the massive
components 2" play the very important role of canceling the singularity of ¥ in the short-distance
region such that the original gauge field 7 remains non-singular at the origin. This regularity of
the Yang—Mills magnetic monopole is guaranteed by the logarithmic behavior of the gauge field
itself without the aid of the scalar field, which vanishes at the origin as seen in 't Hooft-Polyakov
monopoles. This behavior renders the energy of the Yang—Mills magnetic monopole finite even if
the magnitude of the scalar field is fixed. It should be remarked that the chromo-magnetic field £
is divergent at the origin due to the logarithmic behavior of the solution f'(p), which is, however,
unessential for obtaining finite physical quantities such as energy, magnetic charge density, and
magnetic flux.

By using the Yang—Mills magnetic monopole found in this paper, we can show quark confinement
in the 3D Yang—M ills theory in the same way as the 3D Georgi—Glashow model shown by Polyakov
[57] without introducing the artificially regularized Yang—Mills magnetic monopole [59-61] for
avoiding the short-distance singularity and instability of the Wu—Yang magnetic monopole.
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Appendix. A numerical treatment

We have used the integral equation method [62] to solve the monopole equation. We can rewrite the
monopole equation (62) as

Lof (p) =12(p) —f(p) + p*f () + 201 (p) — (p* + v(v + 1))f (p), (A.1)

where we have introduced the differential operator £, defined by

2

d d
L, = p*—5 +20— — (p* 1). A2
=P T2 (p”+v(+1) (A.2)

By using the Green’s function G(p, s) for the differential operator £, i.e., L,G(p,s) = —(p — ),
which is given using the modified spherical Bessel functions as

kv(p)iv(s) (s < p)
G = A3
(0:) [kv(sm(p) (> 3
Eq. (62) can be rewritten into the integral equation
1) = [ ds G5 0.9 (A4)

where § stands for the inhomogeneous terms

U f1(5),8) = £3(5) —f(5) + 521 (5) + 25 (s) — (s> + v(v + D)f (5). (A.5)

Here we have chosen the modified spherical Bessel functions to accelerate the convergence of the
numerical calculations.
According to Ref. [62], we solve the integral equation (A.4) by numerical iterations:

10 =00 + [ ds 6.9 [ 0. 0.9 + £,V (A6)

where £ (p) is a trial function for numerical calculations and /™ (p) is the appropriate solution
obtained at 7 iterations. We have chosen 1 ?)(p) to satisfy the boundary conditions of the original

f(p):
79 (p) = sech p. (A7)

After n = 30 iterations, we find that /" (p) converges to a reliable result. For the *t Hooft-Polyakov
monopole in the Georgi—Glashow model, we can perform the same procedure as that given in Ref.
[62]. The result of our numerical calculations is consistent with the ’t Hooft—Polyakov monopole
[63—65] for the infinite coupling A = oo in the Georgi—Glashow model.
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