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We perform a nonperturbative study of the electroweak phase transition (EWPT) in the two Higgs
doublet model (2HDM) by deriving a dimensionally reduced high-temperature effective theory for the
model, and matching to known results for the phase diagram of the effective theory. We find regions of the
parameter space where the theory exhibits a first-order phase transition. In particular, our findings are
consistent with previous perturbative results suggesting that the primary signature of a first-order EWPT in
the 2HDM is mA0

> mH0
þmZ.
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Introduction.—Accounting for the baryon asymmetry in
the present Universe is a major unsolved problem in
cosmology. One of the leading candidates for a viable
mechanism, electroweak baryogenesis (EWBG) [1], sug-
gests that the asymmetry originates from the electroweak
phase transition (EWPT) in the early Universe. According
to the Sakharov conditions [2] the transition would have to
be first order, accompanied by a sizable violation of CP
symmetry. Unfortunately, these conditions immediately
rule out EWBG within the minimal standard model
(SM), as it was demonstrated that the SM EWPT is a
crossover [3–6], and that SM CP-violating effects are
heavily suppressed at high temperatures [7–9].
Independently of the question of baryon asymmetry, a

host of beyond the standard model (BSM) theories have
been proposed to solve open problems in physics.
Determining whether BSM theories can produce a first-
order EWPT and thus facilitate EWBG is nontrivial:
quantitatively reliable conclusions about the phase tran-
sition typically require a nonperturbative approach, deemed
unmanageable for large parameter spaces. Because of this
difficulty, analyses based on the finite-temperature effective
potential have become standard [10–16]. Such studies can,
however, have considerable uncertainties, particularly for

physical observables: in one study [17], errors in excess of
10% in the critical temperature and 50% in the latent heat
were found, compared to nonperturbative studies.
In contrast, a more reliable approach uses dimensionally

reduced effective theories, originally applied to the SM in
Refs. [3–5,18,19], and recently applied to the SM accom-
panied by a real singlet [20]. In this Letter, we use this
method to treat a widely studied BSMmodel, the two Higgs
doubletmodel (2HDM),where the SM is augmentedwith an
additional Higgs doublet [see Ref. [21] for a review, and
Refs. [22–24] for earlier work on dimensional reduction
(DR) in the 2HDM]. We derive a three-dimensional high-T
effective theory, studying regions of parameter space where
this theory has the same form as that of the standard model,
similar to Ref. [25]. This reduces determining the phase
diagram of the theory to mapping its parameter space to that
of the SM effective theory. Equipped with the analysis of
Refs. [3–5], we discover interesting and phenomenologi-
cally viable regions of parameter space where the EWPT is
first order, corroborating key findings of perturbative studies
of EWBG in the 2HDM.
Dimensional reduction of the 2HDM.—Our four-dimen-

sional starting theory can be described by the schematic
action

S ¼
Z

d4x½Lgauge þ Lfermion þ Lscalar þ LYukawa�; ð1Þ

suppressing counterterm and ghost contributions. The field
content includes SUð3Þc, SUð2ÞL, and Uð1ÞY gauge fields,
two scalar doublets ϕ1 and ϕ2, as well as all fermions
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present in the SM. In our present treatment, we will
consider only one quark flavor in the Yukawa sector,
namely the top, since it has the largest coupling to the
Higgs field. The top quark couples to one doublet only (by
convention ϕ2), and we have not yet committed to a
specific type of 2HDM (I or II).
The extended scalar sector of our model reads

Lscalar ¼
X2
i¼1

ðDμϕiÞ†ðDμϕiÞ þ Vðϕ1;ϕ2Þ; ð2Þ

with usual covariant derivative Dμ and the potential

Vðϕ1;ϕ2Þ ¼ μ211ϕ
†
1ϕ1 þ μ222ϕ

†
2ϕ2 þ μ212ϕ

†
1ϕ2 þ μ2�12ϕ

†
2ϕ1

þ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ

þ λ4ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ
λ5
2
ðϕ†

1ϕ2Þ2 þ
λ�5
2
ðϕ†

2ϕ1Þ2:
ð3Þ

In general, CðPÞ symmetry is broken when λ5 or μ212 are
complex; we have discarded so-called hard CP-breaking
terms, often parametrized by λ6;7; cf. Refs. [21,26].
The first three-dimensional effective theory, obtained by

integrating out the “superheavy” hard scale πT (see, e.g.,
Ref. [20] for details of the procedure), has schematic form

S ¼
Z

d3x½Lð3Þ
gauge þ Lð3Þ

scalar þ Lð3Þ
temporal�; ð4Þ

again suppressing ghost and counterterm contributions.
The field content is now SUð2ÞL and Uð1ÞY gauge fields,
two Higgs doublets, and temporal scalar fields Aa

0 , B0, Cα
0 .

The fermions are integrated out and the SUð3Þc gauge fields
can be neglected [20]. The fundamental scalar sector
remains of the form

Lð3Þ
scalar ¼ ðDrϕ1Þ†ðDrϕ1Þ þ ðDrϕ2Þ†ðDrϕ2Þ þ Vðϕ1;ϕ2Þ;

where r ¼ 1, 2, 3 is summed over. In the second step of
DR, the heavy temporal scalar fields are integrated out.
Although the theory in Eq. (4) is already suitable for

lattice simulations, it can be further simplified by noticing
that ϕ1 and ϕ2 mix when μ212 ≠ 0, and near the phase
transition there typically exists a hierarchy between
the mass eigenvalues. This observation—specific to the
2HDM—allows us to integrate out the heavy mode and
study the phase transition with only one scalar field coupled
to the gauge fields. Our final effective theory becomes

S ¼
Z

d3x½L̂ð3Þ
gauge þ L̂ð3Þ

scalar�; ð5Þ

L̂ð3Þ
scalar ¼ ðDrϕÞ†ðDrϕÞ þ μ̂23ϕ

†ϕþ λ̂3ðϕ†ϕÞ2: ð6Þ

Here, ϕ is the remaining light ϕ1-ϕ2 mode, and the
parameters of the theory include μ̂23, λ̂3, and the 3D gauge
couplings ĝ03 and ĝ3 for the Uð1ÞY and SUð2ÞL interactions.
As in the analysis of Refs. [3,18], we omit all non-
perturbative effects related to the Uð1ÞY field.
The main task of DR is to perturbatively match the

parameters of the original 4D theory, Eq. (2), to those of the
final effective theory, Eq. (6). This is accomplished by
demanding that the effective theory reproduces the static
Green functions of the original theory at large distances
R ≫ 1=T. This results in a number of matching relations
from which the effective theory parameters are solved. This
procedure is presented in Ref. [26] and summarized in
Supplemental Material [27].
As discussed above, the effective theory of Eq. (6) has

the same form as that of the SM, studied in Refs. [3–5], but
with different matching relations. This allows us to adopt
existing numerical results for the strength of the phase
transition and study the phase diagram through our match-
ing procedure alone.
The validity of DR can be quantified by estimating the

effect of neglected dimension-six operators. While it is
difficult to comprehensively gauge their effect, one can
evaluate the change in the vacuum expectation value
(VEV) of the Higgs field in the effective theory caused by
the ðϕ†ϕÞ3 operators. In Eq. (201) of Ref. [18], it was shown
that in the SM the dominant neglected contribution comes
from the top quark; its effect is about 1%. In the first DR step
where the superheavy fields are integrated out, we estimate
the effect of new BSM contributions by comparing
their magnitude to the contribution from the top quark
[see Eqs. (34) and (35) in Supplemental Material [27]].

However, in many cases, the operator Oð6Þ
B ¼ Λ̂6ðϕ†ϕÞ33D

generated when the heavier doublet is integrated out domi-
nates over the six-dimensional operators of the first step,

denoted fOð6Þ
A;ig. We discuss these operators in detail below.

Finally, although the parameter matching is perturbative,
the study of the 3D phase diagram is nonperturbative and—
within the limitations of lattice methods—exact. The main
advantage of our approach lies in proper handling of the
infrared physics, which causes trouble in traditional pertur-
bative studies of the EWPT. Resummations are performed
when the superheavy and heavy scales are integrated out
perturbatively, and the problematic light modes are treated
nonperturbatively on the lattice. However, the mapping to
precise values of the 4D parameters, where this phase
transition occurs in the 2HDM, is limited by the accuracy
of the perturbative truncation. We organize the expansion in
terms of the gauge coupling g, and perform the DR toOðg4Þ.
Thus the calculation is carried out at the one-loop level for
quartic couplings, and two-loop level for mass parameters.
This exceeds the accuracy used in the perturbative calcu-
lations of, e.g., Ref. [28] (see, however, Ref. [29] for a recent
two-loop perturbative calculation in the inert doublet
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model). The uncertainty in the effective theory due to the
choice of renormalization scale is discussed in Supplemental
Material [27].
Scanning the parameter space.—The phase diagram of

the dimensionally reduced theory can be mapped using the
dimensionless parameters x≡ λ̂3=ĝ23, y≡ μ̂23=ĝ

4
3. It is

known that within this theory the EWPT occurs near
y ≃ 0, where the Higgs mass parameter becomes negative.
In Refs. [3–5], it was found that the transition is first order
for x≲ 0.11, and strongly so for x≲ 0.04. In this Letter we
are focused on finding where the crossover turns into a first-
order transition.
We search for areas of 2HDM parameter space that

map onto regions of the 3D effective theory with x < 0.11
and y ≃ 0. Since there are ten real parameters in the
4D theory and only three in the 3D one, inverting the
mapping process is not unique. We perform scans of
the 2HDM parameter space, guided by the results of
Ref. [30] that combine phenomenological constraints with
a one-loop resummed perturbative determination of the
effective potential. Other recent treatments are found in
Refs. [31,32].
A uniform scan through a 10-dimensional space is

computationally expensive; we must therefore make some
simplifying assumptions. We take all parameters of the
2HDM to be real, setting Imðλ5Þ ¼ 0, Imðμ212Þ ¼ 0. This
eliminates extra CP violation in the model, which would
be crucial for baryogenesis. However, the effect of these
imaginary parts on the strength of the transition is expec-
ted to be negligible; the CP-violating phase must neces-
sarily be small due to electric dipole moment (EDM)
constraints [33–35].
Next, we reparametrize the model following Ref. [30],

applying tree-level relations between the MS parameters
and physical quantities; accounting for (possibly sizable)
loop effects from vacuum renormalization is left for future
work. The masses of the CP-even scalars are denoted by
mh ¼ 125 GeV and mH0

, that of the CP-odd scalar bymA0
,

and that of the charged scalar by mH�. We also employ
two angles α and β: α parametrizes mixing between
the CP-even states, while β is related to the ratio of the

VEVs tanðβÞ≡ ðν2=ν1Þ. Here, ν1 and ν2 are the VEVs
for ϕ1 and ϕ2, respectively, with ν21 þ ν22 ¼ ν2 and
ν ¼ 246 GeV. Finally, there is the squared mass scale
M2 ≡ μ2½tanðβÞ þ 1= tanðβÞ�, where we treat μ2 ≡ −Re μ212
as an input parameter. The relations between the physical
states and gauge eigenstates can be obtained from Ref. [30].
We also fixmH� ¼ mA0

, since EW precision tests require
the mass of the charged Higgs boson to be roughly
degenerate with either H0 or A0 [36,37]. Furthermore,
we work in the alignment limit, setting cosðβ − αÞ ¼ 0. In
this limit, the CP-even scalar h couples to SM particles
exactly like the SM Higgs boson. We investigate relatively
few values for tanðβÞ, whereas we perform a more
exhaustive scan in a three-dimensional parameter space
spanned by mH0

, mA0
, and μ2. At each point, we require

that tree-level stability and unitary constraints be satisfied;
for details, see Ref. [26]. Furthermore, for the scaling
assumptions of DR to be valid, the tree-level mass
parameters μ11, μ22, and μ12 should be comparable to
the Debye mass mD ∼ gT near the phase transition. This
sets an upper bound for the input parameter μ≲ 200 GeV.
Finally, we verify that in the effective theory the other
doublet really is heavy near the phase transition, so it is
justified to integrate it out.
Results.—Following our scanning protocol outlined

above, we fix tanðβÞ and scan in the two scalar masses
mH0

and mA0
between 137.5 and 562.5 GeV at spacings of

6.25 GeV, a total of 4624 points. A dense scan in μ is then
carried out for each pair, from 10 to 150 GeVat intervals of
2.5 GeV for a total of 56 values. In all, each of our fixed-
tanðβÞ plots results from scanning approximately 260 000
points. The upper limit on μ is chosen to ensure that the DR
is valid, as explained above.
We first check whether each point is physical, according

to our criteria. If so, we then perform the DR for evenly
spaced temperatures between 80 and 200 GeV, at intervals
of 20 GeV. This allows us to find the value of x when
y ¼ 0—on the critical line—by interpolation. We then
use x to characterize the phase transition. We take
0.0 < x < 0.11 as an indicator of a first-order EWPT,
the upper limit coming from previous lattice work.

(a) (b) (c)

FIG. 1. Heat maps with fixed tanðβÞ, showing regions of first-order EWPT (0 < x < 0.11 and y ≃ 0) in the alignment limit. The dotted
lines correspond to mA0

¼ mH0
and mA0

¼ mH0
�mZ.
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Combining different values of μ, we indicate the
relative number of points with a first-order phase transition
as a heat map in Fig. 1, for three separate values of
tanðβÞ. The majority of our points reside in the region
mA0

> mH0
þmZ, in accordance with Refs. [28,30] (see,

however, Refs. [31,32]). In our framework, sufficiently
strong interactions with the second doublet are necessary to
bring x down from its SM value of x > 0.11. Although the
relation between the 4D inputs and x is complicated by the
diagonalization, a mass hierarchy between H0 and A0

generically results in large portal couplings λ3–5 and small
values of x in the upper region. However, at small tanðβÞwe
also see a considerable number of points in regions where
this does not hold.
In Fig. 2, we show a breakdown of the heat map plot

with fixed tanðβÞ ¼ 2.0 for two values of μ. We include
here an estimate of the effect of two of the neglected six-

dimensional operators Oð6Þ
A;1 and Oð6Þ

A;2 produced when the
superheavy scale is integrated out. Generally, decreasing
values of x correspond to increasing importance of dimen-
sion-six terms: when the effect of these terms becomes
large, the DR breaks down. These plots also show how the
lower first-order region disappears as μ increases.
We have found by explicit computation that the negative-

x region at large mA0
is due to the omission of the six-

dimensional operatorOð6Þ
B in the last DR step that, although

inversely proportional to the heavy doublet mass, obtains
sizable contributions from the large couplings. We estimate
its effect by computing the dominant tree-level diagram
contributing to the operator coefficient (see Ref. [38] and
Supplemental Material [27]) and determining the two-loop
effective potential in the final effective theory with this
operator included (cf. Refs. [18,39]). We stress, however,
that the effective potential is only a tool for estimating
errors from omitted six-dimensional operators; our results
concerning the phase transition are obtained using the
nonperturbative phase diagram of Refs. [3,5].
In Fig. 3, the effective potential is depicted at two

values of x, both with and without the effects of the six-

dimensional operator Oð6Þ
B . The field φ is the 3D back-

ground field, defined via hϕi3D ¼ ðφ= ffiffiffi
2

p Þð 0 1 ÞT and
related to 4D fields, as described in Supplemental Material
[27]. The figure demonstrates how at x ¼ 0.108—near the

crossover boundary—the six-dimensional operator Oð6Þ
B

has a negligible impact on the potential, while for x ¼
0.068 (which corresponds to ϕc=Tc ≈ 0.7) the effect is
already sizable, continuing to grow as x decreases. Hence,
integrating out the heavier doublet is expected to be a
valid approximation when the transition is of weakly first
order, but becomes increasingly challenged near the strong
transition limit of x≲ 0.04. While we expect our results to
be qualitatively robust even there, reaching quantitatively
accurate results for very small x clearly calls for simulations
with two dynamical doublets, which we leave for future
work.
Experimental constraints on the 2HDM parameter space

depend strongly on the way in which fermions couple to the
Higgs doublets. With the exception of the top quark, other
Yukawa couplings have little effect on our EWPT analysis,

1/2

FIG. 3. Two-loop effective potential in the final effective theory
with the dominant six-dimensional operator Oð6Þ

B of the last DR
step included, evaluated at the critical temperature. At small x,
integrating out the second doublet causes significant error, as is
seen from the shift in the potential minimum.

FIG. 2. Slices with different values of μ, μ ¼ 50 GeV (top)
and 75 GeV (bottom), and fixed tanðβÞ ¼ 2.0. The validity of
DR is estimated by showing the relative effect of the neglected

dimension-six operators Oð6Þ
A;1, O

ð6Þ
A;2. The white regions are either

unphysical or there is no transition. At large mH0
the effects of

dimension-six operators render the first DR step unreliable.
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and we have still to indicate whether we are considering
type I (all quarks couple to ϕ2) or type II (up-type quarks
couple to ϕ2, down-type quarks to ϕ1) 2HDM. The most
stringent constraints come from flavor physics, where B
decays set the bound mH� ≳ 580 GeV for the charged
Higgs mass in type II [40]. Assuming thatm�

H is degenerate
with mA0

in accordance with EW precision tests, this rules
out our regions of first-order EWPT in type II, but no such
lower bound exists in type I for tan β ≥ 2 [40,41].
Additional restrictions come from direct searches for

neutral Higgs bosons at the LHC [42]. For type I, the
H0 → ττ cross section is suppressed by cot2 β, and our
choices of tan β are within current experimental bounds.
Finally, we have verified that the mass range we scan in is
allowed by measurements of the h → γγ decay [43], as well
as the relatively recent search for A0 → Zh processes [44].
Having not scanned in the hidden-Higgs region where
constraints from charged-scalar searches become important
[45], we conclude that our first-order EWPT regions are
currently not ruled out by experiments if a type I 2HDM is
assumed.
Discussion.—It is a shortcoming of present-day particle

cosmology that it is still impossible to reliably determine
the nature and strength of the EWPT for a given BSM
scenario. This information would be valuable not only for
EWBG, but also for gravitational-wave physics, as a first-
order EWPTwould leave an imprint in the sensitivity range
of the LISA mission and other proposed gravitational-wave
detectors [46].
We have taken a step towards remedying the situation by

studying the mapping of the phase diagram of one viable
BSM theory, the 2HDM. Our results concern the EWPT in
the alignment limit cosðβ − αÞ ¼ 0. Our work so far
supports the idea that the primary signature of a first-order
transition in this theory is indeed mA0

> mH0
þmZ, as

suggested by Refs. [28,30].
The techniques discussed in this Letter can be applied,

with suitable modifications, to a host of other models where
a substantial region of parameter space can be mapped
onto the three-dimensional theory of the minimal standard
model. In the future, our aim is to perform a thorough
comparison of perturbative and nonperturbative results in
the 2HDM by keeping both doublets dynamical in the
effective theory. Similar projects to study the EWPT and
benchmark the accuracy of perturbation theory are already
under way in the standard model augmented by a real
singlet [47] or triplet field [48]; the EWPT has been
perturbatively analyzed for the former in Refs. [49,50],
and for the latter in Ref. [51].
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