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We propose and apply a new approach to determining jVusj using dispersion relations with weight
functions having poles at Euclidean (spacelike) momentum which relate strange hadronic τ decay
distributions to hadronic vacuum polarization (HVP) functions obtained from lattice quantum chromo-
dynamics. We show examples where spectral integral contributions from the region where experimental
data have large errors or do not exist are strongly suppressed but accurate determinations of the relevant
lattice HVP combinations remain possible. The resulting jVusj agrees well with determinations from K
physics and three-family Cabibbo-Kobayashi-Maskawa unitarity. Advantages of this new approach over
the conventional hadronic τ decay determination employing flavor-breaking sum rules are also discussed.
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Introduction.—Precise determinations of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element jVusj are
important in the context of three-family unitarity tests and
searches for physics beyond the standard model (SM). The
most precise such determination, jVusj ¼ 0.2253ð7Þ, is from
Γ½Kμ2�=Γ½πμ2�, using the lattice input fK=fπ ¼ 1.193ð3Þ
[1–4]. Three-family unitarity and jVudj ¼ 0.97417ð21Þ [5],
similarly, imply jVusj ¼ 0.2258ð9Þ, whereasKl3, with lattice
fþð0Þ input, yields jVusj ¼ 0.2237ð10Þ [6]. It is a long-
standing puzzle that conventional flavor-breaking (FB)
finite-energy sum rules (FESRs) employing hadronic τ
decay data yield much lower jVusj, most recently 0.2186
(21) [7] [0.2207(27) when Γ½Kμ2� and dispersive Kπ form
factor constraints are incorporated [8]].
The conventional FB FESR implementation employs

assumptions for unknown dimensionD ¼ 6 and 8 operator

product expansion (OPE) condensates which turn out to fail
self-consistency tests [9]. An alternate implementation,
fitting D > 4 condensates to data, yields results passing
these tests and compatible with determinations from other
sources [9]. The resulting error is dominated by uncertain-
ties on the relevant weighted inclusive flavor us spectral
integrals and a factor > 2 larger than that of K-decay-based
approaches. Improved branching fractions (BFs) used in
normalizing low-multiplicity us exclusive-mode Belle and
BABAR distributions would help, but ∼25% errors on
higher-multiplicity us “residual mode” contributions
[10], involving modes not remeasured at the B factories,
preclude a factor of 2 improvement [9,11].
This Letter presents a novel dispersive approach to

determining jVusj using inclusive strange hadronic τ decay
data, hadronic vacuum polarization (HVP) functions com-
puted on the lattice, and weight functions, ωNðsÞ ¼
ΠN

k¼1ðsþQ2
kÞ−1, Q2

k > 0, having poles at Euclidean Q2 ¼
Q2

k > 0. We show examples of such ωN which strongly
suppress spectral contributions from the high-multiplicity
us “residual” region without blowing up errors on the
related lattice HVP combinations. The approach yields
jVusj in good agreement with K-decay analysis results
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and three-family CKM unitarity expectations. The lattice
error is comparable to the experimental one, and the total
error is less than that of the inclusive FB FESR τ decay
determination.
New inclusive determination.—The conventional inclu-

sive FB τ decay determination is based on the FESR
relation [12,13]Z

s0

0

ωðsÞΔρðsÞds ¼ −
1

2πi

I
jsj¼s0

ωðsÞΔΠð−sÞds; ð1Þ

connecting, for any s0 and analytic ωðsÞ, the relevant
FB combination, ΔΠð−sÞ ¼ Πusð−sÞ − Πudð−sÞ, of spin
J ¼ 0, 1 HVPs and associated spectral function
ΔρðsÞ ¼ ð1=πÞImΔΠð−sÞ. Experimental data are used
on the LHS and, for large enough s0, the OPE on the
RHS. In the SM, the differential distribution, dRV=A;ij=ds,
associated with the flavor ij ¼ ud, us vector (V) or
axial vector (A) current-induced decay ratio RV=A;ij ¼
Γ½τ− → ντhadronsV=A;ij�=Γ½τ− → e−ν̄eντ�, is related to the

J ¼ 0, 1 spectral functions ρðJÞij;V=AðsÞ, by [14]

dRij;V=A

ds
¼ 12π2jVijj2SEW

m2
τ

×
h
ωτðsÞρð0þ1Þ

ij;V=AðsÞ − ωLðyτÞρð0Þij;V=AðsÞ
i
; ð2Þ

where yτ ¼ s=m2
τ , ωτðyÞ ¼ ð1 − yÞ2ð1þ 2yÞ, ωLðyÞ ¼

2yð1 − yÞ2, and SEW is a known short-distance electroweak
correction [15,16]. Experimental dRij;V=A=ds distributions
thus determine, up to factors of jVijj2, combinations of

the ρðJÞij;V=A.
The low jVusj noted above results from a conventional

implementation [17] of Eq. (1) which employs fixed
s0 ¼ m2

τ and ω ¼ ωτ and assumptions for experimentally
unknown D ¼ 6 and 8 condensates. With s0 ¼ m2

τ and
ω ¼ ωτ, inclusive nonstrange and strange BFs determine
the ud and us spectral integrals. Testing D ¼ 6 and 8
assumptions by varying s0 and/or ω, however, yields jVusj
with significant unphysical s0- and ω dependence, motivat-
ing an alternate implementation employing variable s0 and
ω which allows a simultaneous fit of jVusj and the D > 4
condensates. Significantly larger (now stable) jVusj are
found, the conventional implementation results jVusj ¼
0.2186ð21Þ [7] and 0.2207(27) [8], shifting up to 0.2208
(23) and 0.2231(27) [9], respectively, with the new imple-
mentation. us spectral integral uncertainties dominate the
error, with current ∼25% residual mode contribution errors
precluding a competitive determination [9].
Motivated by this limitation, we switch to generalized

dispersion relations involving the experimental us
V þ A inclusive distribution and weights, ωNðsÞ≡Q

N
k¼1 ðsþQ2

kÞ−1, 0 < Q2
k < Q2

kþ1, having poles at
s ¼ −Q2

k. From Eq. (2), dRus;VþA=ds directly determines
jV2

usjρ̃usðsÞ, with

ρ̃usðsÞ≡
�
1þ 2

s
m2

τ

�
ρð1Þus;VþAðsÞ þ ρð0Þus;VþAðsÞ: ð3Þ

For N ≥ 3, the associated HVP combination

Π̃us ≡
�
1 − 2

Q2

m2
τ

�
Πð1Þ

us;VþAðQ2Þ þ Πð0Þ
us;VþAðQ2Þ ð4Þ

satisfies the convergent dispersion relation

Z
∞

0

ρ̃usðsÞωNðsÞds ¼
XN
k¼1

Res
s¼−Q2

k

½Π̃usð−sÞωNðsÞ�

¼
XN
k¼1

Π̃us;VþAðQ2
kÞQ

j≠kðQ2
j −Q2

kÞ
≡ F̃ωN

: ð5Þ

With Π̃usðQ2
kÞ measured on the lattice, dRus;VþA=ds used

to fix s < m2
τ spectral integral contributions, and s > m2

τ

contributions approximated using perturbative quantum
chromodynamics (pQCD), one has

jVusj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̃us;wN

=

�
F̃ωN

−
Z

∞

m2
τ

ρ̃pQCDus ðsÞωNðsÞds
�s
; ð6Þ

where R̃wN
≡ðm2

τ=12π2SEWÞ
Rm2

τ
0 ½1=ð1−yτÞ2�½dRus;VþAðsÞ=

ds�ωNðsÞds.
Choosing uniform pole spacing Δ, ωN can be charac-

terized by Δ, N, and the pole-interval midpoint,
C ¼ ðQ2

1 þQ2
NÞ=2. With large enough N, and allQ2

k below
∼1 GeV2, spectral integral contributions from s > m2

τ and
the higher-s, larger-error part of the experimental distribu-
tion can be strongly suppressed. Increasing N lowers the
error of the LHS in Eq. (5) but increases the relative RHS
error. With results insensitive to modest changes of Δ, we
fix Δ ¼ 0.2=ðN − 1Þ GeV2, ensuring ωN with the same C
but different N have poles spanning the same Q2 range.
C and N are varied to minimize the error on jVusj.
We employ the following us spectral input: Kμ2 or

τ → Kντ [7] for K pole contributions, unit-normalized
Belle or BABAR distributions for Kπ [18,19], K−πþπ−

[20], K̄0π−π0 [21] and K̄ K̄ K [22,23], the most recent
Heavy Flavor Averaging Group (HFLAV) BFs [7], and
1999 ALEPH results [10], modified for current BFs, for the
residual mode distribution. Multiplication of a unit-nor-
malized distribution by the ratio of corresponding exclusive
mode to electron BFs converts that distribution to the
corresponding contribution to dRus;VþAðsÞ=ds. The dis-
persively constrained Kπ BFs of Ref. [8] (ACLP) provide
an alternate Kπ normalization. In what follows, we illus-
trate the lattice approach using the HFLAV Kπ normali-
zation. Alternate results using the ACLP normalization are
given in Ref. [24].
Lattice calculation method.—We compute the two-point

functions of the flavor us V and A currents, JμV=Aðx⃗; tÞ ¼
JμV=AðxÞ, μ ¼ x, y, z, t, via
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Cμν
V=AðtÞ ¼

X
x⃗

hJνV=Aðx⃗; tÞ½JμV=Að0; 0Þ�†i: ð7Þ

The continuum spin J ¼ 0, 1, us HVPs, ΠðJÞ
us;V=A ≡ ΠðJÞ

V=A,
are related to the two-point functions by

X
x

eiqxhJμV=AðxÞ½JνV=Að0Þ�†i

¼ ðq2gμν − qμqνÞΠð1Þ
V=Aðq2Þ þ qμqνΠð0Þ

V=Aðq2Þ; ð8Þ

up to finite volume (FV) and discretization corrections.

With Cð1Þ
V=AðtÞ ¼ 1

3

P
k¼x;y;zC

kk
V=AðtÞ, Cð0Þ

V=AðtÞ ¼ Ctt
V=AðtÞ, the

analogous J ¼ 0, 1 parts of Cμν
V=A are [25,26]

ΠðJÞ
V=AðQ2Þ − ΠðJÞ

V=Að0Þ ¼
X
t

Kðq; tÞCðJÞ
V=AðtÞ; ð9Þ

with Kðq; tÞ ¼ ðcos qt − 1=q̂2Þ þ 1
2
t2 and q̂ the lattice

momentum, q̂μ ¼ 2 sin qμ=2. FV corrections to this infinite
volume result are discussed below. We use lattice HVPs
measured on the near-physical quark mass, 2þ 1 flavor
483 × 96 and 643 × 128 Möbius domain wall fermion
ensembles of the RBC and UKQCD collaborations [27],
employing all-mode averaging (AMA) [28,29] to reduce
costs. Slight u, d, s mass mistunings are corrected by
measuring the HVPs with partially quenched (PQ) physical
valence quark masses [27], also using AMA.
F̃ωN

in Eq. (5) can be decomposed into four contribu-

tions, F̃ðJÞ
V=A;ωN

, labeled by the spin J ¼ 0 or 1, and

current type, V or A. F̃ðJÞ
V=A;ωN

¼ limt→∞L
ðJÞ
V=A;ωN

ðtÞ, where
LðJÞ
V=A;ωN

ðtÞ ¼ P
t
l¼−t ω

ðJÞ
N ðlÞCðJÞ

V=AðlÞ. From Eqs. (9) and (4)

ωð1Þ
N ¼

XN
k¼1

K
� ffiffiffiffiffiffi

Q2
k

q
; t
��

1 −
2Q2

k

m2
τ

�
Res
s¼−Q2

k

½ωNðsÞ�;

ωð0Þ
N ¼

XN
k¼1

K
� ffiffiffiffiffiffi

Q2
k

q
; t
�
Res
s¼−Q2

k

½ωNðsÞ�: ð10Þ

With finite lattice temporal extent, finite-time effects may
exist. Increasing N increases the level of cancellation and
relative weight of large-t contributions on the RHS of
Eq. (5). The restrictions 0.1 GeV2 < C < 1 GeV2 and
N ≤ 5, chosen to strongly suppress large-t contributions,
allow us to avoid modeling the large-t behavior. Figure 1
shows, as an example, the large-t plateaus of the partial

sums LðJÞ
V=A;ωðtÞ, obtained in all four channels, for N ¼ 4,

C ¼ 0.5 GeV2 on the 483 × 96 ensemble.
The upper panel of Fig. 2 shows the relative sizes of

the four C-dependent lattice contributions, VðJÞ, AðJÞ, for
N ¼ 4. The lower panel, similarly, shows the relative sizes
of different contributions to the weighted us spectral

integrals. Kπ denotes the sum of K−π0 and K̄0π− con-
tributions, pQCD the contribution from s > m2

τ , evaluated
using the five-loop-truncated pQCD form [30,31]. Varying
C (and N) varies the level of suppression of the pQCD and
higher-multiplicity contributions, the relative size of K and
Kπ contributions, and hence the level of “inclusiveness” of
the analysis. The stability of jVusj under such variations
provides additional systematic cross-checks.
Analysis and results.—The Að0Þ channel produces the

largest RHS contribution to Eq. (5). On the LHS, theK pole

dominates ρð0Þus;AðsÞ, with continuum contributions doubly
chirally suppressed. Estimated LHS continuum Að0Þ con-
tributions, obtained using sum-rule Kð1460Þ and Kð1830Þ
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FIG. 1. Partial sum of the residues LðJÞ
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decay constant results [32], are numerically negligible for
the ωN we employ. An “exclusive” Að0Þ analysis relating
F̃Að0Þ
wN

to the K-pole contribution R̃K
wN

¼ γKωNðm2
KÞ is,

therefore, possible, with γK ¼ 2jVusj2f2K obtained from
either Kμ2 or Γ½τ → Kντ�. Because the simulations under-

lying F̃Að0Þ
wN

are isospin symmetric, we correct γK for
leading-order electromagnetic (EM) and strong isospin-
breaking (IB) effects [4,8]. With PDG τ lifetime [6]
and HFLAV τ → Kντ BF [7] input, γK½τK� ¼
0.0012061ð167Þexpð13ÞIB GeV2. γK½τK� is employed in
our main, fully τ-based analysis. The more precise result
γK½Kμ2� ¼ 0.0012347ð29Þexpð22ÞIB [6] from Γ½Kμ2� can
also be used if SM dominance is assumed. Exclusive
analysis jVusj results are independent of C for C <
1 GeV2 (confirming tiny continuum Að0Þ contributions)
and agree with the results, jVusj ¼ 0.2233ð15Þexpð12Þth and
0.2260ð3Þexpð12Þth, obtained using jVusj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γK=ð2f2KÞ

p
,

the isospin-symmetric lattice result FK ≡ ffiffiffi
2

p
fK ¼

0.15551ð83Þ GeV [27] and γK ¼ γK½τK� and γK½Kμ2�,
respectively. See Ref. [24] for further details.
For the fully inclusive analysis, statistical and systematic

uncertainties are reduced by employing 2f2KωNðm2
KÞ, with

measured fK , for the K pole Að0Þ channel contribution. The
residual, continuum Að0Þ contributions are compatible with
zero within errors, as anticipated above. IB corrections,
beyond those applied to γK, are numerically relevant only
for Kπ. We account for (i) π0-ηmixing, (ii) EM effects, and
(iii) IB in the phase space factor, with π0-η mixing
numerically dominant, evaluating these corrections, and
their uncertainties, from the results presented in Ref. [8]. A
2% uncertainty, estimated using results from a study of
duality violations in the SUð3ÞF-related flavor ud channels
[33], is assigned to pQCD contributions. Because our
analysis is optimized for ωN strongly suppressing
higher-multiplicity and s > m2

τ contributions, such an
uncertainty plays a negligible role in our final error.
Several systematic uncertainties enter the lattice compu-

tation. With an assumed continuum extrapolation linear in
a2 but only two lattice spacings, Oða4Þ discretization

uncertainties must be estimated. For the ωN we employ,
the two ensembles yield F̃ωN

differing by less than
(typically significantly less than) 10%, compatible with
∼Ca2 or smaller Oða2Þ errors. Anticipating a further ∼Ca2
reduction of Oða4Þ relative to Oða2Þ corrections, we
estimate residual Oða4Þ continuum extrapolation uncer-
tainties to be ∼0.1Ca2f, with a−1f ¼ 2.36 GeV [27] the
smaller of the two lattice spacings. We also take into
account the lattice scale setting uncertainty. The dominant
FV effect is expected to come from Kπ loop contributions
in the Vð1Þ channel, which we estimate using a lattice
regularized version of finite-volume chiral perturbation
theory (ChPT). It is known, from Ref. [34], that one-loop
ChPT for HVPs involving the light u, d quarks yields a
good semiquantitative representation of observed FV
effects [35]; we thus expect it to also work well for the
flavor us case considered here, where FV effects involving
the heavier s quark should be suppressed relative to those in
the purely light u, d quark sector. The result of our one-loop
ChPT estimate is a 1% FV correction. We thus assign a 1%
FV uncertainty to our Vð1Þ channel contributions [37].
Regarding the impact of the slight u, d, s sea-quark mass
mistunings on the PQ results, the shift from slightly
mistuned unitary to PQ shifted-valence-mass results for
F̃ðωNÞ corresponds to shifts in jVusj of < 0.4% for both
ensembles. With masses and decay constants typically
much less sensitive to sea-quark mass shifts than to the
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lattice fK is shown for comparison.

TABLE I. Sample relative spectral integral contributions.

Contribution Value [%]

½N;CðGeV2Þ� [3, 0.3] [3, 1] [4, 0.7] [5, 0.9]

K 65.5 30.9 61.7 66.9
Kπ 21.4 28.6 26.4 25.2
K−πþπ− 2.4 5.6 2.8 2.1
K̄0π−π0 3.1 7.3 3.6 2.7
Residual 2.7 6.8 2.9 2.1
pQCD 4.9 20.8 2.7 1.1
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same valence-quark mass shifts, we expect sea-mass PQ
effects to be at the sub-∼0.1% level, and hence negligible
on the scale of the other errors in the analysis.
Figure 3 shows the C dependence of relative, nondata,

inclusive analysis error contributions. K labels the fK-
induced Að0Þ uncertainty, other that induced by the stat-
istical error on the sum of Vð1Þ, Vð0Þ, Að1Þ, and tiny
continuum Að0Þ channel contributions. The statistical error
dominates for low C, the discretization error for large C.
Figure 4 shows our jVusj results. These agree well for

different N, and C < 1 GeV2. The slight trend toward
lower central values for weights less strongly suppressing
high-s spectral contributions (N ¼ 3 and higher C) sug-
gests the residual mode distribution may be somewhat
underestimated due to missing higher-multiplicity contri-
butions. Such missing high-s strength would also lower the
jVusj obtained from FB FESR analyses. Table I lists relative
spectral integral contributions for selected ωN . Note the
significantly larger (6.8% and 21%) residual mode and
pQCD contributions for N ¼ 3 and C ¼ 1 GeV2.
Restricting C to < 1 GeV2 keeps these from growing
further and helps control higher-order discretization errors.
The error budget for various sample weight choices is
summarized in Table II.
Our optimal inclusive determination is obtained for

N ¼ 4, C ¼ 0.7 GeV2, where residual mode and pQCD
contributions are highly suppressed, and yields results

jVusj ¼
�
0.2228ð15Þexpð13Þth; for γK½τK�
0.2245ð11Þexpð13Þth; for γK½Kμ2�;

ð11Þ

consistent with determinations from K physics and
three-family unitarity. Theoretical (lattice) errors are

comparable to experimental ones, and combined errors
improve on those of the corresponding inclusive FB FESR
determinations. A comparison to the results of other
determinations is given in Fig. 5.
Conclusion and discussion.—We have presented a novel

method for determining jVusj using inclusive strange
hadronic τ decay data. Key advantages over the related
FB FESR approach employing the same us data are (i) the
use of systematically improvable precision lattice data in
place of the OPE, and (ii) the existence of weight functions
that more effectively suppress spectral contributions from
the larger-error, high-s region without blowing up theory
errors. The results provide not only the most accurate
inclusive τ decay sum rule determination of jVusj but also
evidence that high-s region systematic errors may be
underestimated in the alternate FB FESR approach. The
combined experimental uncertainty can be further reduced
through improvements to the experimental τ → K,Kπ BFs,
whereas the largest of the current theoretical errors, that due
to lattice statistics, is improvable by straightforward lattice
computational effort. Such future improvements will help
constrain the flavor dependence of any new physics
contributions present in hadronic tau decays, contributions
expected to be present at some level if the apparent
violation of lepton flavor universality seen recently in
semileptonic b → c decays involving τ persists.
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TABLE II. Error budget for the inclusive jVusj determination.

Contribution Relative error (%)

½N;CðGeV2Þ� [3, 0.3] [3, 1] [4, 0.7] [5, 0.9]

Theory fK 0.37 0.20 0.34 0.36
Others, stat. 0.41 0.19 0.34 0.41
Discretization 0.10 0.80 0.25 0.27
Scale setting 0.09 0.08 0.11 0.11
IB 0.10 0.21 0.11 0.10
FV 0.10 0.04 0.13 0.18
pQCD 0.05 0.26 0.03 0.01

Total 0.59 0.91 0.58 0.65

Experiment K 0.48 0.27 0.44 0.47
Kπ 0.20 0.32 0.23 0.22
K−πþπ− 0.06 0.16 0.06 0.05
K̄0π−π0 0.03 0.09 0.03 0.03
Residual 0.41 1.35 0.41 0.28

Total 0.66 1.43 0.65 0.59

Combined Total 0.88 1.70 0.87 0.88
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FIG. 5. Our jVusj determinations [inclusive, γK ½τK �-based ex-
clusive (filled square) and γK ½Kμ2�-based exclusive (empty
square)] c.f. results from other sources.
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