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We study magnetized orbifold models. We assume the localized Fayet-Iliopoulos terms and the
corresponding gauge background. Such terms lead to the strong localization of zero-mode wave functions.
In this setup, we compute quark mass matrices.
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I. INTRODUCTION

Superstring theory is a promising candidate for a
unified theory of all the interactions including gravity,
quarks, and leptons as well as Higgs fields. In addition to
our four-dimensional (4D) spacetime, superstring theory
predicts extra six-dimensional space, which should be
compact. Thus, extra dimensional models are well
motivated.
The standard model is the chiral theory. The torus

compactification is one of the simplest compactifications,
but the torus compactification leads to a 4D nonchiral low-
energy effective field theory. Thus, the simple torus
compactification is not realistic. How to derive a chiral
theory is a key point when we start from extra dimensional
field theory and superstring theory.
The torus compactification with a magnetic flux is a

simple way to derive a 4D chiral theory from extra
dimensional field theory and superstring theory [1–4].
The number of zero modes, i.e., the generation number,
is determined by the magnitude of the magnetic flux.
Their zero-mode wave functions are quasilocalized
around points different from each other in the compact
space. Such behavior can lead to suppressed coup-
lings, which would be useful to explain quark and
lepton masses and mixing angles. Indeed, in Ref. [5],
Yukawa couplings were computed. In addition, higher-
order couplings were computed in Ref. [6]. Quark and
lepton mass matrices were also discussed. (See, e.g.,
Refs. [7,8].)
The orbifold compactification with a magnetic flux is

also interesting [9]. Orbifolding can project out the adjoint

matter fields, i.e., open string moduli.1 Also, the number of
zero modes and their wave functions on orbifolds with
magnetic fluxes are different from those on a torus
compactification with a magnetic flux [9,11,12]. Thus,
the orbifold compactification makes model building rich.
For example, the realization of quark and lepton masses and
mixing angles as well as CP phases was studied [13–18].
However, such a realization is still a challenging issue.
In addition, we can assume localized operators on

orbifold fixed points [19–23]. That also makes model
building more rich. In Ref. [24], Fayet-Iliopoulos (FI) terms
[25], which are localized on the fixed points, were studied
on the T2=Z2 orbifold compactification (without a magnetic
flux). Although the zero-mode profile is flat without
localized FI terms, zero modes are localized around orbifold
fixed points because of FI terms. This behavior would be
interesting from the phenomenological viewpoint.
In this paper, we study the Z2 orbifold compactification

with magnetic fluxes and localized FI terms. Localized FI
terms drastically change the zero-mode profiles from those
without FI terms. That would also change the pattern of
fermion mass matrices. In this setup, we investigate the
realization of quark masses and mixing angles.
This paper is organized as follows. In Sec. II, we explain

our setup. In Sec. III, we examine quark masses and mixing
angles in our model. Section IV is the conclusion and
discussion. In the Appendix, we show wave functions
explicitly, which are used in our analysis.

II. MAGNETIZED ORBIFOLD MODELS WITH
LOCALIZED FI TERMS

In this section, we explain our setup and zero-mode
profiles. We implicitly assume that our models are super-
symmetric. For example, when the number of compactPublished by the American Physical Society under the terms of
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1This aspect corresponds to the T-dual picture of intersecting
D-brane models on orbifolds [10].
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dimensions is six (four), the compact space is the tensor
product of three (two) two-dimensional (2D) spaces. We
assume that magnetic fluxes in three (two) 2D compact
spaces are set such that 4D N ¼ 1 supersymmetry is
unbroken. However, the flavor structure, i.e., the difference
between fermion flavors, originates from one of the 2D
compact spaces. Hence, we concentrate on the 2D compact
spaces such as T2 and T2=Z2, because this part is important
to realize Yukawa matrices consistent with observations.
Then, we study the zero-mode wave functions and Yukawa
couplings on the 2D space.

A. Torus compactification with a magnetic flux

Here, we briefly review the torus model with magnetic
fluxes [5]. We use the complex coordinate z ¼ xþ τy
instead of the real coordinates (x, y), where τ is a complex
structure modulus. By use of the complex coordinate, the
metric is written by ds2 ¼ gαβdzαdz̄β,

gαβ ¼
�
gzz gzz̄
gz̄z gz̄ z̄

�
¼ ð2πRÞ2

�
0 1

2

1
2

0

�
: ð1Þ

To realize the T2, we identify z ∼ zþ 1 and z ∼ zþ τ.
We consider the U(1) theory with the following magnetic

flux:

F ¼ i
πM
Imτ

ðdz ∧ dz̄Þ; ð2Þ

where M must be quantized to be an integer. This flux can
be obtained by the following vector potential:

AðzÞ ¼ πM
Imτ

Imðz̄dzÞ; ð3Þ

in a certain gauge.
Here, we study the spinor field ψðz; z̄Þ with U(1) charge

q on T2, which has two components:

ψðz; z̄Þ ¼
�
ψþ
ψ−

�
: ð4Þ

Then, we examine the zero-mode equation

i=Dψ ¼ 0; ð5Þ

which can be written in components

Dψþ ¼ 0; D†ψ− ¼ 0; ð6Þ

where

D† ≡ ∂ − q
πM
2Imτ

z̄; D≡ ∂̄ þ q
πM
2Imτ

z: ð7Þ

Also, they must satisfy the following boundary condition:

ψ�ðzþ 1Þ ¼ eiqϕ1ðzÞψ�ðzÞ ¼ exp

�
i
πqM
Imτ

Imz

�
ψ�ðzÞ;

ð8Þ

ψ�ðzþ τÞ ¼ eiqϕ2ðzÞψ�ðzÞ ¼ exp

�
i
πqM
Imτ

Imτ̄z

�
ψ�ðzÞ:

ð9Þ

Either ψþ or ψ− has zero-mode solutions exclusively
when qM ≠ 0. That is, for qM > 0 (qM < 0), ψþ (ψ−) has
jqMj solutions, while ψ− (ψþ) has no zero modes. The
number jqMj would correspond to the generation number.
Their zero-mode profiles for qM > 0 are given by

ψ j;qMðzÞ ¼ N eiπqMzImz
Imτ · ϑ

� j
qM

0

�
ðqMz; qMτÞ; ð10Þ

with j ¼ 0; 1;…; ðjqMj − 1Þ, where ϑ denotes the Jacobi
theta function

ϑ

�
a

b

�
ðν; τÞ ¼

X
l∈Z

eπiðaþlÞ2τe2πiðaþlÞðνþbÞ: ð11Þ

Here, N denotes the normalization factor given by

N ¼
�
2ImτqM

A2

�
1=4

; ð12Þ

with A ¼ 4π2R2Imτ. The scalar fields have the same wave
functions as the spinor fields.

B. T2=Z2 orbifold

The T2=Z2 orbifold can be constructed from T2 by
identifying z ∼ −z through the Z2 twist. For simplicity, we
set τ ¼ iImτ. There are four fixed points on T2=Z2, i.e.,

zI ¼ 0;
1

2
;
i
2
Imτ;

1

2
þ i
2
Imτ: ð13Þ

By the Z2 twist z → −z, the zero modes can be classified
into the Z2 even and odd modes. The zero modes ψ j;qM

satisfy the following relation:

ψ j;qMð−zÞ ¼ ψqM−j;qMðzÞ: ð14Þ

Note that ψ0;qMðzÞ is invariant under the Z2 twist, and
ψqM=2;qMðzÞ is also invariant under the Z2 twist when qM is
even. Thus, the Z2 even modes are

Θj;qM
þ ðzÞ ¼ 1ffiffiffi

2
p ðψ j;qMðzÞ þ ψqM−j;qMðzÞÞ; ð15Þ
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for j ≠ 0, qM=2, in addition to

Θ0;qM
þ ðzÞ ¼ ψ0;qMðzÞ; ð16Þ

ΘqM=2;qM
þ ðzÞ ¼ ψqM=2;qMðzÞ; ð17Þ

only if qM is even. Similarly, the Z2 odd modes are
obtained by

Θj;qM
− ðzÞ ¼ 1ffiffiffi

2
p ðψ j;qMðzÞ − ψqM−j;qMðzÞÞ: ð18Þ

The numbers of zero modes are shown in Table I. The three
generations can be obtained as Z2 even (odd) modes for
qM ¼ 4, 5 (qM ¼ 7, 8) [13]. When we include non-
vanishing Wilson lines, the numbers of Z2 even and odd
zero modes change [11]. Here, we restrict ourselves to
vanishing Wilson lines.

C. Localized FI terms without a bulk magnetic flux

Here, we review briefly the FI terms localized on the
orbifold fixed points with no bulk magnetic flux [24]. The
localized FI terms such as

ξ ¼
X
I¼fp

ðξI þ ξ00ð∂∂̄ÞÞδ2ðz − zIÞ ð19Þ

were studied in Ref. [24], where these FI terms were
induced by radiative corrections due to bulk and brane
modes.2 Here, fp means that the summation is taken over
the fixed points. Also, it was shown that, under the
condition of unbroken supersymmetry, the localized FI
terms correspond to the flux FðξÞ ¼ ξ, which is obtained by
the vector potential AðξÞ. Then, the solution of the zero-
mode equation

ð∂̄ þ qAðξÞÞψþ ¼ 0 ð20Þ

was studied. Without AðξÞ, the zero-mode profile is con-
stant. However, with nonvanishing AðξÞ, zero-mode profiles
are localized around fixed points, depending on qξI . Thus,
the localized FI terms lead to a strong localization of zero-
mode wave functions. Explicit solutions for the above zero-
mode equations were shown in Ref. [24]:

ϕðqξÞ ¼
Y
I¼fp

jϑ1ðz − zIjτÞjqξI=ð2πÞ

× exp ½qξ00=R2δ2ðz − zIÞ þ � � ��: ð21Þ

Their wave functions can be singular at the fixed points,
which correspond to qξI < 0. A certain regularization was
also shown in Ref. [24]. In this paper, we will assume the
same form of the gauge background AðξÞ. In the model
without the bulk flux, ξI must satisfy [24]

X
I

ξI ¼ 0: ð22Þ

That implies that at most three fixed points among the four
can have qξI < 0, while the other has qξI > 0. That is, the
wave function ϕðqξÞ can be singular at three fixed points at
most and be delocalized at the other fixed point. In the
model with a nonvanishing bulk flux, Eq. (22) is not
satisfied, i.e.,

P
IξI ≠ 0. In such a model, the wave function

ϕðqξÞ can be singular at all of the fixed points at most.

D. Magnetized orbifold with localized FI terms

Here, we explain our setup. We consider the T2=Z2

orbifold compactification with a bulk magnetic flux and FI
terms localized on the fixed points. In other words, we
assume the vector potential AðξÞ, which corresponds effec-
tively to the localized FI terms in the previous section as
Ref. [24]. Then, the zero-mode equation, e.g., for ψþ, is
written by

�
∂̄ þ q

πM
2Imτ

zþ qAðξÞ
�
ψþ ¼ 0: ð23Þ

When AðξÞ ¼ 0, the solutions on the orbifold are obtained
as Θj;qM

� . On the other hand, when qM ¼ 0, the solution is
ϕðqξÞ. Then, the solutions of the above zero-mode equation
can be written by Θj;qM

� ϕðqξÞ. However, ϕðqξÞ has a singular
behavior on the fixed points, depending on the sign of qξI .
We need some regularization to obtain finite results.
For example, the Yukawa couplings can be computed by

the overlap integral of the wave functions such as

Yjkl ¼ g
Z

d2zðΘj;qM
� ϕðqξÞÞðΘk;q0M0

� ϕðq0ξÞÞðΘl;q00M00
� ϕðq00ξÞÞ;

ð24Þ

where g is a coupling in higher-dimensional field theory.
When this coupling is U(1) invariant, we have
ðqþ q0 þ q00ÞξI ¼ 0. That leads to ϕðqξÞϕðq0ðξÞϕðq00ξÞ ¼ 1
because of the solution from (21). Then, the Yukawa
couplings can be written by

TABLE I. The numbers of Z2 even and odd zero modes.

qM 2n 2nþ 1

Z2 even nþ 1 nþ 1
Z2 odd n − 1 n

2Similarly, the FI terms are generated by radiative corrections
on the S1=Z2 orbifold, and wave function profiles are
strongly affected by FI terms to be (quasi)localized. See, e.g.,
Refs. [26–28].
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Yjkl ¼ g
Z

d2zΘj;qM
� Θk;q0M0

� Θl;q00M00
� : ð25Þ

This form is the same as the Yukawa coupling on the
orbifold without localized FI terms. The computation can
be extended to higher-order couplings. This is one of our
results in this paper. That is, even if there are localized FI
terms on the orbifold, the U(1)-invariant Yukawa couplings
and higher-order couplings are the same forms as those on
the orbifold without localized FI terms.
In the above model, phenomenological aspects are the

same as those without localized FI terms [13–18]. Different
aspects would be obtained if qþ q0 þ q00 ≠ 0. Thus, we
assume here that U(1) is anomalous and the above Yukawa
couplings Yjkl, i.e., Eq. (24), are induced by nonperturba-
tive effects for qþ q0 þ q00 ≠ 0.3 Furthermore, we assume
ðqþ q0 þ q00ÞξI < 0 for all of the fixed points to have a rich
structure.
In order to derive a finite result on Yjkl, we need some

regularization of ϕðqξÞ.4 In any regularization, ϕðqξÞ would
have a huge value around the fixed points, while its value in
the bulk except fixed points is suppressed very much
compared with a huge value at fixed points. Here, instead
of using an explicit regularization, we make an ansatz such
that the Yukawa couplings can be approximately computed
by wave functions on fixed points:

Yjkl ¼
X
I¼fp

cIΘ
j;qM
� ðzIÞΘk;q0M0

� ðzIÞΘl;q00M00
� ðzIÞ: ð26Þ

Here, cI would depend on our regularization scheme and
the parameters qM, q0M0, q00M00, and ξI . We use cI in order
to parametrize our ignorance.
Note here that Θj;qM

− ðz ¼ 0Þ ¼ 0 because of Θj;qM
− ðzÞ ¼

−Θj;qM
− ðzÞ. Similarly, we can show that wave functions of

Z2 odd modes vanish at all of the fixed points except the
fixed point zI ¼ 1=2þ iImτ=2 by use of the boundary
conditions (8) and (9), i.e.,

Θj;qM
− ðz ¼ zIÞ ¼ 0: ð27Þ

Also, at the fixed point zI ¼ 1=2þ iImτ=2, the wave
function vanishes when τ ¼ iImτ and M ¼ even. Thus,
we obtain trivial results for the Z2 odd modes in most of the
models. Hence, we concentrate on the Z2 even modes.
When one of three fields, say, Θl;q00M00

þ ðzIÞ, corresponds
to the Higgs field in the above Yukawa coupling, and it
develops its vacuum expectation value v, fermion masses
are obtained as

mjk ¼ v
X
I¼fp

cIΘ
j;qM
þ ðzIÞΘk;q0M0

þ ðzIÞΘl;q00M00
þ ðzIÞ: ð28Þ

Many models lead to multiple Higgs fields. (See, e.g.,
[13,29].) The standard-model Higgs field would corre-
spond to their linear combination, and the other would gain
mass terms at some stage. In such multi-Higgs models,
fermion masses could be written by

mjk ¼
X
I¼fp

cIΘ
j;qM
þ ðzIÞΘk;q0M0

þ ðzIÞ
�X

l

vlΘl;q00M00
þ ðzIÞ

�
:

ð29Þ

However, these masses can be parametrized as

mjk ¼
X
I¼fp

mIΘ
j;qM
þ ðzIÞΘk;q0M0

þ ðzIÞ: ð30Þ

Here, four parameters mI include our ignorance in cI and
details in the Higgs sector.5 In the next section, we use this
ansatz to study quark masses and mixing angles. Note that
if only one of mI is nonvanishing and the other vanishes,
the mass matrix mij has rank 1. Thus, two or more mI’s
must be nonvanishing.

III. QUARK MASS MATRICES

Here we study quark masses and mixing angles by using
ansatz (30) in the previous section. Recall that, for
simplicity, we set τ to be pure imaginary, i.e., τ ¼ iImτ.
Here we treat Imτ as a free parameter, although we need a
proper modulus stabilization to realize realistic results. The
number of Z2 even zero modes is equal to three only if
qM ¼ 4 and 5. Their wave functions are explicitly shown
in the Appendix.
We do not construct a model explicitly. However, we

assume that the quark doublets and the up sector of right-
handed quarks correspond to qM ¼ 4, and the down sector
of right-handed quarks corresponds to qM ¼ 5. We assign
the first, second, and third families to Θ2;qM

þ , Θ1;qM
þ , and

Θ0;qM
þ , respectively. We also introduce the up sector and

down sector of Higgs fields, which are independent of each
other. Then, following the ansatz (30) and wave functions
shown in the Appendix, the up-sector quark mass matrix
can be written

MðuÞ ¼ MðuÞ
0;0 þMðuÞ

1=2;0 þMðuÞ
0;1=2 þMðuÞ

1=2;1=2; ð31Þ

where
3It may be a challenging issue to induce Yukawa couplings of

Oð1Þ for top quarks by nonperturbative effects. In order to study
this issue, we have to evaluate nonperturbative effects explicitly.
We postpone this issue until future work, but we just assume the
form of Yjkl shown in Eq. (24).

4See, for an explicit form of regularization, Ref. [24].

5A similar mass matrix is obtained for multiple Higgs gen-
erations from localized μ terms at the fixed points on magnetized
orbifolds [23].
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MðuÞ
0;0 ¼ mðuÞ

0;0

0
B@

4e−2τ
0

2
ffiffiffi
2

p
e−5τ

0=4 2e−τ
0

2
ffiffiffi
2

p
e−5τ

0=4 2e−τ
0=2

ffiffiffi
2

p
e−τ

0=4

2e−τ
0 ffiffiffi

2
p

e−τ
0=4 1

1
CA; ð32Þ

MðuÞ
1=2;0 ¼ mðuÞ

0;0

0
B@

4e−2τ
0 −2

ffiffiffi
2

p
e−5τ

0=4 2e−τ
0

−2
ffiffiffi
2

p
e−5τ

0=4 2e−τ
0=2 −

ffiffiffi
2

p
e−τ

0=4

2e−τ
0 −

ffiffiffi
2

p
e−τ

0=4 1

1
CA; ð33Þ

MðuÞ
0.1=2 ¼ mðuÞ

0;1=2

0
B@

1
ffiffiffi
2

p
e−τ

0=4 2e−τ
0

ffiffiffi
2

p
e−τ

0=4 2e−τ
0=2 2

ffiffiffi
2

p
e−5τ

0=4

2e−τ
0

2
ffiffiffi
2

p
e−5τ

0=4 4e−2τ
0

1
CA; ð34Þ

MðuÞ
1=2;1=2 ¼ mðuÞ

1=2;1=2

0
B@

1 −
ffiffiffi
2

p
e−τ

0=4 2e−τ
0

−
ffiffiffi
2

p
e−τ

0=4 2e−τ
0=2 −2

ffiffiffi
2

p
e−5τ

0=4

2e−τ
0 −2

ffiffiffi
2

p
e−5τ

0=4 4e−2τ
0

1
CA; ð35Þ

up to the normalization factor N . Here we define τ0 ¼ πImτ. Similarly, the down-sector quark mass matrix is written by

MðdÞ ¼ MðdÞ
0;0 þMðdÞ

1=2;0 þMðdÞ
0;1=2 þMðdÞ

1=2;1=2; ð36Þ

where

MðdÞ
0;0 ¼ mðdÞ

0;0

0
B@

2
ffiffiffi
2

p
e−9τ

0=5 2
ffiffiffi
2

p
e−6τ

0=5 2e−τ
0

2e−21τ
0=20 2e−9τ

0=20
ffiffiffi
2

p
e−τ

0=4ffiffiffi
2

p
e−4τ

0=5
ffiffiffi
2

p
e−τ

0=5 1

1
CA; ð37Þ

MðdÞ
1=2;0 ¼ mðdÞ

1=2;0

0
B@

2
ffiffiffi
2

p
e−9τ

0=5 −2
ffiffiffi
2

p
e−6τ

0=5 2e−τ
0

−2e−21τ0=20 2e−9τ
0=20 −

ffiffiffi
2

p
e−τ

0=4ffiffiffi
2

p
e−4τ

0=5 −
ffiffiffi
2

p
e−τ

0=5 1

1
CA; ð38Þ

MðdÞ
0;1=2 ¼ mðdÞ

0;1=2

0
B@

ffiffiffi
2

p
e−τ

0=20
ffiffiffi
2

p
e−9τ

0=20 2e−5τ
0=4

2e−6τ
0=20 2e−14τ

0=20 2
ffiffiffi
2

p
e−3τ

0=2

2
ffiffiffi
2

p
e−21τ

0=20 2
ffiffiffi
2

p
e−29τ

0=20 4e−9τ
0=4

1
CA; ð39Þ

up to the normalization factor N . In addition, we have

MðdÞ
1=2;1=2 ¼ 0 ×mðdÞ

1=2;1=2 for Reτ ¼ 0. For Reτ ≠ 0, all the

entries of the matrix MðdÞ
1=2;1=2 are nonvanishing, and their

absolute values are similar to MðdÞ
0;1=2.

We have nine parameters, mðu;dÞ
0;0 , mðu;dÞ

1=2;0, m
ðu;dÞ
0;1=2, m

ðu;dÞ
1=2;1=2,

and Imτ, and this number of free parameters is enough to fit
them to experimental data of six quark masses and three
mixing angles. When we include nonvanishing Reτ, we can
also fit the CP phase. Thus, we do not examine the detailed

fitting, but we study the order estimation. Note that MðuÞ
0;0

(MðuÞ
0;1=2) is very similar to MðuÞ

1=2;0 (MðuÞ
1=2;1=2) and MðdÞ

0;0

(MðdÞ
0;1=2) is very similar to MðdÞ

1=2;0 (M
ðdÞ
1=2;1=2).

6 For a simple
estimation, we consider the parameter region

mðuÞ ∼mðuÞ
0;0 þmðuÞ

1=2;0 ∼mðuÞ
0;0 −mðuÞ

1=2;0;

ρðuÞmðuÞ ∼mðuÞ
0;1=2 þmðuÞ

1=2;1=2 ∼mðuÞ
0;1=2 −mðuÞ

1=2;1=2;

mðdÞ ∼mðdÞ
0;0 þmðdÞ

1=2;0 ∼mðdÞ
0;0 −mðdÞ

1=2;0;

ρðdÞmðdÞ ∼mðdÞ
0;1=2: ð40Þ

Then, the quark mass matrices can be written by

6When Reτ ≠ 0, MðdÞ
0;1=2 is similar to MðdÞ

1=2;1=2.
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MðuÞ

mðuÞ ∼

0
B@

4e−2τ
0 þ ρðuÞ

ffiffiffi
2

p ð2e−5τ0=4 þ ρðuÞe−τ0=4Þ 2e−τ
0 ð1þ ρðuÞÞffiffiffi

2
p ð2e−5τ0=4 þ ρðuÞe−τ0=4Þ 2e−τ

0=2ð1þ ρðuÞÞ ffiffiffi
2

p ðe−τ0=4 þ 2ρðuÞe−5τ0=4Þ
2e−τ

0 ð1þ ρðuÞÞ ffiffiffi
2

p ðe−τ0=4 þ 2ρðuÞe−5τ0=4Þ 1þ 4ρðuÞe−2τ0

1
CA; ð41Þ

MðdÞ

mðdÞ ∼

0
B@

ffiffiffi
2

p ð2e−9τ0=5 þ ρðdÞe−τ0=20Þ ffiffiffi
2

p ð2e−6τ0=5 þ ρðdÞe−9τ0=20Þ 2ðe−τ0 þ ρðdÞe−5τ0=4Þ
2ðe−21τ0=20 þ ρðdÞe−6τ0=20Þ 2ðe−9τ0=20 þ ρðdÞe−14τ0=20Þ ffiffiffi

2
p ðe−τ0=4 þ 2ρðdÞe−3τ0=2Þffiffiffi

2
p ðe−4τ0=5 þ 2ρðdÞe−21τ0=20Þ ffiffiffi

2
p ðe−τ0=5 þ 2ρðdÞe−29τ0=20Þ 1þ 4ρðdÞe−9τ0=4

1
CA: ð42Þ

It is very straightforward to realize the top and bottom
quarkmasses. Hence, we try to fit our three parametersρðuÞ;ðdÞ
and τ0 tomass ratiosmc=mt,mu=mt,ms=mb, andmd=mb and
mixing angles, seven observables. The experimental values of
the Cabibbo-Kobayashi-Maskawa matrix are

jVCKMj ¼

0
B@

0.97 0.23 0.0035

0.23 0.97 0.041

0.0087 0.040 1.0

1
CA: ð43Þ

For example, at 1 TeV, the ratios of running masses are
obtained as [30,31]

mc

mt
¼ 3.5 × 10−3;

mu

mt
¼ 7.3 × 10−6;

ms

mb
¼ 1.9 × 10−2;

md

mb
¼ 1.0 × 10−3: ð44Þ

We concentrate on the parameter region jρðu;dÞj ≪ 1. First,
we study the mass matrices of the second and third gen-
erations, which are written for jρðu;dÞj ≪ 1 as, respectively,

MðuÞ

mðuÞ ∼
�

2e−τ
0=2

ffiffiffi
2

p
e−τ

0=4ffiffiffi
2

p
e−τ

0=4 1

�
;

MðdÞ

mðdÞ ∼
�
2e−9τ

0=20
ffiffiffi
2

p
e−τ

0=4ffiffiffi
2

p
e−τ

0=5 1

�
: ð45Þ

Thesemassmatrices includeonlyonefreeparameterτ0 andare
very predictable. For example, we take

ffiffiffi
2

p
e−τ

0=4¼0.08.
Then, we obtain

mc

mt
¼ 6.4 × 10−3;

ms

mb
¼ 1.1 × 10−2; Vcb ¼ 0.08:

ð46Þ
These orders are consistent with experimental values.
Next, we examine the other mixing angles and the mass

ratios mu=mt and md=mb. For example, when we take
ρðuÞ ∼ 7.3 × 10−3, we can realize the experimental values
mu=mt. Also, when we take ρðdÞ ¼ Oð0.1Þ, we can realize
the experimental order of Vus. However, for this value of
ρðdÞ, we have a large ratio, md=mb ¼ Oð0.1Þ. On the other

hand, when we take ρðdÞ ¼ Oð0.001Þ, we can realize the
experimental value md=mb, but we have a small value
Vus ¼ Oð0.001Þ. Thus, we can realize most of the exper-
imental values by the simple parameter region (40),
although there is tension between md=mb and Vus.

However, by tuning mðdÞ
0;1=2 and mðdÞ

1=2;1=2 as well as Reτ,
we can realize both md=mb and Vus.

IV. CONCLUSION

We have studied magnetized orbifold models. We have
assumed the FI terms localized at fixed points and the
corresponding gauge background. Such terms lead to a
strong localization of zero-mode wave functions. We have
computed quark mass matrices by parameterizing detail of
models and our ignorance. The forms of quark mass
matrices are quite simple, but we can fit the experimental
data mc=mt, ms=mb, and Vcb roughly by just one param-
eter, τ0. We can also realize mu=mt. However, there is
tension between md=mb and Vus in the simple parameter
region, although we can tune parameters to realize both
md=mb and Vus.
Similarly, we can discuss the lepton sector. For the mass

matrix of charged leptons, the analysis is similar and
straightforward. We can realize charged lepton masses.
For the neutrino masses and mixing angles, it is an
important issue how to derive neutrino masses. For exam-
ple, right-handed Majorana neutrino masses can be gen-
erated on magnetized orbifold models by D-brane instanton
effects [15]. It would be important to study such D-brane
instanton effects under the background corresponding the
localized FI terms.
In this paper, we have concentrated on the T2=Z2

orbifold without discrete Wilson lines. It would be inter-
esting to extend our analysis to the T2=Z2 orbifold with
discrete Wilson lines and other orbifolds with discrete
Wilson lines [11]. The numbers of fixed points on the other
orbifolds are different from one of the T2=Z2 orbifold, and
their fixed point structures are different. For example, the
T2=Z3 orbifold has three fixed points, and the number of
free parameters corresponding to cI andmI is three. Hence,
it would be intriguing to study the T2=Z3 orbifold. We
would study elsewhere.
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APPENDIX: WAVE FUNCTIONS

The number of Z2 even zero modes is equal to three only
if qM ¼ 4 and 5. For simplicity, we set τ ¼ iImτ. Their
wave functions are approximated up to the normalization
N as

Θ0;4
þ ðzÞ ∼ 1þ 2e−4πImτ þ � � � at z ¼ 0

∼ 1þ 2e−4πImτ þ � � � at z ¼ 1

2
;

∼ 2ðe−πImτ þ e−9πImτ � � �Þ at z ¼ i
2
Imτ;

∼ −2ðe−πImτ þ e−9πImτ � � �Þ at z ¼ 1

2
þ i
2
Imτ

ðA1Þ

for Θ0;4
þ ðzÞ,

Θ1;4
þ ðzÞ∼

ffiffiffi
2

p
ðe−ð1=4ÞπImτþe−ð9=4ÞπImτþ���Þ at z¼0;

∼
ffiffiffi
2

p
ð−e−ð1=4ÞπImτ−e−ð9=4ÞπImτþ���Þ at z¼1

2
;

∼
ffiffiffi
2

p
ðe−ð1=4ÞπImτþe−ð9=4ÞπImτ �� �Þ at z¼ i

2
Imτ;

∼
ffiffiffi
2

p
ðe−ð1=4ÞπImτþe−ð9=4ÞπImτ �� �Þ at z¼1

2
þ i
2
Imτ

ðA2Þ

for Θ1;4
þ ðzÞ,

Θ2;4
þ ðzÞ ∼ 2ðe−πImτ þ e−9πImτ þ � � �Þ at z ¼ 0;

∼ 2ðe−πImτ þ e−9πImτ þ � � �Þ at z ¼ 1

2
;

∼ 1þ 2e−4πImτ þ � � � at z ¼ i
2
Imτ;

∼ −1 − 2e−4πImτ � � � at z ¼ 1

2
þ i
2
Imτ ðA3Þ

for Θ2;4
þ ðzÞ,

Θ0;5
þ ðzÞ ∼ 1þ 2e−5πImτ þ � � � at z ¼ 0;

∼ 1 − 2e−5πImτ þ � � � at z ¼ 1

2
;

∼ 2ðe−ð5=4ÞπImτ þ e−ð45=4ÞπImτ � � �Þ at z ¼ i
2
Imτ;

¼ 0 at z ¼ 1

2
þ i
2
Imτ ðA4Þ

for Θ0;5
þ ðzÞ,

Θ1;5
þ ðzÞ∼

ffiffiffi
2

p
ðe−ð1=5ÞπImτ þ e−ð16=5ÞπImτ þ � � �Þ at z¼ 0;

∼
ffiffiffi
2

p
ð−e−ð1=5ÞπImτ þ e−ð16=5ÞπImτ þ � � �Þ at z¼ 1

2
;

∼
ffiffiffi
2

p
ðe−ð9=20ÞπImτ þ e−ð49=20ÞπImτ � � �Þ at z¼ i

2
Imτ;

¼ 0 at z¼ 1

2
þ i
2
Imτ ðA5Þ

for Θ1;5
þ ðzÞ, and

Θ2;5
þ ðzÞ∼

ffiffiffi
2

p
ðe−ð4=5ÞπImτ þ e−ð9=5ÞπImτ þ � � �Þ at z¼ 0;

∼
ffiffiffi
2

p
ðe−ð4=5ÞπImτ − e−ð9=5ÞπImτ þ � � �Þ at z¼ 1

2
;

∼
ffiffiffi
2

p
ðe−ð1=20ÞπImτ − e−ð81=20ÞπImτ � � �Þ at z¼ i

2
Imτ;

¼ 0 at z¼ 1

2
þ i
2
Imτ ðA6Þ

for Θ2;5
þ ðzÞ. At z ¼ 1

2
þ i

2
Imτ, we have Θ0;5

þ ðzÞ ¼ Θ1;5
þ ðzÞ ¼

Θ2;5
þ ðzÞ ¼ 0 for Reτ ¼ 0. However, when we set Reτ ≠ 0,

we obtain nonvanishing values of Θ0;5
þ ðzÞ, Θ1;5

þ ðzÞ, and
Θ2;5

þ ðzÞ at the fixed point z ¼ 1
2
þ τ

2
.
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