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Quark mass matrices in magnetized orbifold models
with localized Fayet-Iliopoulos terms
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We study magnetized orbifold models. We assume the localized Fayet-Iliopoulos terms and the
corresponding gauge background. Such terms lead to the strong localization of zero-mode wave functions.

In this setup, we compute quark mass matrices.
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I. INTRODUCTION

Superstring theory is a promising candidate for a
unified theory of all the interactions including gravity,
quarks, and leptons as well as Higgs fields. In addition to
our four-dimensional (4D) spacetime, superstring theory
predicts extra six-dimensional space, which should be
compact. Thus, extra dimensional models are well
motivated.

The standard model is the chiral theory. The torus
compactification is one of the simplest compactifications,
but the torus compactification leads to a 4D nonchiral low-
energy effective field theory. Thus, the simple torus
compactification is not realistic. How to derive a chiral
theory is a key point when we start from extra dimensional
field theory and superstring theory.

The torus compactification with a magnetic flux is a
simple way to derive a 4D chiral theory from extra
dimensional field theory and superstring theory [1-4].
The number of zero modes, i.e., the generation number,
is determined by the magnitude of the magnetic flux.
Their zero-mode wave functions are quasilocalized
around points different from each other in the compact
space. Such behavior can lead to suppressed coup-
lings, which would be useful to explain quark and
lepton masses and mixing angles. Indeed, in Ref. [5],
Yukawa couplings were computed. In addition, higher-
order couplings were computed in Ref. [6]. Quark and
lepton mass matrices were also discussed. (See, e.g.,
Refs. [7,8].)

The orbifold compactification with a magnetic flux is
also interesting [9]. Orbifolding can project out the adjoint
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matter fields, i.e., open string moduli.! Also, the number of
zero modes and their wave functions on orbifolds with
magnetic fluxes are different from those on a torus
compactification with a magnetic flux [9,11,12]. Thus,
the orbifold compactification makes model building rich.
For example, the realization of quark and lepton masses and
mixing angles as well as CP phases was studied [13-18].
However, such a realization is still a challenging issue.

In addition, we can assume localized operators on
orbifold fixed points [19-23]. That also makes model
building more rich. In Ref. [24], Fayet-Iliopoulos (FI) terms
[25], which are localized on the fixed points, were studied
on the T?/Z, orbifold compactification (without a magnetic
flux). Although the zero-mode profile is flat without
localized FI terms, zero modes are localized around orbifold
fixed points because of FI terms. This behavior would be
interesting from the phenomenological viewpoint.

In this paper, we study the Z, orbifold compactification
with magnetic fluxes and localized FI terms. Localized FI
terms drastically change the zero-mode profiles from those
without FI terms. That would also change the pattern of
fermion mass matrices. In this setup, we investigate the
realization of quark masses and mixing angles.

This paper is organized as follows. In Sec. II, we explain
our setup. In Sec. III, we examine quark masses and mixing
angles in our model. Section IV is the conclusion and
discussion. In the Appendix, we show wave functions
explicitly, which are used in our analysis.

II. MAGNETIZED ORBIFOLD MODELS WITH
LOCALIZED FI TERMS

In this section, we explain our setup and zero-mode
profiles. We implicitly assume that our models are super-
symmetric. For example, when the number of compact

"This aspect corresponds to the 7-dual picture of intersecting
D-brane models on orbifolds [10].
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dimensions is six (four), the compact space is the tensor
product of three (two) two-dimensional (2D) spaces. We
assume that magnetic fluxes in three (two) 2D compact
spaces are set such that 4D N =1 supersymmetry is
unbroken. However, the flavor structure, i.e., the difference
between fermion flavors, originates from one of the 2D
compact spaces. Hence, we concentrate on the 2D compact
spaces such as T2 and T?/Z,, because this part is important
to realize Yukawa matrices consistent with observations.
Then, we study the zero-mode wave functions and Yukawa
couplings on the 2D space.

A. Torus compactification with a magnetic flux

Here, we briefly review the torus model with magnetic
fluxes [5]. We use the complex coordinate z = x + 7y
instead of the real coordinates (x, y), where 7 is a complex
structure modulus. By use of the complex coordinate, the
metric is written by ds’> = g(,/,»dz“dzﬁ,

1

[ 0 3
an= (0 ) = earr(, L)

9zz 5 0

9zz
To realize the 72, we identify z~z+ 1 and z ~z + 7.
We consider the U(1) theory with the following magnetic
flux:

F= dz A d7), (2)

oM
i

—
where M must be quantized to be an integer. This flux can
be obtained by the following vector potential:

M
A(z) = =~ Im(zdz).
(z) s m(Zdz)

(3)

in a certain gauge.
Here, we study the spinor field y/(z, z) with U(1) charge
g on T2, which has two components:

- L
w(z,2) = < ) (4)
w_
Then, we examine the zero-mode equation
ipy =0, (5)
which can be written in components
Dy, =0, Diy_ =0, (6)
where
M = M
Di=0—-—g—"7 D= — 7
0 452 8+q2lmrz (7)

Also, they must satisfy the following boundary condition:

) M
Wiz +1) = eh Oy (2) = exp {"ﬁq Imz}"’i“)’
mr
(8)
. M
wi(z+7) =10y, (z) = exp {iiiq Imh}l//i( )-
m7
9)

Either w, or y_ has zero-mode solutions exclusively
when gM # 0. That is, for gM > 0 (gM < 0), w, (y_) has
|gM| solutions, while w_ () has no zero modes. The
number |gM| would correspond to the generation number.
Their zero-mode profiles for gM > 0 are given by

I
whiM(z) = NemaMan: . 9 [q(ﬂ (gMz, qMz), (10)

with j =0,1,..
theta function

., (|gM| = 1), where 9 denotes the Jacobi

a I
9 |: :| (I/, T) — em(a—H) rleu(a+l)(y+b). (11)
|40 %
Here, N denotes the normalization factor given by
2lmzgM\ /4
N = (T) ; (12)

with A = 472R*Imz. The scalar fields have the same wave
functions as the spinor fields.

B. T?/Z, orbifold

The T?/Z, orbifold can be constructed from 72 by
identifying z ~ —z through the Z, twist. For simplicity, we
set 7 = ilmz. There are four fixed points on 72/Z,, i.e.,

1 1 i
,iImr,——kiImr.

— 1
22 2 2 (13)

Z] - Oa

By the Z, twist z — —z, the zero modes can be classified

into the Z, even and odd modes. The zero modes /¥
satisfy the following relation:

ylaM(—z) =yl (z). (14)

Note that w9 (z) is invariant under the Z, twist, and

wM/2aM (7} s also invariant under the Z, twist when gM is
even. Thus, the Z, even modes are

0i#"(c) = L (e 4y, (19
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TABLE I. The numbers of Z, even and odd zero modes.
qM 2n 2n+1
Z, even n—+1 n+1
Z, odd n—1 n
for j # 0, gM/2, in addition to
0.gM
07" (2) ="M (2), (16)
M/2,qM
/2N (2) = yaM/2aM (5), (17)

only if gM is even. Similarly, the Z, odd modes are
obtained by

OLM(z) = % (/M (z) —ypaM=raM(z)). (18)

The numbers of zero modes are shown in Table I. The three
generations can be obtained as Z, even (odd) modes for
gM =4, 5 (gM =17, 8) [13]. When we include non-
vanishing Wilson lines, the numbers of Z, even and odd
zero modes change [11]. Here, we restrict ourselves to
vanishing Wilson lines.

C. Localized FI terms without a bulk magnetic flux

Here, we review briefly the FI terms localized on the
orbifold fixed points with no bulk magnetic flux [24]. The
localized FI terms such as

E= (&+¢&(00)5(z—z) (19)

I=fp

were studied in Ref. [24], where these FI terms were
induced by radiative corrections due to bulk and brane
modes.” Here, fp means that the summation is taken over
the fixed points. Also, it was shown that, under the
condition of unbroken supersymmetry, the localized FI
terms correspond to the flux F¢) = £ which is obtained by
the vector potential A). Then, the solution of the zero-
mode equation

(0+qA®)y. =0 (20)

was studied. Without A©), the zero-mode profile is con-
stant. However, with nonvanishing A(¢), zero-mode profiles
are localized around fixed points, depending on g&;. Thus,
the localized FI terms lead to a strong localization of zero-
mode wave functions. Explicit solutions for the above zero-
mode equations were shown in Ref. [24]:

2Similarly, the FI terms are generated by radiative corrections
on the S'/Z, orbifold, and wave function profiles are
strongly affected by FI terms to be (quasi)localized. See, e.g.,
Refs. [26-28].

¢(q§) — H|81 (Z —_ Z1|T)|‘/51/(2”)

1=fp
x exp [q&" /R*&*(z — z;) + -+ -]. (21)

Their wave functions can be singular at the fixed points,
which correspond to g&; < 0. A certain regularization was
also shown in Ref. [24]. In this paper, we will assume the
same form of the gauge background A). In the model
without the bulk flux, & must satisfy [24]

> g =o. (22)

That implies that at most three fixed points among the four
can have g&; < 0, while the other has g&; > 0. That is, the
wave function ¢(%¢) can be singular at three fixed points at
most and be delocalized at the other fixed point. In the
model with a nonvanishing bulk flux, Eq. (22) is not
satisfied, i.e., > ,&; # 0. In such a model, the wave function
$'%) can be singular at all of the fixed points at most.

D. Magnetized orbifold with localized FI terms

Here, we explain our setup. We consider the T7%/Z,
orbifold compactification with a bulk magnetic flux and FI
terms localized on the fixed points. In other words, we
assume the vector potential A), which corresponds effec-
tively to the localized FI terms in the previous section as
Ref. [24]. Then, the zero-mode equation, e.g., for v, is
written by

- M
= A =0. 2
(8+q21mrz+q )l,t/+ 0 (23)

When A = 0, the solutions on the orbifold are obtained
as GQqM. On the other hand, when gM = 0, the solution is
#'99) . Then, the solutions of the above zero-mode equation
can be written by €7 $(4). However, ¢(4€) has a singular
behavior on the fixed points, depending on the sign of ¢¢;.
We need some regularization to obtain finite results.

For example, the Yukawa couplings can be computed by
the overlap integral of the wave functions such as

Yiie =9 / 2@ ) (@ ) (LT ple'9),

(24)

where ¢ is a coupling in higher-dimensional field theory.
When this coupling is U(l) invariant, we have
(q+¢ +q")& = 0. That leads to ¢a9)pd©pa's) =1
because of the solution from (21). Then, the Yukawa
couplings can be written by
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ijf e g/ d2Z®ji.qM®]qu/M!®iq//M/r' (25)

This form is the same as the Yukawa coupling on the
orbifold without localized FI terms. The computation can
be extended to higher-order couplings. This is one of our
results in this paper. That is, even if there are localized FI
terms on the orbifold, the U(1)-invariant Yukawa couplings
and higher-order couplings are the same forms as those on
the orbifold without localized FI terms.

In the above model, phenomenological aspects are the
same as those without localized FI terms [13—18]. Different
aspects would be obtained if ¢ + ¢’ + ¢” # 0. Thus, we
assume here that U(1) is anomalous and the above Yukawa
couplings Y ., i.e., Eq. (24), are induced by nonperturba-
tive effects for ¢ + ¢’ 4+ ¢” # 0.° Furthermore, we assume
(¢ + 4 + q")& < 0forall of the fixed points to have a rich
structure.

In order to derive a finite result on Y ., we need some
regularization of ¢<q§>.4 In any regularization, (%) would
have a huge value around the fixed points, while its value in
the bulk except fixed points is suppressed very much
compared with a huge value at fixed points. Here, instead
of using an explicit regularization, we make an ansatz such
that the Yukawa couplings can be approximately computed
by wave functions on fixed points:

j.aM kg’ M’ £.q'M"
Yo = ZC:%" (2)0%"™ (2/)0L" ™ (2)).
1=fp

(26)

Here, ¢; would depend on our regularization scheme and
the parameters gM, g¢'M’, ¢"M", and &;. We use c¢; in order
to parametrize our ignorance.

Note here that /7 (z = 0) = 0 because of @/9M(z) =
—@®/:9M (7). Similarly, we can show that wave functions of
Z, odd modes vanish at all of the fixed points except the
fixed point z; = 1/2 + iImz/2 by use of the boundary
conditions (8) and (9), i.e.,

0/M(z=2z,)=0. (27)
Also, at the fixed point z; = 1/2 4 ilmz/2, the wave
function vanishes when 7 = ilmz and M = even. Thus,
we obtain trivial results for the Z, odd modes in most of the
models. Hence, we concentrate on the Z, even modes.

When one of three fields, say, Gi’q M(2,), corresponds
to the Higgs field in the above Yukawa coupling, and it
develops its vacuum expectation value v, fermion masses
are obtained as

It may be a challenging issue to induce Yukawa couplings of
O(1) for top quarks by nonperturbative effects. In order to study
this issue, we have to evaluate nonperturbative effects explicitly.
We postpone this issue until future work, but we just assume the
form of Y, shown in Eq. (24).

4See, for an explicit form of regularization, Ref. [24].

mje = vy @ ()05 ()0 M (z).  (28)

I=fp

Many models lead to multiple Higgs fields. (See, e.g.,
[13,29].) The standard-model Higgs field would corre-
spond to their linear combination, and the other would gain
mass terms at some stage. In such multi-Higgs models,
fermion masses could be written by

= 3@ )0 ) (000 (1) ).
‘

I1=fp

(29)

However, these masses can be parametrized as

j\qM k.g'M’
mje = Zm1®]+q (z0)@L"™ (2)).
I1=fp

(30)

Here, four parameters m; include our ignorance in ¢; and
details in the Higgs sector.” In the next section, we use this
ansatz to study quark masses and mixing angles. Note that
if only one of m; is nonvanishing and the other vanishes,
the mass matrix m;; has rank 1. Thus, two or more m;’s
must be nonvanishing.

III. QUARK MASS MATRICES

Here we study quark masses and mixing angles by using
ansatz (30) in the previous section. Recall that, for
simplicity, we set 7 to be pure imaginary, i.e., 7 = ilmz.
Here we treat Imz as a free parameter, although we need a
proper modulus stabilization to realize realistic results. The
number of Z, even zero modes is equal to three only if
gM = 4 and 5. Their wave functions are explicitly shown
in the Appendix.

We do not construct a model explicitly. However, we
assume that the quark doublets and the up sector of right-
handed quarks correspond to gM = 4, and the down sector
of right-handed quarks corresponds to gM = 5. We assign

the first, second, and third families to @i‘qM, ®L’qM, and
@&qM, respectively. We also introduce the up sector and

down sector of Higgs fields, which are independent of each
other. Then, following the ansatz (30) and wave functions
shown in the Appendix, the up-sector quark mass matrix
can be written

u (u) u u (u)
M = Myg + ME/)z.o JrMé,l)/z My (31)

where

°A similar mass matrix is obtained for multiple Higgs gen-
erations from localized y terms at the fixed points on magnetized
orbifolds [23].
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4727
R B
2e~"
4o~
Mo = miy | —2v/2e57
ol
1
MW (u) V2e—/4
0.1/2 = Mo,1)2 2e
2e~"
1
(u) _(u) —
A4i72J/2 —""1¢z1/2 —V2e77/
2e77

up to the normalization factor \. Here we define 7/ = zlmz.

M@ = My + M)

1
where
23/2e~9%/5
M(()fg _ médg 2¢-217/20
V2e4 /5
2\/56—9f/5
M(li)z,o = (1(72,0 —2¢217/20
V2e /5
V2e~7/20
M (()[.11)/2 = m((>[.11)/2 2e767/20

23/2e-217/20

up to the normalization factor N. In addition, we have
M(IL;)2.1/2 =0x mi‘j)z_l/z for Rer = 0. For Rer # 0, all the

entries of the matrix M 50/02.1 /o are nonvanishing, and their
(d)
0,1/2

. d
We have nine parameters, méb_to ), m

absolute values are similar to M,
(u.d) (u.d) (u.d)

12,00 Mo,1/2> M1/2,1/2>
and Imz, and this number of free parameters is enough to fit
them to experimental data of six quark masses and three
mixing angles. When we include nonvanishing Rer, we can
also fit the CP phase. Thus, we do not examine the detailed

fitting, but we study the order estimation. Note that Mé'fg

u . .. u u d
(M((),f/z) is very similar to M§/>2’0 (M§/>2,1/2) and M(()A,(;

2,0

2\/56—51’/4 26—7’

26—1’/2 \/Ee—‘r’/ll , (32)
V2e /4 1
_2\/56—514/4 ze—r’
26—1’/2 _\/Ee—r’/él , (33)
—\/ze_f//4 1
\/Ee—r’/ét 26—1’
20772 2\/2e757/4 (34)
2\/56—57’/4 4e—27’
—\2e /4 ol
2e-7/2 _2\/56—51’/4 (35)
_2\/56—5#/4 46—21’

Similarly, the down-sector quark mass matrix is written by

(d) (d)
+Myi, M, (36)
2\/26—61’/5 2e—f
20797/ \[2e~7/4 |, (37)
V275 1
—24/2e767/5 2e~"
26—91’/20 _\/ie—r’/4 , (38)
_\/Ee_f//S 1
\/56—91’/20 26—51’/4
2e7147/20 2. /3,-37)2 (39)
2270 4o=97/4

[
(M((fl)/z) is very similar to Mglj)z,o (Mglj)Z,l/z)ﬁ For a simple
estimation, we consider the parameter region

myg +my 50~ My =My,
(1) 1y (1) o 1y () + (u) ) (u)
prm Mo1p TMypapn~ My = Myn00
(d) (d) (d) (d)
m @ ~ mgo + Mmypo~ Moo =My
y d
P Dm@ ~ mé‘l)/z. (40)

Then, the quark mass matrices can be written by

®When Rer # 0, M(()‘ﬁ) 2 is similar to M (1‘?2 12
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w 46—21’ +p(u) \/5(26—51’/4 +p(u)e—r’/4) Ze—r’(l +p(u))
w \/5(26—51’/4 +p(u)e—f/4) 26—1’/2(1 +p(u)) \/j(e—r’/zt +2p(u)e—57//4) , (41)
m
26—1’<1 +p(u)) \/E(e—r’/ét + zp(u)e—Sr’/4) 1+ 4p(u)e—2'r’
W \/2(26—91’/5 +p(d)e—7’/20) \/5(26_61//5 +p(d)e—9r’/20) 2(6—7’ +p(d)e—51’/4)
Mm—(d) ~ 2(6—211’/20 +p(d)e—6r’/20> 2(6—91’/20 _|_p(d)e—14r’/2()) \/i(e—r’/él + 2p(d)e—3f/2) . (42)

V2(e™H/5 4 2pld) g=217/20)

It is very straightforward to realize the top and bottom
quark masses. Hence, we try to fit our three parameters p(*)-(4)
and 7’ to mass ratios m./m,, m, /m,, m;/my,, and m,/m, and
mixing angles, seven observables. The experimental values of
the Cabibbo-Kobayashi-Maskawa matrix are

097 023 0.0035
023 097 0041 |. (43)
0.0087 0.040 1.0

|VCKM| =

For example, at 1 TeV, the ratios of running masses are
obtained as [30,31]

e _35%x103, M _73x10°,

m; my

Ms —19x102,  d_10x10.  (44)
ny, my

We concentrate on the parameter region | p(”'d>| < 1. First,
we study the mass matrices of the second and third gen-

erations, which are written for [p(*9)| < 1 as, respectively,

(@

MW 2e=72  \f2e~7/4
- (\/Ze‘fl/ 4 1 )
V2e—?/4
\/ie—r’/S 1 )

These mass matrices include only one free parameter 7’ and are

very predictable. For example, we take v/2e~7/*=0.08.
Then, we obtain

M(d) < 28—97’/20

5 (45)

m

Me —64x103,  Ms_11x102

V., = 0.08.
m; my,

(40)

These orders are consistent with experimental values.

Next, we examine the other mixing angles and the mass
ratios m,/m, and my/m,. For example, when we take
p<”) ~7.3 x 1073, we can realize the experimental values
m,/m,. Also, when we take p(¥) = 0(0.1), we can realize
the experimental order of V,,. However, for this value of
p'9), we have a large ratio, m,/m, = ©(0.1). On the other

\/j(e—‘r’/S + 2p(d)e—291’/20)

1 4 4p(d)e=07/4

hand, when we take p¥) = ©(0.001), we can realize the
experimental value m,/m;,, but we have a small value
Vs = 0(0.001). Thus, we can realize most of the exper-
imental values by the simple parameter region (40),
although there is tension between m,/m;, and V.
However, by tuning m((fﬁ) /o and mi%l /o as well as Rer,

we can realize both m,/m,, and V.

IV. CONCLUSION

We have studied magnetized orbifold models. We have
assumed the FI terms localized at fixed points and the
corresponding gauge background. Such terms lead to a
strong localization of zero-mode wave functions. We have
computed quark mass matrices by parameterizing detail of
models and our ignorance. The forms of quark mass
matrices are quite simple, but we can fit the experimental
data m./m,, my/m,, and V., roughly by just one param-
eter, 7. We can also realize m,/m,. However, there is
tension between m;/m; and V,, in the simple parameter
region, although we can tune parameters to realize both
md/m;, and V,”.

Similarly, we can discuss the lepton sector. For the mass
matrix of charged leptons, the analysis is similar and
straightforward. We can realize charged lepton masses.
For the neutrino masses and mixing angles, it is an
important issue how to derive neutrino masses. For exam-
ple, right-handed Majorana neutrino masses can be gen-
erated on magnetized orbifold models by D-brane instanton
effects [15]. It would be important to study such D-brane
instanton effects under the background corresponding the
localized FI terms.

In this paper, we have concentrated on the T2/Z,
orbifold without discrete Wilson lines. It would be inter-
esting to extend our analysis to the 72/Z, orbifold with
discrete Wilson lines and other orbifolds with discrete
Wilson lines [11]. The numbers of fixed points on the other
orbifolds are different from one of the 72 /Z, orbifold, and
their fixed point structures are different. For example, the
T?/Z orbifold has three fixed points, and the number of
free parameters corresponding to ¢; and m; is three. Hence,
it would be intriguing to study the 72/Z; orbifold. We
would study elsewhere.
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APPENDIX: WAVE FUNCTIONS

The number of Z, even zero modes is equal to three only
if gM =4 and 5. For simplicity, we set 7 = iImz. Their
wave functions are approximated up to the normalization

N as

0% (z) ~ L+ 274 ... Atz =0
1
~]+23_4”Im7+... atZIE,
~ Z(e—ﬂlmr + e—97rImr . ) at z = élm’l',

1
at z = —+=Imr

~ =0 —rlmz —Ozlmz |
(e +e ) )

(A1)
for ©%4(z),
©!4(2) ~ V2 (e 1/ HrIme o=(O/)mime 4 ) gtz =0,
~V2(—e

—(1/4)zlmz _ (9/4)ﬂImT+...) atZ:l
27

/2 (e (/4T | o=(9/4)zime . atz:%Imr,
~V2(e(1/A)mIme | p=(9/4)xme atz:%JréImr
(A2)
for ©14(z),
O34 (z) ~2(e™M 4 e0MMT ) gtz =0,
~2(e7HMT | p=9rImT | ) g g _%
~ 14 2edmT o gtz = %Imr,
~ =] —2e4mT ... atz:%+%lmr (A3)

for ©%%(2),

0% (z) ~ 1 +2¢75M ... atz =0,
1
~ 1 = e~ Snlmz ty=—
e + at z 3
~ 2(6—(5/4)7[11‘111 + e—(45/4)7r1m1 . ) at z = %Imr,
1

=0 atz—§+2lm1 (A4)
for ©%°(2),
@1 5(2) \/-( (1/5)xImz Te —(16/5)zImz + .. ) at z = O’

N\/_( —(1/5) rlme | ,— (lG/S)nImr+ ) atZ:E,

~ \/-( (9/20)xImz Te —(49/20)zImz | | ) atz = %Im‘:,

1
= 1 A
0 2+2 me (A5)

for ©'(z), and
@2 S(Z) \/_( (4/5)xImz te —(9/5)zImz 4. ) atz =0,

~ \/_( (4/5)almz _ ,—(9/5)xImz 4. ) at z _%7

N\/_( (1/20)zImz __ (8]/20)7‘[]“1‘[._') atz—%lmr,

0 L (A6)
= = — m
at ) T

for ©3°(z). Atz = 1 + LImr, we have ©)°(z) = ©}°(z) =

©%°(z) = 0 for Rer = 0. However, when we set Rer # 0,
we obtain nonvanishing values of ©%°(z), ®°(z), and
©7°(z) at the fixed point z =1+ 1.
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