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1 Introduction and summary

The Sachdev-Ye-Kitaev (SYK) model is a disordered quantum mechanical model of N

Majorana fermions that has remarkable properties, involving both its direct quantum me-

chanical description and its holographic dual [1–7]. In the large N , strongly coupled limit

the model becomes solvable, yet it remains chaotic. It has a master field reformulation that

is evocative of a simple bulk description. While our understanding of its holographic dual

is incomplete, many of the model’s low temperature properties are reproduced by Jackiw-

Teiltelboim gravity [6–11]. In particular, the infinite N model has non-zero entropy at

zero temperature and a maximal Lyapunov exponent [3–5, 12], two properties that are

consistent with a bulk description involving an extremal black hole. The SYK model has

also found condensed matter applications in strongly-coupled transport and entanglement

dynamics [13–19]. Finally, the fact that the model has a finite-dimensional Hilbert space

at finite N allows for straightforward and precise numerical computations.

It is natural to ask whether the model has a transition to a spin glass phase at low

temperature — a common occurrence in disordered systems. Indeed, the original Sachdev-

Ye (SY) model [1] shares many properties with the SYK model, but in some versions of
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that model a spin glass transition occurs at a relatively high temperature [20, 21]. A spin

glass transition in the SYK model would imply a breakdown of the dual black hole picture.1

We study this question by looking for two distinct signatures of a spin glass phase. In

both cases we find no indication of a spin glass transition, suggesting that the SYK model

remains in its well-known paramagnetic phase down to arbitrarily low temperatures.

The first diagnostic is the condensation of replica off-diagonal modes. In the ordinary

high-temperature phase, the path integral is dominated by a saddle point that is both

diagonal and symmetric in replica space. A deviation from this would indicate a spin glass

phase transition. We compute the effective potential for some replica off-diagonal modes in

the nearly-conformal limit of the theory, 1 � βJ � N (here β is the inverse temperature

and βJ is the effective coupling; see appendix A for our conventions). The authors of [20]

carried out a similar calculation in the SY model, and for their ‘slave fermion’ model they

found a critical temperature Tc ' Je−c
√
N , where c is an order one constant. For the SYK

model, a similar comment was made in [6]. We reproduce this estimate of Tc using the

conformal limit of the SYK model and extend it to arbitrary values of q, the order of the

fermion interaction.

Such an exponentially low temperature lies outside the regime of validity of the con-

formal calculation. Instead, the critical temperature falls within the strongly-coupled

Schwarzian limit of the theory, namely 1 � N � βJ . We repeat the calculation in the

Schwarzian theory and find that the effect disappears: the off-diagonal modes we consider

are always stable, indicating that there is no spin glass transition. Our analytic results

are presented for general q. However, as explained in the text, they are non-trivial only

for q ≡4 0. The reason is that for the other q values the off-diagonal operator we are

considering can never condense.

As a second diagnostic for a spin glass transition, we look for a deviation from Random

Matrix Theory (RMT) predictions for the level-spacing statistics at low energies [26]. When

the system is in a spin glass phase it loses ergodicity. As a result, we expect its accessible

energy states to become uncorrelated, and the level-spacing statistics to no longer follow

RMT predictions. In this work we present numerical results for the SYK model with up to

N = 46 Majorana fermions and with q = 4. These results were obtained by computing the

lowest lying eigenvalues of the Hamiltonian on a cluster of GPUs. Our results are all con-

sistent with RMT predictions, and rule out a spin glass phase for all values of N we tested.

The paper is organized as follows. In section 2 we carry out the calculation involving

the replica off-diagonal modes. In section 3 we present numerical results for the SYK model,

testing RMT predictions involving level-spacing statistics, as well as the distribution of the

ground state energy. Several appendices expand on key points. Appendix A includes our

conventions and a brief review of the SYK model. Appendix B includes details of the

analytic calculation, and appendix C describes the numerical methods used in this work.

Finally, appendix D reviews the relation between level-spacing statistics and a spin glass

phase in the quantum Sherrington-Kirkpatrick model.

1The potential role of spin glass physics in quantum gravity was discussed in [22–24]. The notion of

AdS2 fragmentation [25] may also be relevant for holographic duals of quantum mechanical systems in a

spin glass phase.
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2 Analytic results

In this section we present an analytic argument against a low-temperature spin glass phase

in the SYK model. See appendix A for a brief review of the model.

In the n-replica theory, the condensation of a replica off-diagonal mode signals a spin

glass transition. Such condensation happens when the effective potential of the mode

becomes unstable. The effective potential can be computed in the high temperature

phase, which is the usual paramagnetic phase described by a replica-diagonal and replica-

symmetric saddle point.

In the nearly-conformal limit, we find a predicted spin glass transition (for q = 4) at

a temperature Tc ' Je−c
√
N with some c > 0. Similar calculations were performed in [27]

for the quantum Sherrington-Kirkpatrick (SK) model, and in [20] for the Sachdev-Ye (SY)

model. The predicted transition occurs at a temperature βJ � N , which is outside the

regime of validity of the conformal approximation. Instead, this temperature falls within

the strongly-coupled regime of the Schwarzian theory. We repeat the calculation in the

Schwarzian theory, and find that the instability actually does not occur.

While these results provide evidence that a spin glass transition does not occur, they

do not prove it conclusively. For example, the presence of diagonal, replica-symmetry-

breaking solutions may also signal such a transition, and we do not rule out such solutions

analytically.

2.1 Replica off-diagonal modes

We now introduce the replica off-diagonal modes that will be the focus of the rest of this

section, and write down their effective potential to second order in the fields. Let us

introduce n replicas, labeled by a, b = 1, . . . , n, and write down the partition function of

the replicated theory. After taking the disorder average, we find

〈Zn〉 =

∫
Dψ exp

[
− 1

2

∫
dτ ψai ∂τψ

a
i

+
J2

2qN q−1

n∑
a,b=1

∑
i1,...,iq

∫
dτ1dτ2 ψ

a
i1(τ1)ψbi1(τ2) · · ·ψaiq(τ1)ψbiq(τ2)

]
. (2.1)

Let us introduce the Hubbard-Stratonovich field Fab(τ1, τ2).

〈Zn〉 =

∫
DψDF exp

[
− 1

2

∫
dτ ψai ∂τψ

a
i −

qN

2J2

∫
dτ1dτ2F

2
ab(τ1, τ2)

+N

∫
dτ1dτ2 Fab(τ1, τ2)

(
1

N

∑
i

ψai (τ1)ψbi (τ2)

)q/2 ]
. (2.2)

Note that this presentation of the theory in terms of the field F is different than the

common presentation in terms of Hubbard-Stratonovich fields G and Σ [5]. The saddle

point equation for F is

Fab(τ1, τ2) =
J2

q

〈(
1

N

∑
i

ψai (τ1)ψbi (τ2)

)q/2〉
. (2.3)
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The correlator on the right-hand side is computed in the ordinary SYK theory. We start

in the usual (high temperature) phase, dominated by the known replica-diagonal saddle

point. In order to detect the putative spin glass phase we will lower the temperature, and

look for an instability in modes Fab(τ1, τ2) with a 6= b. If any of these modes condense,

that is a signal of a spin glass transition.

For the q = 4 theory, Fab is a 4-fermion operator. Taking a 6= b, this is the minimal

replica off-diagonal operator which can condense. To see why, imagine computing 〈ψaψb〉
where ψaψb is (schematically) a replica off-diagonal operator. Suppose we do this by first

computing the fermion path integral, followed by the disorder average. In the first step

the replicas are decoupled, and the calculation factorizes as 〈〈ψa〉ψ〈ψb〉ψ〉J into fermion

1-point functions, which vanish. Here 〈·〉ψ denotes a fermion path integral and 〈·〉J denotes

disorder averaging.

For the theories with q = 2, 6, 10, . . . , the off-digonal operators Fab involve an odd

number of fermions in each replica. The same argument then shows that these operators

cannot condense, and we expect their effective potentials to always be stable. For theories

with q = 8, 12, . . . an instability in Fab is possible, but our Fab is not the minimal operator

that can condense as it involves more than 4 fermions. Therefore, while we carry out the

calculation for general q, the resulting evidence against a spin glass transition only applies

to theories with q ≡4 0 and is strongest for q = 4.

We focus on the time-independent modes Fab with a 6= b. In appendix B we compute

the quadratic piece in the effective potential of these modes, Veff(Fab) = 1
2β

4m2
abF

2
ab +

O(F 3
ab), and find the following squared-mass.

β4m2
ab =

qN

J2
β2 − (−1)q/2 (q/2)!N2−q/2

(∫ β

0
dτ1dτ2

〈
Gq/2(τ1, τ2)

〉)2

. (2.4)

Here G(τ1, τ2) is the usual fermion bilinear operator, defined in appendix A. The first term

on the right-hand side is leading at large N and fixed temperature. A phase transition

will happen if m2
ab becomes negative at sufficiently low temperature. Again, the correlator

appearing in (2.4) is a correlator in the ordinary SYK theory.

Notice that an instability is only possible when q ≡4 0, consistent with the argument

above. We will assume this from now on. Let us now compute the effective mass in two

different limits of the theory.

2.2 Nearly-conformal limit

Let us compute the squared mass (2.4) in the nearly-conformal limit. At leading order in

large N the correlator factorizes as 〈Gq/2〉 = 〈G〉q/2 + · · · . In this limit, the correlator is

given by

〈G(τ)〉 = b

(
π/β

sin(πτ/β)

)2/q

sign(τ) , bq =
1

πJ2

(
1

2
− 1

q

)
tan

(
π

q

)
. (2.5)

Using this result, we find a log divergence in the integral that we regularize by introducing

a cutoff ε on Euclidean time.∫
dτ1dτ2 〈Gq/2(τ1, τ2)〉 ' β

∫ β−ε

ε
dτ 〈G(τ)〉q/2 = −2 bq/2β log tan

(
πε

2β

)
. (2.6)
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We place the cutoff at ε ≈ 1/J , where we expect the correlator to become free, 〈G(τ)〉free =
1
2 sign(τ). With these approximations, we find

m2
ab =

1

(βJ)2

(
qN − aN2−q/2 log2(βJ)

)
, a =

4

π
(q/2)!

(
1

2
− 1

q

)
tan(π/q) . (2.7)

The squared-mass becomes negative at the critical temperature

Tc = J exp

[
−
(q
a

)1/2
N

q−2
4

]
, q = 4, 8, 12, . . . . (2.8)

For q > 4, this predicted critical temperature is parametrically smaller than e−N , the

typical level spacing. Only the ground state is accessible at this temperature and so this

result suggests there is no spin glass phase transition for these theories. For q = 4, we get

the predicted transition temperature

Tc = J e−
√

2πN for q = 4. (2.9)

Notice that J/Tc � N , and therefore this critical temperature lies outside the regime of

validity of the conformal approximation. The correct description at this temperature is the

strongly-coupled Schwarzian theory. We now turn to computing the critical temperature

in this limit.

2.3 Strongly-coupled Schwarzian limit

The Schwarzian theory is a solvable theory with an inverse coupling constant C =

NαS(q)/J [5, 28–32]; see appendix A for a brief review. In this section we assume that

we are in the strong coupling limit C � β. We use the results of [31, 33] to compute the

correlator in the Schwarzian theory.2

〈Gq/2(τ)〉= c1

N

(β/C)3/2

e2π2C/β

∫
dk2

1dk
2
2

sinh(2πk1)sinh(2πk2)

cosh(2πk1)+cosh(2πk2)
exp

(
−τk

2
1

2C

)
exp

(
−(β−τ)k2

2

2C

)
.

(2.10)

Here c1 is a constant whose precise value will not be important to us. The factor

(β/C)3/2 exp(−2π2C/β) comes from the normalization by 1/Z [28, 33]. We will analyze

this formula in two limits.

Let us first consider the regime τ � C. The factor exp(−(β − τ)k2
2/2C) is only

significant for k2 .
√
C/β � 1. This means that to leading order we can set k2 = 0 in

the cosh(2πk2) in the denominator. The k1 integral is dominated by the range k1 & 1,

where we can approximate sinh(2πk1)/(1 + cosh(2πk1)) ≈ 1. Ignoring overall numerical

coefficients, we get

〈Gq/2(τ)〉 ' (β/C)3/2

N

∫ ∞
0

dk2
2 k2 exp

(
−βk

2
2

2C

)∫ ∞
0

dk2
1 exp

(
−τk

2
1

2C

)
(2.11)

' 1

Jτ
for τ � C. (2.12)

2See for example equation (4.10) in [31]. In their notation, we set ` = 1/2 (the dimension of the operator

Gq/2). We thank Zhenbin Yang for sharing an early draft of [33]. See also [34, 35] for alternative approaches

to Schwarzian correlation functions.
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Note that we recovered the conformal answer.

Next, consider the regime C � τ ≤ β/2. Now both τ, β − τ � C and the integral

in (2.10) is dominated by the region k1 .
√
C/τ � 1 and k2 .

√
C/(β − τ) � 1. Thus

we have

〈Gq/2(τ)〉 ≈ (β/C)3/2

N

∫ ∞
0

dk2
1k1 exp

(
−τk2

1

2C

)∫ ∞
0

dk2
2k2 exp

(
−(β − τ)k2

2

2C

)
' 1

N

[
βC

τ(β − τ)

]3/2

for τ � C. (2.13)

Let us analyze how the effective mass (2.4) changes compared to the conformal

answer (2.7). The negative contribution to the effective mass (2.4) is proportional to(
2β
∫ β/2

0 dτ〈Gq/2(τ)〉
)2

. Here we used the fact that 〈G(τ)〉 is symmetric about τ = β/2.

Let us compute the τ integral by splitting it into three regions: τ ∈ (0, 1/J), (1/J,C) and

(C, β/2). In the first region, the correlator is approximately equal to the free correlator

which is a constant, and we get a contribution proportional to 1/J . From the second region

we get, using (2.12), ∫ C

1/J

dτ

Jτ
' logCJ

J
' logN

J
. (2.14)

The contribution of the third region is, using (2.13),

(βC)3/2

N

∫ β/2

C

dτ

τ3/2(β − τ)3/2
' C

N
' 1

J
. (2.15)

We see that the dominant contribution to the τ integral at large N is from the second

region, equation (2.14). Thus from (2.4), now setting q = 4 for simplicity, we have

m2
ab =

4N − c2 log2N

(βJ)2
. (2.16)

Here c2 is a positive constant. Comparing to the conformal answer (2.7), we see that

log(βJ) got replaced by logN . Thus the effective mass is always positive and the mode is

stable. The same conclusion holds for other values of q.

3 Numerical results

In the previous section we studied the condensation of replica off-diagonal modes, which

serve as a signature for a spin glass phase transition. For quantum systems, the level spacing

statistics are another such signature. Indeed, in an ordinary chaotic system the level spacing

statistics obey Random Matrix Theory (RMT) predictions, implying for example level re-

pulsion [26]; in a spin glass the levels are decorrelated and there is no level repulsion. These

relations are reviewed in appendix D for the quantum Sherrington-Kirkpatrick model.

In this section we present numerical results for the spectrum and level spacing statistics

of the SYK model with 4-fermion interactions. These results were computed by partially

diagonalizing the Hamiltonian, obtaining the energy levels at the edge of the spectrum. De-

tails about the numerical methods used here can be found in appendix C. Our level spacing

results exhibit RMT behavior down to the lowest observed energies, and these results favor

our conclusion that the model has no spin glass phase transition at low temperature. In

addition, we find numerically that the ground state energy follows a Gaussian distribution.
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Figure 1. The density of states for SYK near the edge of the spectrum, with N = 42 Majorana

fermions and 800 realizations, each with about 1,200 eigenvalues at each edge of the spectrum. (a)

The density of states. (b) The density of states, with the energies of each realization shifted by its

respective ground state energy. The fit is to a power law for the range E − E0 < 0.01, and gives

ρ ∼ (E−E0)0.49. (The best-fit exponent varies between 0.4−0.6 depending on the choice of range.)

3.1 The edge of the spectrum

Figure 1 shows the spectral density at the edge of the spectrum.3 At large N and low en-

ergies, the analytic prediction [5, 28] is that the density should behave as ρ(E) ∼
√
E − E0

near the edge. If we simply plot the energy density, we find that there are large fluctuations

that mask this effect. However, if we shift the energies of each realization by its respective

ground state energy (such that the ground state energy of each realization becomes zero),

the predicted edge behavior becomes clearly visible.

In [36, 37], the spectral form factor was introduced as a diagnostic of the late-time

dynamics, with connections both to the information paradox and to RMT; see also the

recent paper [38]. Our numerical results allow us to test the RMT predictions at larger

values of N and at lower temperatures. Figure 2 shows these results. The three notable

features discussed in [37], the early ‘slope’ followed by the late time ‘ramp’ and ‘plateau’,

are clearly visible. In particular, the ramp is consistent with RMT predictions and indicates

a chaotic spectrum.

3.2 Level spacing statistics

In order to determine the phase of the system at low energies, we compute the level spacing

statistics near the edge of the spectrum. Statistics that agree with Random Matrix Theory

predictions imply a chaotic phase, while statistics that follow an exponential distribution

(corresponding to uncorrelated energy levels) are a signature of a spin glass phase. See

appendix D for further discussion.

The standard method of computing level spacing statistics involves first ‘unfolding’

the energy levels such that the mean energy density is one (see for example [26]). This

3In this work we treat the high edge of the spectrum as an independent realization (it corresponds to the

low edge of the spectrum for the realization with all random couplings negated). This doubles our effective

number of realizations, and we quote this effective number.
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Figure 2. The Spectral Form Factor (denoted g in [37]) with N = 42 Majorana fermions and

β = 50, using the same data as in figure 1.

procedure works well in the bulk of the spectrum, but becomes unreliable near the edge

due to large fluctuations (such as the ones described in section 3.1). We compute the

level spacing statistics in two different ways that sidestep this problem. First, we compute

the level spacing distribution for the two lowest energy levels, collecting statistics only

over different realizations. Second, we compute the distribution of log(rn) where rn =

(En − En+1)/(En+1 − En+2) for a fixed number of lowest energy states. Both of these

distributions can be compared directly with RMT predictions without unfolding [39].

The results, shown in figure 3, are all consistent with RMT predictions. We compare

the computed level-spacing distribution against the Wigner surmise. At the edge of the

random matrix spectrum, the eigenvalue density correlations are described by the Airy

kernel [40–42], while in the bulk of the spectrum they are described by the sine kernel.

Despite this difference, it is easy to check empirically that the RMT nearest-neighbor level

statistics are well approximated by the Wigner surmise in both cases.

Our results rule out a spin glass phase for the SYK model with up to N = 46 Majorana

fermions. The ordinary paramagnetic phase persists down to arbitrarily low energies,

even when the thermodynamic approximation breaks down and it is not useful to discuss

temperatures.

3.3 Ground state energy distribution

In this section we compute the ground state energy distribution of the model (this was

previously studied in [43]). The extremal eigenvalues of matrices in common Random

Matrix Theory ensembles follow a Tracy-Widom distribution [44, 45]. In light of the

detailed agreements between SYK and RMT described above, it is natural to ask whether

the ground state energy distribution is also consistent with RMT predictions. We observe

numerically that this is not the case, and instead the ground state energy follows a Gaussian

distribution. This result is not surprising, as the RMT predictions for extremal eigenvalues

are known to apply less universally than the predictions related to level spacing statistics.

Figure 4 shows the ground state energy distribution, along with the Gaussian and

Tracy-Widom distributions. The mean and variance of both distributions were chosen to

fit the data. Just by eye, it is hard to determine which distribution fits the data better. We

– 8 –
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Figure 3. Level spacing statistics for the edge of the SYK spectrum, with N = 46 Majorana

fermions and 355 realizations. (a) The spacing distribution for the two lowest levels, compared with

the RMT prediction for the corresponding GUE ensemble. (b) The distribution of log(rn) (described

in the text) computed over the lowest 20 energy levels, compared with the RMT prediction (blue)

and with the prediction for uncorrelated energies (gray).

-1.51 -1.50 -1.49 -1.48 -1.47 -1.46
0

10

20

30

40

50

60

E

ρ Gaussian

Tracy-Widom

Figure 4. The ground state distribution for SYK with N = 32 Majorana fermions, with statistics

collected over 104 realizations. Solid lines show the Gaussian and Tracy-Widom distributions with

mean and variance chosen to fit the data.

can distinguish the two distributions by considering higher order moments; in particular,

the Tracy-Widom distribution is slightly skewed.4 Table 1 lists these results, which show

that the Gaussian distribution is clearly preferred.

Next, figure 5 shows the dependence of the Gaussian parameters on N . We find that

the leading large N term in the mean ground state energy is within 10% of the analytic

large N prediction [5], which is E0 ≈ −0.0406N . For the variance we find that a power

law provides a good fit.

4Recall that for a random variable X with mean µ and variance σ2, the skewness is defined by 〈(X −
µ)3/σ3〉 and the kurtosis by 〈(X − µ)4/σ4〉.
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Distribution Skewness Kurtosis

Gaussian 0 3

Tracy-Widom (GOE) −0.293 3.165

Tracy-Widom (GUE) −0.224 3.093

Tracy-Widom (GSE) −0.166 3.049

SYK N = 24 (GOE) −0.070± 0.020 3.06± 0.05

SYK N = 26 (GUE) −0.020± 0.020 3.02± 0.05

SYK N = 30 (GUE) −0.021± 0.019 3.00± 0.05

SYK N = 32 (GOE) −0.023± 0.020 3.03± 0.05

SYK N = 34 (GUE) −0.007± 0.019 2.98± 0.05

Table 1. Higher moments for the ground state energy distribution. SYK data was collected from

104 realizations for each value of N . GSE data is not shown because the ground state is in the odd

charge sector, and we only computed the even charge sector.

24 26 28 30 32 34

-1.5

-1.4

-1.3

-1.2

N

Mean

(a)

24 26 28 30 32 34

0.00004

0.00006

0.00008

0.00010

0.00012

N

Variance

(b)

Figure 5. Ground state mean and variance as a function of N , computed over 104 realizations for

each value of N . (a) The mean ground state energy, with a linear fit to 〈E0〉 = −0.043N − 0.12.

(b) The variance of the ground state energy, with a power-law fit to Var(E0) ∼ N−3.43.
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A The SYK model

In this section we briefly review some basic properties of the SYK model, following [5].

The dynamical degrees of freedom of the model are N Majorana fermions ψ1, . . . , ψN . The

Hamiltonian is

H = iq/2
∑

i1<i2<···<iq

Ji1···iqψi1···iq . (A.1)

Here q is a positive even integer, and we introduced the notation ψi1···iq = ψi1ψi2 · · ·ψiq .

For each choice of i1 < i2 < · · · < iq, the coupling Ji1...iq is an independent Gaussian

random variable with zero mean and with variance given by

〈J2
i1···iq〉 =

(q − 1)!J2

N q−1
. (A.2)

The Euclidean time action is

S =

∫ β

0
dτ

1

2
ψi∂τψi − iq/2

∑
i1<i2<···<iq

Ji1···iqψi1···iq

 . (A.3)

The fermion bilinear operator is defined as

G(τ1, τ2) =
1

N

N∑
i=1

ψi(τ1)ψi(τ2) . (A.4)

The nearly-conformal limit of the theory is 1 � βJ � N . In this limit, the fermion

2-point function is given by

〈G(τ)〉 = b

(
π/β

sin(πτ/β)

)2∆

sign(τ) , (A.5)

bq =
1

πJ2

(
1

2
−∆

)
tan(π∆) , ∆ =

1

q
. (A.6)

This solution defines a replica-diagonal saddle point of the theory, written in terms of its

master fields G and Σ [5].

The SYK action has an emergent time reparametrization symmetry τ → f(τ), which

is spontaneously broken by the above solution (A.5). Furthermore, this symmetry is

explicitly broken by corrections to the conformal limit. The effective low-energy action

of the theory, which governs the dynamics of the pseudo Nambu-Goldstone modes f(τ),

is the Schwarzian action

S = −C
∫ β

0
dτ Sch

(
tan

f(τ)

2
, τ

)
, (A.7)

where C = NαS(q)/J . Here αS(q) is a numerical coefficient whose precise values can be

found in [5]. In the weak coupling limit (corresponding to βJ � N), the fluctuations

about the saddle point f(τ) = τ are small, and one can reproduce many results of the SYK

model in the conformal limit. In the strong coupling limit (corresponding to βJ � N)

the theory is still solvable [28, 29, 31].
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B Derivation of the effective mass

In this appendix we derive equation (2.4) for the effective mass of the replica off-diagonal

modes Fab. The effective action for these modes is defined by

∫
DFe−Seff(F ) = 〈Zn〉 , (B.1)

where the replicated partition function was given in (2.2). Expanding the effective action

to quadratic order, we have

Seff(F ) =
1

2

∑
a,b,c,d

∫
dτ1,2,3,4m

2
ab,cd(τ1, τ2, τ3, τ4)Fab(τ1, τ2)Fcd(τ3, τ4) +O(F 3

ab) . (B.2)

We show below that only terms in which (a, b) = (c, d) have non-trivial masses, and compute

the effective squared-mass m2
ab ≡ m2

ab,ab of the time-independent modes.

Expanding equations (B.1) to second order in Fab(τ1, τ2), and using (2.2), we get

−1

2

∑
a,b,c,d

∫
m2
ab,cdFabFcd =− qN

2J2

∑
a,b

∫
dτ1dτ2F

2
ab(τ1, τ2) (B.3)

+
1

2

〈N∑
a,b

∫
dτ1dτ2Fab(τ1, τ2)

(
1

N

∑
i

ψai (τ1)ψbi (τ2)

)q/2
2〉

.

The second term on the right-hand side can be written as

N2−q

2

∑
a,b,c,d

∫
dτ1dτ2dτ3dτ4 Fab(τ1, τ2)Fcd(τ3, τ4)

×

〈(∑
i

ψai (τ1)ψbi (τ2)

)q/2∑
j

ψcj(τ3)ψdj (τ4)

q/2〉
. (B.4)

If (a, b) 6= (c, d) then for some replica (say a) the fermions appear in the correlator all with

the same time, and so this correlator vanishes (at leading order) on the replica-symmetric

saddle. Therefore only terms where Fab and Fcd have the same replicas survive. Let us set

a = c, b = d, and consider a specific choice of a, b with a 6= b.

N2−q

2

∫
dt1,2,3,4 Fab(τ1, τ2)Fab(τ3, τ4)

〈∑
i,j

ψai (τ1)ψbi (τ2)ψaj (τ3)ψbj(τ4)

q/2〉
. (B.5)
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Let us now compute the correlator appearing in (B.5) at leading order in large N .

〈∑
i,j

ψai (τ1)ψbi (τ2)ψaj (τ3)ψbj(τ4)

q/2〉

= (−1)q/2
∑
~i,~j

〈
ψai1(τ1)ψaj1(τ3) · · ·ψaiq/2

(τ1)ψajq/2
(τ3) · ψbi1(τ2)ψbj1(τ4) · · ·ψbiq/2

(τ2)ψbjq/2
(τ4)

〉
= (−1)q/2

∑
~i,~j

〈
ψi1(τ1)ψj1(τ3) · · ·ψiq/2

(τ1)ψjq/2
(τ3) 〉·〈ψi1(τ2)ψj1(τ4) · · ·ψiq/2

(τ2)ψjq/2
(τ4)

〉
= (−1)q/2 (q/2)!N q/2

〈
Gq/2(τ1, τ3)

〉〈
Gq/2(τ2, τ4)

〉
+ · · · . (B.6)

In the last step we kept only the diagonal terms, which give the leading contribution at

large N . Plugging this in (B.5) and then (B.3), we find

−
∫
m2
abF

2
ab = −qN

J2

∫
dτ1dτ2F

2
ab(τ1, τ2) (B.7)

+ (−1)q/2 (q/2)!N2−q/2
∫
dτ1,2,3,4 Fab(τ1, τ2)Fab(τ3, τ4)

〈
Gq/2(τ1, τ3)

〉〈
Gq/2(τ2, τ4)

〉
.

Focusing on the time-independent mode of Fab, we get equation (2.4) as advertised.

C Numerical methods

In this appendix we provide details about the numerical methods used to compute the

results of section 3. We used two independent implementations to test our results,

one running on CPUs and one on GPUs. The GPU implementation can be found at

https://github.com/guygurari/syk.

For a system consisting of 2N Majorana fermions, the Hilbert space is 2N -dimensional

(in the rest of the paper we denote the number of Majorana fermions by N). Implementing

the Z2 symmetry associated with the Majorana fermion parity conservation, it reduces

down to 2N−1. For large values of N , constructing the Hamiltonian operator and working

with it becomes exponentially harder, and as a result the exact diagonalization of such

systems becomes unfeasible beyond some N . However, it is possible to employ a simple trick

widely used in Density-Matrix-Renormalization-Group (DMRG) and related approaches to

increase the largest accessible values of N . This trick reduces RAM consumption from 2N

to cN2N/2, where cN grows polynomially with N (N2 in the case of SYK model) and thus

the space complexity of the diagonalization algorithm is reduced significantly.

The main observation in this method is that the system can be divided into left and

right subsystems, with 2NL and 2NR Majorana fermions, respectively where NR = N−NL.

The Hilbert space associated with the L (R) subsystem is now DL = 2NL (DR = 2NR)

dimensional. On the other hand, the total Hamiltonian can in general be written as the

following Schmidt decomposition:

H = HL ⊗ IR + IL ⊗HR +
∑
a

gaOaL ⊗OaR , (C.1)
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with properly chosen OaL/R operators and ga couplings. Computing the tensor product

operations in the above representation will bring us back to the standard approach to

exact diagnoalization. However, tensor product operations are quite expensive computa-

tionally and storing the resulting huge matrices is costly. It is possible to avoid doing such

unnecessary costly operations and still perform diagonalization algorithms efficiently.

The Lanczos algorithm is one of the most popular methods for obtaining low energy

eigenvectors and eigenvalues of sparse matrices [46]. It is a power iteration method based

on successive matrix-vector multiplication operations, vb+1 = Hvb, starting from an initial

random vector v0. The resulting vb’s form basis vectors for the Lanczos diagonalization

procedure. The desired vector operations can be implemented more efficiently using the

Schmidt decomposition of vb vectors, namely:

vb =
∑
a

λ(b)
a v

(b)
a,L ⊗ v

(b)
a,R . (C.2)

where v
(b)
a,L/R are orthogonal basis vectors defined on the L (R) subsystem. We then utilize

the following unitary (duality) transformation on the right side: v
(b)
a,R → v

(b) T
a,R which in

turn yields

vb → vb = reshape (vb, DL, DR) . (C.3)

transformation on the vb vectors. The transformed vb, vb, is now a DL ×DR dimensional

matrix. Next, we consider vb+1 = Hvb. It can be verified that vb+1 = reshape (vb, DL, DR)

can be evaluated using the relation

vb+1 = HLvb + vbH
T
R +

∑
a

gaOaLvbOa T
R . (C.4)

This way we never need to explicitly compute the tensor products OaL⊗OaR, and instead we

just need to store the OaL/R operators on the RAM. For NL = NR = N/2, this approach re-

quires storing 2N/2-dimensional matrices on the RAM, and there are O(N2) such operators

that take part in the interaction between the left and right subsystems of the SYK model.

Hence, the space complexity of this approach is O(N22N/2) for the SYK model instead of

O(2N ) of the conventional Lanczos method. It is worth mentioning that the space complex-

ity affects the computation time and the above procedure can reduce it by orders of mag-

nitude. Furthermore, the above trick can change the time complexity of the Lanczos algo-

rithm (and in particular of the main step v → Hv) from O(D2
LD

2
R) down to O(DLDR(DL+

DR)) when OaL and OaR operators are dense matrices. For sparse operators, the time com-

plexity is unaffected by the above scheme. However, we have noticed that in practice the

complexity can drop significantly using the above method, especially for long range Hamilt-

nonians such as SYK (indeed, the overall prefactor of the time complexity decreases).

We implemented the Lanczos algorithm as described on GPUs, taking advantage of

their ability to carry out highly parallel calculations. In common implementations of

the Lanczos algorithm one keeps track of previously computed eigenvectors, in order to

overcome the inherent numerical instabilities of the algorithm. Despite the lower space

complexity described above, this method is still too costly to run on GPUs due to their
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Figure 6. Schematic phase diagram of the quantum Sherrington-Kirkpatrick model. There is a

spin glass phase at small external field Γ and small temperatures.

relatively limited RAM. Instead, in the GPU code we used an alternative implementation

of the Lanczos algorithm which does not need to keep track of the eigenvectors [46]. This

method is useful when one is only interested in the eigenvalues of the matrix.

D The quantum Sherrington-Kirkpatrick model

In this appendix, we present numerical calculations of the eigenvalue statistics in the quan-

tum Sherrington-Kirkpatrick model [47]. The Hamiltonian is that of the transverse field

Ising model on N sites, but with random infinite-range couplings:

H =
∑
ij

JijXiXj + Γ
∑
i

Zi , (D.1)

where Xi and Zi are the Pauli-X and Pauli-Z matrices on site i. The sum in the first term

runs over all pairs in the system, and the couplings Jij are independent Gaussian random

variables with mean zero and variance 〈J2
ij〉 = 1/N . This Hamiltonian has a Z2 symmetry

represented by the unitary operator U = Z1 . . . ZN .

When Γ = 0 in the Hamiltonian (D.1), all the terms in the Hamiltonian commute

and the model reduces to the classical Sherrington-Kirkpatrick model, which is well-known

to have a spin glass phase [48–50] at low temperatures. The spin glass phase persists at

small Γ. The spin glass phase can be destroyed by either increasing Γ or by increasing the

temperature beyond their critical values. A cartoon phase diagram of the model is shown

in figure 6.

We project the Hamiltonian to the even Z2 sector and perform exact diagonalization

on a system of N = 12 spins. The level spacing statistics calculation was described in sec-

tion 3.2 (see also [39]). In figure 7, we show the distribution of log rn when Γ = 0.1. At this

value of Γ, the low temperature phase is a spin glass. Thus the low energy part of the spec-

trum should exhibit exponential statistics, as is clearly visible in the left panel of figure 7.

We use 200 disorder realizations and the lowest 50 states from each realization. The high

temperature phase is ergodic, and thus states drawn from the middle of the spectrum should

exhibit GOE statistics. This is also clearly visible in the right panel of figure 7. Here we take

200 disorder realizations and the middle 50 states from the spectrum of each realization.
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Figure 7. Distribution of log rn when Γ = 0.1 for low lying states (left) and for states in the

middle of the spectrum (right). The blue dots are numerical data, the red curve is the exponential

distribution, and the green curve is the GOE ensemble prediction. There is a spin glass phase at

low temperatures, and consequently the distribution is exponential. Since the spin glass phase is

wiped out at high temperatures, the states from the middle of the spectrum follow GOE statistics.
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log rn

Figure 8. Distribution of log rn for the low lying states when Γ = 5.0. There is no spin glass phase

and thus even the low-lying states follow GOE statistics. The blue dots are numerical data, the red

curve is for the exponential distribution, and the dark green curve is for the GOE ensemble.

Finally, consider the case where Γ is large. Here there is no spin glass phase at any

temperature, so even the low energy part of spectrum should exhibit GOE statistics. This

is confirmed in figure 8.
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