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1 Introduction

Rindler space, the portion of Minkowski space with which an observer undergoing con-

stant acceleration can interact, is perhaps the simplest spacetime with a horizon. As the

near-horizon limit of all nonextremal black holes and an example of a spacetime with an

observer-dependent horizon, Rindler space has been much studied. Nevertheless, most of

the literature on the subject has treated Rindler space using the techniques of quantum field

theory in curved spacetime, whereas it is now recognized that many of the most interesting

problems of horizon physics are not accessible with those techniques. Instead one would

like to be able to study Rindler space in a theory of quantum gravity. This has not been

done for the simple reason that a tractable theory of quantum gravity in asymptotically

flat space does not presently exist.

Fortunately, a tractable theory of quantum gravity in anti-de Sitter space does exist:

it is defined by the AdS/CFT correspondence. This motivates us to consider accelerating

observers not in Minkowski space but in AdS space. Observers in anti-de Sitter space with

suitably high proper acceleration (compared with the AdS length scale) have acceleration

horizons; Rindler-AdS space is thus the portion of anti-de Sitter space that such observers

can interact with. The purpose of this paper is to set up a holographic duality between

Rindler-AdS space and a boundary conformal field theory, and to then use that corre-

spondence to investigate quantum-gravitational aspects of Rindler-AdS space. It is worth
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emphasizing that Rindler-AdS space is a particularly advantageous spacetime for studying

the quantum gravity of horizons. Unlike eternal black holes in AdS, Rindler-AdS has no

singularities where bulk physics breaks down. And unlike flat Rindler space, the existence

of a dual conformal field theory is assured; indeed, in the case of AdS5 it is known to be

N = 4 super Yang-Mills theory. Thus in principle one has all the tools necessary to study

event horizons in a theory of quantum gravity.

While Rindler-AdS space in general dimensions has been described and studied pre-

viously, the real power of the AdS/CFT correspondence can be brought to bear when the

bulk spacetime dimension is three. For that special case, the boundary theory becomes a

two-dimensional CFT living in Minkowski space, with all the ensuing advantages. In par-

ticular, the two-point function can be calculated explicitly and the Rindler entropy density

can be derived from the Cardy formula. The result matches the Bekenstein-Hawking en-

tropy density of the Rindler horizon precisely, including numerical factors. Even more

interestingly, one can probe the causal structure of the spacetime. Remarkably, we find

that the boundary theory “knows” when a source has fallen past the Rindler horizon even

though, from a bulk point of view, there are no local invariants that mark the presence of

the event horizon.

This paper is organized as follows. In section 2, we present the classical geometry of

Rindler-AdS space. In section 3, we quickly review Rindler-AdS thermodynamics. Section 4

describes the boundary theory and contains our main results. The results of the paper

are as follows. We calculate the bulk-boundary propagator and the two-point correlation

function of operators in the boundary theory. Specializing to AdS3, we show that the

Cardy formula precisely reproduces the Bekenstein-Hawking entropy density, including

the numerical coefficient, both for nonrotating and rotating Rindler-AdS space. We then

discuss the relation between Rindler-AdS space and AdS black holes. Next, we turn to

perhaps our most interesting derivation. We consider a source that falls freely into the

Rindler horizon. By calculating the one-point function of a boundary operator, we show

that a “boundary theorist” can tell whether the source has fallen across the horizon. This

is the main result of the paper. In section 5, we consider an alternate foliation of Rindler-

AdS in which the boundary conformal field theory lives in de Sitter space. We briefly

discuss some subtleties of this variant of Rindler-AdS/CFT. We summarize and conclude in

section 6 with some remarks about directions and puzzles suggested by Rindler-AdS/CFT.

2 The geometry of Rindler-AdS space

We would like to cover anti-de Sitter space in the Rindler coordinates natural to an accel-

erating observer. AdSd+1 can conveniently be described using embedding coordinates of

d+ 2-dimensional Minkowski space with two time-like directions:

−
(

X0
)2

+
(

X1
)2

+ . . .+
(

Xd
)2

−
(

Xd+1
)2

= −L2 . (2.1)

Here the AdS curvature scale is L and the O(2, d) isometry group is manifest. In the em-

bedding space, a Rindler observer is one whose Hamiltonian is a boost generator. It was
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shown in an elegant paper [1] that both acceleration and “true” horizons in an Einstein

space (such as say Schwarzschild, de Sitter, or anti-de Sitter) can be regarded as Rindler

horizons in a higher-dimensional flat embedding space. The Hawking or Unruh tempera-

ture detected by observers in the lower-dimensional space can be obtained directly from

accelerating trajectories in the embedding space [2].1 In particular, Rindler observers in

AdS are also Rindler observers in the embedding Minkowski space [3].

Consider then a Rindler observer in d+2-dimensional Minkowski space (with two time

directions) uniformly accelerating in the X1 direction:

X0 = ξ sinh(t/L) X1 = ξ cosh(t/L) . (2.2)

Here, instead of choosing an arbitrary acceleration parameter g (as one does in flat Rindler

space), we have used the existence of the AdS scale L to rescale the time coordinate such

that g is replaced by 1/L; since g is unphysical, there is no loss of generality. Choosing the

rest of the coordinates (see appendix) such that the embedding equation (2.1) is satisfied,

the Rindler-AdS metric becomes:

ds2 = −(ξ/L)2dt2 +
dξ2

1 + (ξ/L)2
+
(

1 + (ξ/L)2
) [

dχ2 + L2 sinh2(χ/L)dΩ2
d−2

]

. (2.3)

This line element describes AdS in Rindler coordinates. These coordinates cover the part

of the hypersurface (2.1) with
(

X1
)2−

(

X0
)2

> 0 and X1, Xd+1 > 0. The above metric has

been discussed in [4–9] in various other contexts. Note that the constant-ξ hypersurfaces

are of the form R×Hd−1. These are the hypersurfaces on which the boundary CFT will be

defined. The coordinate time t parameterizes the worldline of an accelerating observer in

AdS. Indeed, as the AdS curvature scale diverges, so that ξ
L → 0 and L2 sinh2(χ/L) → χ2,

we recover

ds2 = −(ξ/L)2dt2 + dξ2 + dχ2 + χ2dΩ2
d−2 , (2.4)

which is just the line element of standard (i.e. flat) d + 1-dimensional Rindler space. To

understand the global properties of Rindler-AdS space, it is useful to consider AdSd+1 in

global coordinates (see appendix) for which the line element is

ds2 = −(1 + (ρ/L)2)dτ2 +
dρ2

1 + (ρ/L)2
+ ρ2dΩ2

d−1 . (2.5)

The global coordinates can then be expressed in terms of the Rindler-AdS coordinates as

ρ2 = ξ2
[

cosh2(χ/L) + sinh2(t/L)
]

+ L2 sinh2(χ/L)

tanψ =

√

ξ2 + L2 sinh(χ/L)

ξ cosh(t/L)

cos2(τ/L) =

(

ξ2 + L2
)

cosh2(χ/L)

ξ2
[

cosh2(χ/L) + sinh2(t/L)
]

+ L2 cosh2(χ/L)
. (2.6)

1This is because the response of Unruh detectors depends on the Wightman function which in turn

depends only on geometric invariants (constructed out of bi-vectors) that can just as well be computed in

the embedding space.
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Figure 1. Geometry of Rindler-AdSd+1 space. A surface of constant ξ is a R×Hd−1 hypersurface.

τ and ρ are the time and radius in global coordinates; except at ρ = 0 each point in the interior

corresponds to a Sd−2. The Rindler-AdS region extends only up to τ = ±π/2 at the boundary of

AdS. The arrow on the right points in the direction of ∂t, whose orbits are a Rindler observer’s

worldline; the arrow is reversed for the antipodal observer. One copy of the CFT lives on the

boundary within the region shown in red.

Here ψ is the polar angle on the Sd−1, which we have explicitly separated from the angles

on the Sd−2. The angles θi, φ on the Sd−2 are the same in both coordinate systems. In

particular, the last equation indicates that the time-slice t = 0 corresponds to τ = 0. At

other times, the constant-time slices of t are tilted with respect to the constant-time slices

of τ . Furthermore, with the other coordinates held fixed, τ → ±π
2 as t → ±∞. Our Rindler

coordinates therefore cover a finite interval of global time. This is illustrated in figure 1.

Since many of our calculations will be done in three dimensions, let us briefly consider

that special case. The metric for Rindler-AdS3 is

ds2 = − ξ2

L2
dt2 +

dξ2

1 + ξ2

L2

+

(

1 +
ξ2

L2

)

dχ2 . (2.7)

Its asymptotic behavior near the AdS boundary is given by

ds2 → L2dξ2

ξ2
+

ξ2

L2

(

−dt2 + dχ2
)

. (2.8)

We see that, unlike in higher dimensions, the metric on a constant-ξ hypersurface is

conformal to Minkowski space. Moreover, as ξ → ∞, the transformation ξ → γξ and

(χ, t) → γ−1(χ, t) is the usual scale-radius duality, and is manifestly an isometry of the

asymptotic metric.

Another feature unique to three-dimensional anti-de Sitter space is the existence of a

kind of rotating Rindler space [10]:

ds2 = −
(

(ξ/L)2
(

1− β2
)

− β2
)

dt2r − 2βdtr dχr +
dξ2

1 + (ξ/L)2
+
(

1 + (ξ/L)2
(

1− β2
))

dχ2
r .

(2.9)
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Here −∞ < χr < ∞ and β is a rotation parameter with −1 ≤ β ≤ 1. Both rotating

and nonrotating Rindler-AdS space are of course a piece of anti-de Sitter space just as

flat Rindler space is a piece of Minkowski space. In fact, even globally the portion of the

spacetime covered by the coordinates above is identical to that covered by nonrotating

Rindler coordinates. The diffeomorphism

t → tr − βχr χ → χr − βtr (2.10)

maps one spacetime to the other. In that sense, rotating Rindler space is classically the

same spacetime as nonrotating Rindler space. However, the Hamiltonians for nonrotat-

ing and rotating Rindler space are not related by AdS isometries (they are in different

conjugacy classes of the AdS isometry group) and the corresponding vacuum states (“β-

vacua”) of scalar field theory are particle-inequivalent [10]. That is, the β-vacuum annihi-

lated by the Hamiltonian that generates a rotating Rindler time appears to the nonrotat-

ing Rindler observer as an excited state populated with particles. Interestingly, rotating

Rindler-AdS space possesses not only an observer-dependent event horizon but even an

observer-dependent ergosphere at ξ/L = β/
√

1− β2 [10].

3 Thermodynamics of Rindler-AdS

Contrary to the situation in flat space, the temperature seen by an observer moving with

constant acceleration in curved spacetime is not always proportional to the proper accel-

eration. Rather, the general formula relating proper acceleration a and local temperature

in (A)dSd+1 from [3] is

Tlocal =
1

2π

√

2Λ

d(d− 1)
+ a2 =

1

2π
aembed , (3.1)

where aembed is the proper acceleration of the Rindler observer in the flat embedding

space. This agrees for example with the fact that even a geodesic observer (a = 0) in de

Sitter space sees a temperature. In AdS, there is a critical acceleration (ac = 1/L) before

the observer detects thermality. Observers at the critical acceleration see zero-temperature

extremal horizons. Observers with lower acceleration do not have horizons. For example, an

observer at a constant nonzero global radial coordinate ρ, moving in the direction of ∂τ , has

a constant nonzero acceleration but nevertheless does not measure a temperature. Such an

observer moves vertically up the Penrose diagram and has no horizons. From the embedding

point of view, sub-critical acceleration trajectories correspond to spacelike trajectories in

the higher-dimensional space and therefore do not give an Unruh temperature.

Consider then a Rindler-AdS observer at constant ξ. The proper acceleration of such

an observer is

a2 =
1

ξ2
+

1

L2
. (3.2)

Inserting (3.2) into (3.1) we get

Tlocal =
1

2πξ
. (3.3)
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This can also be seen directly from the coordinates. The SO(2, d)-invariant vacuum state

(analogous to the Poincaré-invariant vacuum in Minkowski space) is the state annihilated

by the modes that have positive frequency with respect to the global time coordinate,

τ . Being global, τ can be assigned to each point on the entire space, (2.1), in a single-

valued manner. But (2.2) then implies that the Rindler time t must have an imaginary

period of 2πL. Thus the Green’s function of the SO(2, d)-invariant vacuum, when expressed

in Rindler coordinates is similarly periodic in imaginary time, indicating that an Unruh

detector carried by the Rindler observer will record a temperature. Finally, the proper time

of the Rindler observer has an extra factor of
√−gtt, giving precisely (3.3). Later, we will

derive this temperature from the two-point correlation function in the boundary theory.

Next consider the entropy. The horizon is at ξ = 0. As in flat Rindler space, the area

of the horizon in Rindler-AdS space is infinite:

AH(AdSd+1) ∼ Ld−2

∫ ∞

0
sinhd−2(χ/L)dχ . (3.4)

However, the entropy density, s, is finite and obeys the universal relation:

s =
1

4Gd+1
. (3.5)

For three-dimensional rotating Rindler space (2.9), the temperature and entropy are

T =
1− β2

2πL
S =

1

4G3

∫

(

1− β2
)

dχr , (3.6)

where β is the rotation parameter, −1 ≤ β ≤ 1. The event horizon is still at ξ = 0 and the

entropy is of course infinite.

4 The boundary theory

We are now interested in the holographically dual theory, which defines quantum gravity

in Rindler-AdS space. As emphasized earlier, Rindler-AdS is simpler to study than eternal

AdS black holes. Rindler-AdS space does not have singularities and the precise form of

the boundary CFT is known in certain cases. Now, as usual in AdS/CFT [11, 16, 17],

in the limit of large N and large ’t Hooft coupling, the string partition function can be

approximated at saddle point by the exponential of the classical supergravity action:

Z[φ0(x)]CFT = 〈ei
∫

∂AdS
φ0(x)O(x)〉 ≈ eiSsugra[φ(z,x)] , (4.1)

where the bulk field φ(z, x) takes the value φ0(x) on the boundary ∂AdS. In the Euclidean

formulation, φ0(x) acts as a source term in the CFT, and specification of the boundary

field φ0(x) (along with the assumption of regularity in the interior) uniquely determines the

bulk field, which can be determined using the bulk-boundary propagator. Thus bulk fields

are dual to boundary sources. However, there are additional subtleties in the Lorentzian

version of the correspondence [12, 13] because of the existence of normalizable modes in

the bulk. These are bulk excitations that do not change the leading (in z) contribution
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to the boundary value of the field, φ0(x). The normalizable modes are dual to states

in the boundary theory. For our present purpose, we will ignore the contribution of the

normalizable modes and just analytically continue the bulk-boundary propagators defined

in Euclidean signature in order to study the various boundary correlation functions in

Lorentzian signature. We will also focus on AdS3 for computational convenience; most

of the results can be extended without loss of generality to higher dimensions. Below we

will first recover the thermodynamics from the CFT. Then we will perform a calculation

that indicates how the boundary theorist could perceive the horizon. Remarkably, the

calculation indicates that at least partial information is available to the CFT about events

that are across the Rindler horizon.

4.1 Temperature and two-point correlators

We take the complete Hilbert space of conformal operators to be given by a direct product

of two Hilbert spaces, H = H1 ⊗H2. We also take the complete state to be an entangled

state of the two CFTs, as studied in [9, 14, 15]:

|Ψ〉 = 1
√

Z(β)

∑

n

e−βEn/2|En〉1 × |En〉2 . (4.2)

This state corresponds to the vacuum of the boundary theory in global AdS spacetime.

Also, the temperature (1/β) of this entangled state is unique and related to the AdS scale,

as we will see later. All expectation values of the conformal operators are taken with

respect to the entangled state given by (4.2). In order to compute correlation functions

in the boundary theory, one needs the explicit form of the bulk-boundary propagator

K(ξ, χ, t;χ0, t0) defined by

φ(ξ, χ, t) =

∫

K(ξ, χ, t;χ0, t0)φ0(χ0, t0) dχ0dt0 . (4.3)

Here the point (χ0, t0) acts as a source on the boundary while the bulk point (ξ, χ, t) is the

sink. In AdS3, the bulk-boundary propagator for a minimally coupled massive scalar field,

upto normalization, is

K(ξ, χ, t;χ0, t0) =
1

[

√

1 + ξ2

L2 cosh
(χ−χ0

L

)

− ξ
L cosh

(

t−t0
L

)

]∆
. (4.4)

Here ∆ = 1+
√
1 +m2 is the conformal dimension of the boundary operator dual to a bulk

scalar of mass m. The bulk-boundary propagator satisfies the massive wave equation in

Rindler-AdS coordinates and is valid as long as both the source and sink happen to be on

the same side of the Rindler horizon i.e. when the conformal operaters are inserted on the

same boundary. As ξ → ∞, K becomes a delta function supported at χ = χ0 and t = t0.

Using the standard rules for AdS/CFT [16, 17], the two-point function between conformal

operators inserted on the same boundary is

〈O(χ1, t1)O(χ2, t2)〉 =
1

[

cosh
(χ1−χ2

L

)

− cosh
(

t1−t2
L

)]1+
√
1+m2

. (4.5)
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The two-point functions has a periodicity of 2πL in imaginary time; evidently the boundary

CFT is thermal in nature, as mentioned previously for the entangled state (4.2), with

β = 2πL. This is in agreement with the fact that the temperature of the Rindler horizon

is indeed TH = 1
2πL . Hence the boundary theory gives the correct horizon temperature.

To evaluate the bulk-boundary propagator when the sink is on the other side of the

horizon, we analytically continue the time as t → t− iπL, as can be seen from (A.1). The

bulk-boundary propagator then becomes

K(ξ, χ, t;χ0, t0) =
1

[

√

1 + ξ2

L2 cosh
(χ−χ0

L

)

+ ξ
L cosh

(

t−t0
L

)

]1+
√
1+m2

. (4.6)

Using the above bulk-boundary propagator and the rules of AdS/CFT we arrive at the

two-point function of operators inserted on the opposite boundaries

〈O1(χ1, t1)O2(χ2, t2)〉 =
1

[

cosh
(χ1−χ2

L

)

+ cosh
(

t1−t2
L

)]1+
√
1+m2

. (4.7)

The two-point function is nonsingular because the operators are always spacelike separated.

The reason the expectation value does not vanish even though the operators on opposite

boundaries commute is that the CFTs are entangled.

In general, correlation functions can be calculated in global AdS coordinates and then

transformed to Rindler-AdS coordinates. This is of course no different from what happens

in flat Rindler space for which (bulk) correlation functions can be calculated in standard

Minkowski coordinates and then transformed to Rindler coordinates.

4.2 Entropy

First consider the entropy in higher dimensions. Specializing to AdS5, the Rindler horizon

has entropy

SRindler = lim
χ0→∞

πL2

G5

∫ χ0

0
sinh2(χ/L)dχ , (4.8)

which diverges as expected. The coordinate ξ scales the boundary theory. Specifically, for

AdS5, the dual theory is N = 4 SYM theory, with a gauge field, four Weyl spinors and

six conformally coupled scalars, all in the adjoint of SU(N). The number of degrees of

freedom is thus 15N2. The size of the gauge group is related to the AdS radius by

N2 =
πL3

2G5
. (4.9)

A priori, there are now two ways of calculating the entropy from the dual theory: as the

entropy of a gas of thermal free fields, and as entanglement entropy. The free field entropy

computation for a thermal CFT is done using the standard result

SCFT =
2

3
π2N2VCFTT

3
CFT . (4.10)
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Evaluating this “holographically” implies substituting boundary data into the above ex-

pression. At fixed ξ = ξ0 ≫ L, the boundary metric is

ds2 = ξ20

[

−dt2

L2
+

dχ2

L2
+ sinh2

(χ

L

)

dΩ2
2

]

. (4.11)

The horizon temperature is given by TH = 1
2πL and the physical temperature at the

boundary is

TCFT =
TH√−gtt

=
1

2πξ0
, (4.12)

and VCFT is given by

VCFT = lim
χ0→∞

4πξ30
L

∫ χ0

0
sinh2(χ/L)dχ . (4.13)

Using (4.9), (4.12), (4.13) and inserting them into (4.10), we see that the free field CFT

entropy scales in the same manner as (4.8), albeit with

SCFT =
1

6
SRindler . (4.14)

This familiar numerical disagreement is presumably because of the fact that we have as-

sumed the large N limit and large ’t Hooft coupling. In this approximation, the entropy of

the boundary theory is computed using the results for a free field CFT. In the exact case

however, the CFT could be a fully interacting field theory; we do not yet understand how

to calculate the entropy for such a theory directly.

So far this is all mostly familiar. We can do much better for Rindler-AdS3. For (2.7),

the Bekenstein-Hawking entropy is given by

SBH =
A

4G3
=

∫

dχ

4G3
. (4.15)

The Euclideanized boundary metric for (2.7) is given by

ds2boundary = dτ2 + dχ2 , (4.16)

where τ ∼ τ + β = τ + 2πL, and the last equality follows from the fact that the boundary

two-point function (4.5) is periodic in imaginary time with period β = 2πL. Since by the

AdS/CFT correspondence ZAdS = ZCFT, we can now use the Cardy formula to calculate

the entropy of the CFT:

SCFT =
π

3β
c Volume =

π

3

3L

2G3

1

2πL

∫

dχ = SBH , (4.17)

where c = 3L
2G3

is the central charge of the unitary CFT as calculated by Brown and

Henneaux [26]. Of course the entropy of the Rindler horizon is infinite, but it is very

interesting that the entropy densities are now in precise agreement.

We can also use the Cardy formula for the rotating CFT:

SCFT =
π

3
cT Volume =

π

3

3L

2G3

1− β2

2πL

∫

dχr = SBH . (4.18)

– 9 –
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Once again the CFT entropy density and the Bekenstein-Hawking entropy density are in

precise agreement, including the numerical factor. Under the diffeomorphism (2.10), the

volume element transforms as dχ → (1− β2)dχ, and therefore (4.17) and (4.18) both have

the universal entropy density 1/4G.

4.3 Relation between Rindler-AdS space and AdS black holes

Let us pause here to comment briefly on the relation between Rindler-AdS space and black

holes in anti-de Sitter space. From the outset, it is important to clarify that Rindler-AdS

space is not the near-horizon limit of black holes in AdS; the near-horizon limit of all

non-extremal black holes, including black holes in AdS space, is flat Rindler space.

The existence of an ergosphere in rotating Rindler-AdS space recalls the rotating BTZ

black hole. Indeed, rotating Rindler-AdS space is related to the rotating BTZ black hole [18,

19] via

χr ∼ χr + 2π . (4.19)

A change of coordinates

ξ =

√

r2 − 1

1− β2
(4.20)

puts the metric in the familiar BTZ form:

ds2 = −(r2 − 1)(r2 − β2)

r2
dt2r +

r2

(r2 − 1)(r2 − β2)
dr2 + r2

(

dχr −
β

r2
dtr

)2

. (4.21)

Rindler-AdS is thus the universal cover for the BTZ black hole [4–8]. The black hole solution

is obtained by making an identification in a direction perpendicuar to ∂t at the boundary.

However, there is an important difference between Rindler-AdS space and the BTZ black

hole. The identification breaks the symmetry group down from SL(2,R) × SL(2,R) to

SL(2,R)×U(1). Consequently, the freedom of picking out the time direction is lost; neither

the event horizon nor the ergosphere of the BTZ black hole is observer-dependent. Put

another way, the identification χr ∼ χr+2π gives the two-dimensional boundary Minkowski

space a cylinder topology. But special relativity on a cylinder has a preferred frame, singled

out by the identification [20, 21]. Hence there is a preferred direction of time.

That Rindler-AdS3 is the universal cover of the BTZ black hole also means that two-

point functions in the CFT for BTZ black holes are infinite sums of Rindler-AdS two-point

functions summed over all image points. For example, for operators inserted on opposite

boundaries, the BTZ two-point correlator is

〈O1(χ1, t1)O2(χ2, t2)〉BTZ ∼
n=+∞
∑

n=−∞

1
[

cosh
(

χ1−χ2+2πn
L

)

+ cosh
(

t1−t2
L

)

]1+
√
1+m2

∼
n=+∞
∑

n=−∞
〈O1(χ1 + 2πn, t1)O2(χ2, t2)〉Rindler . (4.22)

The relative simplicity of the two-point function in Rindler-AdS is, as we shall see below,

another one of the advantages of Rindler-AdS as a model spacetime in the study of horizons.
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4.4 The omniscient CFT

It is now widely believed, if not proven, that the process of black hole formation and

evaporation is unitary. The existence of a unitary conformal field theory dual to anti-de

Sitter space lends support to this belief, as the formation and evaporation of AdS black holes

is presumably a process that has a dual description within a unitary theory. Nevertheless,

a detailed account of how information emerges from a black hole is far from clear. Here

we will take a step in that direction by showing that the dual CFT can tell whether an

infalling source has crossed the horizon. In fact, the CFT even has partial information

about events that happen across the horizon. This is promising because, from the local

bulk point of view, the horizon is a nondescript place; by contrast, gauge/gravity duality

is nonlocal and it is precisely in a theory with nonlocality that one expects to be able to

evade the paradoxes of black holes.

There are of course several different ways to probe the horizon. Here we will consider

“switching on” a point source which freely falls into the Rindler horizon, before being

“switched off” after the passage of some finite interval of proper time. The source couples

to a bulk field which, for simplicity, we will take to be a free scalar field. The boundary

value of the bulk field in turn plays the role of a coupling constant in the boundary CFT.

Consider, as an analogy, a Reissner-Nordstrom black hole. The bulk field here would be

the electromagnetic field and a source would be any charge or current configuration. For

the purpose of understanding information retrieval, one might like to send in a source that

carries no coarse-grained hair (i.e. no mass, charge, or angular momentum) such as, say, an

electric dipole, to test whether the CFT can determine what was thrown in. The alternative

to throwing in a source would be to send in some excitation of the field itself; this would be

analogous to probing our Reissner-Nordstrom black hole by sending in an electromagnetic

wave which will propagate on null trajectories. Hence in light-cone or Eddington-type

coordinates, the wave would have a constant ingoing null coordinate and we would not be

able to distinguish the moment the packet crossed the horizon from any earlier moment.

The advantage of sending in a source is that it can travel on a timelike trajectory, for which

the ingoing null coordinate time varies along the trajectory. Therefore, by considering the

signatures of the “switching on” and “switching off” processes of our infalling source, we

will see that the CFT can tell whether the source is switched on or off even after it crosses

the Rindler horizon.

Our goal then is to study the response of the boundary operator that is dual to the bulk

field, as the source falls into the horizon. For simplicity we consider a point-like source, but

this is a good approximation since even more a realistic source would have its wave-packet

blue-shifted and increasingly localized as it approaches the horizon. In principle, we could

also explicitly construct a CFT operator dual to the infalling source. Such a construction

would depend on the nature of the source. For example, consider the case where the bulk

field is the metric. Then the infalling source would be described by the bulk matter energy-

momentum tensor, which in turn would be made up of bulk matter fields. These couple

to the CFT through their boundary values; there is a considerable literature on how to

create localized bulk fields (that constitute the infalling source) through smearing functions

– 11 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
9

at the boundary [6, 7, 28]. Therefore, in principle there is no problem in describing the

infalling bulk source in the CFT. However, such a construction is somewhat irrelevant to

the question we are trying to consider here i.e. how do the boundary one-point functions of

operators dual to the bulk field (that is sourced by the infalling source) yield information

on across-horizon physics?

In order to describe an infalling source, we need to define the Rindler coordinates

beyond the horizon i.e. into the region (X1)2 − (X0)2 < 0. To that end, we transition to

ingoing Eddington-Finkelstein (EF) coordinates by defining

r ≡ ξ2

2L

v ≡ t+

∫

dr

2r
L

√

1 + 2r
L

= t+
L

2
ln





√

1 + 2r
L − 1

√

1 + 2r
L + 1



 . (4.23)

With this, the Rindler-AdS3 metric in EF coordinates becomes

ds2 = −2r

L
dv2 +

2dvdr
√

(

1 + 2r
L

)

+

(

1 +
2r

L

)

dχ2 . (4.24)

The ranges of the coordinates is −L/2 < r < ∞ and −∞ < v < ∞, with the region outside

the horizon being 0 < r < ∞. In particular, these coordinates are perfectly smooth at the

future horizon r = 0. These coordinates span one patch of the Rindler-AdS space time

(−L
2 < r < ∞). In the Penrose diagram, the entire space time can be viewed as an infinite

concatenation of such identical patches, in the direction of the global time coordinate. The

boundary metric at large r is

ds2b =
2r

L

(

−dv2 + dχ2
)

, (4.25)

which is conformally flat, an advantage of working in three dimensions.

In order to describe a source falling into the Rindler horizon, we consider timelike

radially ingoing geodesics in Rindler-AdS3. Since the metric is invariant under translations

of the v coordinate, the momentum component pv is conserved along geodesics. Since

pv = muv (where ua is the velocity vector), and setting m ≡ 1, we have that uv is

conserved. For simplicity, let the conserved value of uv be −1. Then setting χ=const so

that uχ = 0 (which corresponds to radial infall) we have

(ur)2 +
4r2

L2
= 1 . (4.26)

Choosing the initial condition r(0) = L/2 and using uv = −1, we find that the source’s

geodesic trajectory is given by

rJ(τ) =
L

2
cos

(

2τ

L

)

vJ(τ) =
L

2
ln

[

1 + sin
(

2τ
L

)

(√
2 cos

(

τ
L

)

+ 1
)2

]

, (4.27)

where τ is the proper time.
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The conditions are chosen such that, at τ = 0, we have r = L/2 and v = −L ln(1+
√
2).

The source exits the patch covered by Eddington coordinates at τmax = Lπ/2 for which

vmax = 0. In particular, the source crosses the Rindler horizon at

τh = L
π

4
, rh = 0 , vh = −L

2
ln 2 . (4.28)

We now consider a bulk scalar field, φ, sourced by a freely falling localized source, J ,

which we model as

J =

∫ τf

τi

dτ δ(r − rJ(τ))δ(v − vJ(τ))δ(χ− χJ(τ)) , (4.29)

where rJ(τ) and vJ(τ) are given by (4.27), and χJ(τ) = 0 for simplicity. In addition, we

require the source to get “switched on” at a certain instant with proper time τi ≥ 0, then

traverse the geodesic path (4.27) before getting “switched off” or terminated at a later

proper time, τf .

In order to describe the infall of the source into the horizon from the boundary per-

spective, we use the basic AdS/CFT tool

∫

bulk
Dφ eiI[φ] =

〈

e
∫

φ0O
〉

CFT
, (4.30)

where φ0 is the boundary value of the bulk field φ. The AdS/CFT dictionary mandates the

equivalence of the bulk and boundary vacua. We evaluate correlation functions with respect

to the state (4.2), which is the AdS analog of the Hartle-Hawking vacuum state. Using the

SUGRA approximation, we can approximate the bulk path integral by its saddle-point

∫

bulk
Dφ eiI[φ] ∼ eiI[φcl] , (4.31)

where I[φcl] is the action for the classical field configuration. In order to evaluate the bulk

action, we need to first find φcl. Given J , we can solve for the bulk scalar field as

φcl(r, χ, v) =

∫

G
(

r, χ, v; r′, χ′, v′
)

J
(

r′, χ′, v′
)

dr′dχ′dv′ , (4.32)

where G(r, χ, v; r′, χ′, v′) is the bulk-bulk propagator. For our source (4.29) we have

φcl(r, χ, v) =

∫ τf

τi

G(r, χ, v; rJ(τ), χJ(τ), vJ(τ))dτ . (4.33)

An important point to note is that the propagators that arise in path integrals, such as

on the left-hand side of (4.30), are Feynman propagators; Feynman’s iǫ prescription is

necessary for path integrals to converge. Hence we must use the Feynman propagator to

evaluate φcl in order to be consistent with our setup. This is very important since the

Feynman propagator, which crucially does not vanish at spacelike separation, can yield

signatures about across-horizon physics.
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The boundary value, φ0(χ, v), of the scalar field can be obtained by taking

lim
r→∞

φcl(r, χ, v) = φ0(χ, v). The explicit form for the bulk-bulk Feynman propagator for

AdS3 was derived in [27] and is given by

G(r1, χ1, v1; r2, χ2, v2) ∼ γ∆ 2F1

(

∆

2
,
∆

2
+

1

2
,∆, γ2

)

, (4.34)

where ∆ = 1+
√
1 +m2. The bulk-bulk propagator (4.34) is calculated using normalizable

modes in Poincaré coordinates; the Poincaré vacuum is equivalent to the global vacuum [27].

Here γ is related to the AdS invariant geodesic distance,

γ =
L2

Xa
1X

b
2ηab

, (4.35)

for any two vectors Xa
1 and Xa

2 , where ηab is the Minkowski metric in the embedding space

(i.e. with two time directions). In EF coordinates (see appendix), we find that

γ =
L2

+
√

+4r1r2
L2 cosh

(

v2−v1−f(r2)+f(r1)
L

)

−
√

(

1 + 2r1
L

) (

1 + 2r2
L

)

cosh
(χ2−χ1

L

)

. (4.36)

According to the AdS/CFT correspondence, at large N and large ’t Hooft coupling,

the one-point function is given by

〈O(v, χ)〉 = lim
r→∞

1√
−h

δI

δφ0(v, χ)
, (4.37)

Here h is the determinant for the boundary metric (4.11). Let us first evaluate the action.

The action for the field φ is

I[φ] =

∫
(

−1

2
(∂φ)2 − 1

2
m2φ2 + Jφ

)

dχdvdr . (4.38)

Integrating (4.38) by parts, and separating the bulk and the surface terms, we get for

the variation of the action

δI[φcl] ∼
∫

gµνδφcl ∂µφcl dΣν , (4.39)

where dΣν is the surface normal to the v coordinate and the variation of the bulk term

vanishes on-shell. Since we wish to evauate this action at the boundary, i.e. at r → ∞,

using the above expression and (4.37), the one-point function is

〈O〉 ∼ lim
r→∞

√−g√
−h

grµ∂µφcl , (4.40)

as one power of φ is pulled down by differentiation. We now plug in (4.33) to get

〈O〉 ∼ lim
r→∞

√−g√
−h

grµ∂µ

∫ τf

τi

G(r, χ, v; rJ(τ), χJ(τ), vJ(τ))dτ . (4.41)
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Finally, we assume a massless scalar field m = 0 ⇒ ∆ = 2 for ease of calculation, χJ = 0,

and insert (4.27), (4.34), and (4.36) into the above expression. Next, we notice from (4.36)

that γ goes to zero as r → ∞. We can therefore perform a power series expansion of the

hypergeometric function for small γ in terms of Pochhammer symbols. We then get

lim
r→∞

∂r
[

γ2 2F1

(

1, 3/2, 2, γ2
)]

= lim
r→∞

∂

∂γ2

[

γ2
(

1 +
3γ2

4
+ . . .

)]

∂γ2

∂r

= lim
r→∞

[

1 +
3γ2

2
+ . . .

]

∂γ2

∂r
, (4.42)

where, from (4.36), we have

lim
r→∞

∂γ2

∂r
=

−1

r2∞

[
√

1 + cos
(

2τ
L

)

cosh(χ)−
√

cos
(

2τ
L

)

cosh
(

v
L − g(τ)

)

]2 . (4.43)

Here r∞ is the infrared cutoff that marks the surface on which the CFT lives. Therefore in

the large r = r∞ limit, only the first term in (4.42) contributes. Noting that in the large r

limit,
√
−h → 2r∞

L , grr → 4r2
∞

L2 , we have for the one-point function

〈O(v, χ)〉 ∼
∫ τf

τi

dτ

r∞
[
√

1 + cos
(

2τ
L

)

cosh(χ)−
√

cos
(

2τ
L

)

cosh
(

v
L − g(τ)

)

]2 , (4.44)

where g(τ) = vJ(τ) − L
2 ln

[

√

1+
2rJ (τ)

L
−1

√

1+
2rJ (τ)

L
+1

]

= 1
2 ln

[

1+sin 2τ
L

cos 2τ
L

]

. The appearance of the 1
r∞

factor is consistent with the scaling dimensions of the operator O. The above integral can

be further simplified to yield

〈O(v, χ)〉∼
∫ τf

τi

4 dτ

r∞

[

2
√

1 + cos(2τ/L) coshχ− e−v/L
√

1 + sin (2τ/L)− ev/L cos(2τ/L)√
1+sin(2τ/L)

]2 .

(4.45)

4.5 Signatures of across-horizon physics

First, let us consider the one-point function when the source is both switched on and

switched off outside the horizon. For instance, we could take τi = 0 and τf = Lπ/6 < τh.

Setting χ = 0 and performing the integral (4.45), we obtain

〈O(v, 0)〉 ∼ 1

r∞
(√

2− cosh(v/L)
) (√

6−
√
3 cosh(v/L) + sinh(v/L)

) . (4.46)

Notice that the one-point function has four poles at

ui = L ln
(√

2 + 1
)

, vi = L ln
(√

2− 1
)

uf =
L

2
ln

(

2 +
√
3
)(

5 + 2
√
6
)

, vf =
L

2
ln
(

2 +
√
3
)(

5− 2
√
6
)

. (4.47)
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Here u and v are ingoing and outgoing Eddington-Finkelstein coordinates; u is related to

the v-coordinate by u = v − 2f(r), where f(r) is given by the log term in (4.23). We have

expressed two of the poles in terms of u coordinates for reasons that will be clear soon.

Now, consider the case where the source switches off only after it crosses the horizon.

For example, choose τi = 0 and τf = Lπ/2 > τh. Evaluating the integral, we find

〈O(v, 0)〉 ∼ 1

r∞
(√

2− cosh(v/L)
)

sinh(v/L)
. (4.48)

In this case the one-point function has only three poles. They are at

ui = L ln
(√

2 + 1
)

, vi = L ln
(√

2− 1
)

vf = 0 . (4.49)

The appearance of poles in the one-point function is easy to understand. We considered

an idealized source which is nonzero only for a finite interval of proper time, τi ≤ τ ≤ τf .

As a result, the field φcl is discontinuous at the endpoints (τi, τf ) since at these points

we abruptly switch the source on and off. But the one-point function is related to the

derivative of the field (4.41). The poles therefore come from taking the derivative of a

discontinuous field. The discontinuity in the field propagates towards the AdS boundary

along light-like trajectories. Moreover, since we are using the Feynman propagator, the

propagation of these signals occur via the retarded (the u poles) as well as the advanced

component (the v poles) of the propagator. In a certain sense, these poles indicate the

creation and annihilation of the source from a boundary theory perspective. There are also

poles in the χ (spatial) direction on the boundary. That is because the locus of poles is

the intersection of the constant r hypersurface where the CFT lives with the past/future

light cone emanating from the endpoint. See figure 2.

Now the crucial point is that, once the source crosses the horizon, there is no pole

corresponding to the outgoing Eddington coordinate u when the source switches off at τf .

This is because once past the horizon, retarded signals from the source do not reach the

surface where the CFT lives. This is schematically illustrated in figure 3.

Evidently, the poles of the one-point function, 〈O〉, allows the boundary theorist to

determine whether the source was annihilated before or after crossing the horizon. If there

are four poles, the source switched off before it reached the Rindler horizon; if there are

only three poles, it means that the source switched off after horizon-crossing. But in order

to determine whether the source switches off before or after the horizon, the boundary

theorist has to observe the one-point function for all time. For example, a source that is

switched off just infinitesimally before crossing the horizon will contribute a future-light-

cone (u) pole in the near-infinite future. So the boundary theorist has to wait till future

infinity to determine whether there are three poles or four.

In fact, the boundary theorist even acquires partial information about the location

of the switching off event, even if that event was across the horizon. In our radial infall

scenario, we have effectively suppressed the χ coordinate and the location of a switching

on/off event is characterized by its u and v coordinates. If the source switches off before

– 16 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
9

-4 -2 2 4

Χ

-4

-3
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v

L

Figure 2. The locus of points on the boundary where there are poles coming from one endpoint

of the source trajectory. The specific values plotted are for the case where the source switches off

precisely on the horizon, for which there are only v poles coming from the intersection of the past

light cone of the endpoint with the hypersurface on which the CFT lives.

Figure 3. a) The left figure illustrates when the source is active for a certain time period outside the

horizon in the right Rindler wedge (R). The red and blue lines indicate signals propagating towards

the AdS boundary which correspond to the creation and annihilation of the source respectively.

The four poles are indicated on the boundary where the CFT lives. b) The right figure shows a

source that crosses the horizon. It is evident that the retarded signal from the annihilation (or

switching off) of the source no longer reaches the CFT boundary, and therefore the CFT perceives

just three poles as shown. The dashed lines indicate the boundary of the Eddington-Finkelstein

coordinates.
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it traverses the horizon, the CFT pole structure records both the u and the v values of

the event so that its precise location can be identified. Even if the source switches off

after it crosses the horizon, the CFT still knows about the v value of the event. So partial

information is obtained even about events that happen across the event horizon. Contrast

this with a bulk observer who does not see anything fall into the horizon in finite time, and

therefore would also not see any information come out in finite time. The key difference is

that the boundary theorist has access to the one-point function of a CFT whose relation to

the bulk is non-local — and which can therefore encode information about events beyond

the horizon.

In order to exactly read off v, the boundary theorist has to make certain assumptions

about the geometry behind the Rindler horizon. This is implicit in our set-up since we

have assumed that the geometry is pure AdS everywhere (including in the other Rindler

wedge). Nevertheless, even if there were deviations from pure AdS behind the horizon, the

qualitative result regarding the number of poles “seen” by the boundary theorist would

still hold. That is, irrespective of the geometry behind the horizon, the boundary theorist

would still perceive only three poles in the one-point function if the source were to get

switched off behind the horizon. Only the precise location of the third pole (i.e. the “v”

coordinate of the pole in the boundary theory) would be sensitive to beyond-horizon metric

perturbations.

We have used a boundary correlation function to detect a simple signature of the across-

horizon physics of an infalling bulk source. Notably, the boundary correlation function is

accessible to a boundary theorist with access to only one CFT. However, to actually create

the bulk source in the boundary theory [28], one needs both the right as well as the left

CFTs. Hence a boundary theorist with access to only one CFT cannot single-handedly set

up the experiment. Nevertheless, a one-sided boundary theorist can read off the results

of the experiment — there are distinct and measurable effects for the one-sided CFT

depending on whether the source switches off before or after crossing the horizon — even

if such a theorist may not recognize it as an infalling source. This is precisely the spirit of

our calculation. More precisely, from our construction (see figure 3) we can see that the

past light cone of a switching off event in the upper Rindler wedge (F) also intersects the

antipodal CFT (associated with a hypersurface in region (L)). The missing fourth pole is

actually in the antipodal CFT; complete knowledge of the pole structure of both CFTs is

therefore necessary to fully reconstruct switching off events in the upper Rindler wedge.

5 De Sitter space as the boundary of Rindler-AdS

In this section, we touch upon an alternate formulation of Rindler-AdS with a potentially

wide spectrum of applications. Consider again a Rindler observer in d + 2-dimensional

Minkowski space (with two time directions) uniformly accelerating in the X1 direction:

X0 = r̃ sinh(t/L) X1 = r̃ cosh(t/L) . (5.1)
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This turns the flat space line element into

ds2 = −
(

r̃

L

)2

dt2 + dr̃2 + dX2
2 + . . .+ dX2

d − dX2
d+1 , (5.2)

which, indeed, is Rindler space (albeit with two time directions). Rindler observers at

constant r̃ have proper acceleration 1/r̃. We foliate AdS as

X0 = R cosχ sinh(t/L)

X1 = R cosχ cosh(t/L)

X2 = R sinχ cos θ1

. . .

Xd−2 = R sinχ sin θ1 . . . sin θd−3 cos θd−2

Xd−1 = R sinχ sin θ1 . . . sin θd−2 cosφ

Xd = R sinχ sin θ1 . . . sin θd−2 sinφ

Xd+1 =
√

L2 +R2 . (5.3)

This satisfies the AdS embedding equation (2.1). The first two coordinates are of the

form (5.1) with what we called r̃ now being R cosχ. Defining r = L sinχ, we finally obtain

ds2 =
dR2

1 + (R/L)2
+ (R/L)2

[

−
(

1− (r/L)2
)

dt2 +
dr2

1− (r/L)2
+ r2dΩ2

d−2

]

. (5.4)

We see that Rindler-AdS can also be foliated in slices that are conformal to static de Sitter

space with de Sitter radius L [29, 30]. The ranges of the coordinates are

0 ≤ R −∞ < t < ∞ 0 ≤ r < L 0 ≤ θi ≤ π 0 ≤ φ < 2π . (5.5)

The coordinate r is related to the polar angle on the Sd−1 by r = L sinχ in the region

0 ≤ χ < π/2. The range π/2 < χ ≤ π covers the static patch of the antipodal observer.

Note that, since r̃ = cosχ, the relation (5.1) between ∂X0 and ∂t is reversed for this

observer.

Incidentally, the spatial geometry at constant t is given by

ds2 =
dR2

1 + (R/L)2
+R2

(

dχ2 + sin2 χdΩ2
d−2

)

, (5.6)

which is locally Euclidean AdSd i.e. the hyperbolic space Hd. For the region 0 ≤ χ < π/2

(corresponding to 0 ≤ r < L), the spatial part of AdS that corresponds to a Rindler

observer is really Hd/Z2 whose topology is Bd/Z2. The geometry of Rindler-AdS space is

depicted in figure 4.

To compute the temperature of the Rindler horizon, consider a Rindler observer at

constant R and constant r. The proper acceleration of such an observer is

a =
1

R

√

(R/L)2 +
1

1− (r/L)2
. (5.7)
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Figure 4. Geometry of Rindler-AdSd+1 space. The shaded region is a surface of constant R, which

covers the static patches of a pair of antipodal de Sitter observers. τ and ρ are the time and radius in

global coordinates. The Rindler-AdS region extends only up to τ = ±π/2 at the boundary of AdS.

The arrow in the right shaded region points in the direction of ∂t, whose orbits are a Rindler/de

Sitter observer’s worldline; the arrow is reversed for the antipodal observer. Except at ρ = 0 each

point in the interior corresponds to a Sd−2.

Inserting (5.7) into (3.1) we get

Tlocal =
1

2πR

√

1

1− (r/L)2
, (5.8)

and the horizon temperature is

TH =
√−gttTlocal . (5.9)

From the boundary point of view the Rindler observer is an accelerating observer at

fixed r in static de Sitter space. To obtain the de Sitter temperature, we define t = t̂/(R/L)2

which puts the constant R part of the metric in the form

ds2 = −f(r)dt̂2 +
dr2

f(r)
+ (R/L)2 r2dΩ2

d−2 . (5.10)

Then the de Sitter temperature is

T =
f ′(rH)

4π
=

l

2πR2
, (5.11)

and the local temperature at constant r is

Tboundary =
1

2πR

1
√

1− (r/L)2
, (5.12)

which is again the physically-measured Rindler temperature.
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The entropy of the Rindler horizon is calculated using the standard area formula. The

horizon is at r = λ. Specializing to AdS5, the Rindler horizon has entropy

SRindler =
π

G5

∫ R0

0

R2dR
√

1 + (R/L)2
=

πL2

2G5

(

R0

√

1 + (R0/L)2 − L sinh−1(R0/L)
)

,

(5.13)

where R0 is a cut-off radius which acts in the bulk as an infrared regulator. We see that

for large R0 the entropy scales like R2
0:

SRindler ≈
πLR2

0

2G5
. (5.14)

The coordinate R scales the boundary theory in this parameterization. At fixed R = R0,

therefore, the theory is a UV cut-off CFT in static de Sitter space. The R2
0 scaling of the

entropy, (5.14), seems to indicate, perhaps surprisingly, that a free field computation for

a thermal CFT will not give the right result either. A free field calculation, quite apart

from being off by numerical factors, would be expected to yield an extensive entropy that

scales like R3
0 though oddly the entropy in this case is precisely (R0/L)

2N2 using (4.9).

The actual R2
0 scaling strongly suggests that the correct boundary interpretation of Rindler

entropy could be as entanglement entropy [31–34]; the de Sitter horizon acts as a surface

across which the conformal fields are entangled with the fields in the static de Sitter patch

of the antipodal observer.

To calculate the two-point correlator consider a massive scalar field in Rindler-AdSd+1.

The easiest way to calculate the boundary correlation functions is to Wick-rotate the time

coordinate as t → iLψ; the CFT then lives on an Sd. The two-point function of the dual

operator can now be easily calculated as

〈O(θ1, ψ1)O(θ2, ψ2)〉 =
1

(1− cosD)∆
, (5.15)

where ∆ = 1 +
√
1 +m2, is the conformal dimension of the dual operator, and D

is the de Sitter invariant distance in d dimensions, which in two dimensions becomes

cosD = (sin θ1 sin θ2 cos (ψ1 − ψ2) + cos θ1 cos θ2). We observe that (5.15) has the required

periodicity in the imaginary time coordinate, ψ, and yields the correct Rindler tempera-

ture (5.9).

That a certain foliation of AdS has de Sitter space as its boundary is intriguing. It

would be interesting to try to understand the vacuum states in de Sitter space [35] using

this setup. It may allow us to use the AdS/CFT correspondence in the reverse way: by

using gravity in Rindler-AdS space to learn about strongly-coupled field theories in de

Sitter space [34]. There are some subtleties, however. Unlike in our previous foliation,

the boundary itself now contains a horizon, corresponding to the horizons of the static

diamond of de Sitter space. The boundary horizon does not have finite entropy, however,

since there is no gravity in the boundary theory.
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6 Summary and discussion

In this paper, we have presented a holographic duality for acceleration horizons. The key

idea was to consider acceleration horizons in AdS, rather than in flat space, so as to be able

to exploit the AdS/CFT correspondence. We then used the dual picture to holographically

probe properties of the Rindler horizon. We recovered the horizon thermodynamics includ-

ing the precise entropy density for the case of Rindler-AdS3. We also showed that physics

beyond the horizon can be probed from the perspective of the boundary theory by calculat-

ing the response of the boundary theory to an infalling horizon-crossing source. Evidently,

Rindler-AdS/CFT holds much promise for studying the quantum gravity of horizons and,

moreover, it is considerably more tractable than the holography of AdS-Schwarzschild black

holes; we have surely only scratched the surface of this rich subject.

Among the obvious directions for future study are to work out two-point and higher

correlation functions for infalling sources and to look at other more realistic scenarios that

might probe the horizon. It would be particularly interesting to set up a problem in which

information fell into the Rindler horizon, to see whether our intuition about information

return is borne out. Another obvious direction is to perform calculations using Rindler-

AdS/CFT and then finally make a global identification in the χ direction to learn about

the holography of BTZ black holes.

Also, as mentioned earlier, there are subtleties in the Lorentzian version of AdS/CFT

because of the presence of normalizable modes. We ignored in this work but it would be

interesting to work out mode solutions for (2.3) and map them to the boundary theory.

One can also determine the spectrum of normalizable modes and study the quantization

conditions. This will throw more light on the dictionary between the bulk and the boundary

descriptions in Rindler-AdS/CFT.

It should be noted that what we have done was, in some sense, still quantum field theory

in curved spacetime. The boundary theory learned about the bulk from the boundary value

of the bulk field which in turn was determined using a propagator over a fixed background

geometry. By considering graviton fluctuations, we might be able to take a step beyond

QFT in curved spacetime.

More speculatively, we could try to implement some kind of observer complementar-

ity [36, 37]. For example, in our scenario we know that complete information about the

switching off event in the upper Rindler wedge was provided by the pole structure in both

CFTs. In order for all this information to be available to one observer, it might be necessary

to perform some kind of antipodal identification [37] or to map the antipodal CFT to some

other surface in the original wedge, such as at the stretched horizon [36, 38]. It might also

be, however, that complete information is not provided even by both CFTs. In particular,

the points where the two antipodal Rindler wedges intersect cannot be attributed unam-

biguously to either Rindler wedge. Correspondingly, operator insertions on the boundary

of global AdS at precisely the points where it touches that intersection surface cannot

obviously be thought of as insertions in either of the two CFTs.

Still more speculatively, there might be connections to the Hagedorn transition. In

quantum field theory, acceleration and temperature are linearly related, but in string theory
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it is possible that something nontrivial happens when the temperature reaches the Hage-

dorn temperature. Perhaps the existence of a Rindler-AdS/CFT correspondence might

provide a new angle from which to examine this old issue.
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A Rindler and Eddington-Finkelstein coordinates for AdS

Rindler coordinates for AdSd+1. To view Rindler observers as part of AdS, define

X0 = ξ sinh(t/L)

X1 = ξ cosh(t/L)

X2 =
√

L2 + ξ2 sinh(χ/L) cos θ1

. . .

Xd−2 =
√

L2 + ξ2 sinh(χ/L) sin θ1 . . . sin θd−3 cos θd−2

Xd−1 =
√

L2 + ξ2 sinh(χ/L) sin θ1 . . . sin θd−2 cosφ

Xd =
√

L2 + ξ2 sinh(χ/L) sin θ1 . . . sin θd−2 sinφ

Xd+1 =
√

L2 + ξ2 cosh(χ/L) . (A.1)

This satisfies the AdS embedding equation (2.1). The ranges of the coordinates are

0 < ξ −∞ < t < ∞ −∞ < χ < ∞ 0 ≤ θi ≤ π 0 ≤ φ < 2π . (A.2)

Global coordinates for AdSd+1. Global coordinates are related to embedding coordi-

nates via

X0 =
√

L2 + ρ2 sin(τ/L)

X1 = ρ cosψ

X2 = ρ sinψ cos θ1

. . .

Xd−2 = ρ sinψ sin θ1 . . . sin θd−3 cos θd−2

Xd−1 = ρ sinψ sin θ1 . . . sin θd−2 cosφ

Xd = ρ sinψ sin θ1 . . . sin θd−2 sinφ

Xd+1 =
√

L2 +R2 cos(τ/L) . (A.3)
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Eddington-Finkelstein coordinates for Rindler-AdS3. Ingoing Eddington-

Finkelstein coordinates are related to AdS embedding coordinates through

X0 =
√
2rL sinh

(

1

L
(v − f(r))

)

=
1

2






ev/L

√

√

√

√

2rL
(

√

1 + 2r/L+ 1
)

√

1 + 2r/L− 1
− e−v/L

√

√

√

√

2rL
(

√

1 + 2r/L− 1
)

√

1 + 2r/L+ 1







(A.4)

X1 =
√
2rL cosh

(

1

L
(v − f(r))

)

=
1

2






ev/L

√

√

√

√

2rL
(

√

1 + 2r/L+ 1
)

√

1 + 2r/L− 1
+ e−v/L

√

√

√

√

2rL
(

√

1 + 2r/L− 1
)

√

1 + 2r/L+ 1







(A.5)

X2 =
√

L2 + 2rL sinh
(χ

L

)

X3 =
√

L2 + 2rL cosh
(χ

L

)

, (A.6)

where f(r) = L
2 ln

[

√

1+ 2r
L
−1

√

1+ 2r
L
+1

]

as given by (4.23). These coordinates are nonsingular at the

Rindler horizon r = 0.
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