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Abstract In this work we explore an alternative phe-
nomenological model to Chaplygin gas proposed by Hova
et al. (Int J Mod Phys D 26:1750178, 2017), consisting
on a modification of a perfect fluid, to explain the dynam-
ics of dark matter and dark energy at cosmological scales
immerse in a flat or curved universe. Adopting properties
similar to a Chaplygin gas, the proposed model is a mix-
ture of dark matter and dark energy components parame-
terized by only one free parameter denoted as μ. We focus
on contrasting this model with the most recent cosmologi-
cal observations of Type Ia supernovae and Hubble param-
eter measurements. Our joint analysis yields a value μ =
0.843+0.014

−0.015 (0.822+0.022
−0.024) for a flat (curved) universe. Fur-

thermore, with these constraints we also estimate the decel-
eration parameter today q0 = −0.67 ± 0.02 (−0.51 ± 0.07),
the acceleration-deceleration transition redshift zt = 0.57 ±
0.04 (0.50±0.06), and the universe age tA = 13.108+0.270

−0.260 ×
(12.314+0.590

−0.430) Gyrs. We also report a best value of Ωk =
0.183+0.073

−0.079 consistent at 3σ with the one reported by Planck
Collaboration. Our analysis confirm the results by Hova et al.
this Chaplygin gas-like is a plausible alternative to explain
the nature of the dark sector of the universe.

1 Introduction

The accelerated expansion of the Universe is an evidence
provided by type Ia supernovae (SNIa) [2,3], and the large-
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scale structure (LSS) [4], being one of the major challenges in
modern Cosmology. Currently, the model preferred by these
observations is the so-called Λ-Cold Dark Matter (ΛCDM),
which considers the dark sector as two main components:
dark matter (DM) and dark energy (DE). While DM is
modeled as a dust fluid and it is responsible for the large-
scale structure formation in the Universe, the latter causes
the accelerated expansion at late times due to its nega-
tive pressure commonly associated with the cosmological
constant (Λ).

Due to ΛCDM tensions [5], particularly those associated
with the problems that unfold from the cosmological constant
(CC) [6,7], such as the well-known fine-tuning and coinci-
dence problems [8], a plethora of models have emerged to
explain the dark energy nature as an alternative to the CC
[9]. Examples of them are quintessence [10], k-essence [11],
braneworlds [12–15], among others (see for instance [16]).
However, many models are focused only on a fluid (or topol-
ogy) with the capability of accelerating the universe (DE),
being the DM treated as a separate entity, lacking a unifying
framework with the DE.

As we mention previously, while most of these models
postulate two dark components, the Chaplygin gas [17] and
the generalized Chaplygin-like gas (GCG) [18–20] propose
an unique dark fluid to describe the dynamics of the dark
sector with an equation of state p = −Aρ−n [21] where
0 < n ≤ 1 and A is defined as positive.1 In the inflationary
model context, another elliptic Chaplygin generalization has
been proposed through the Hamilton-Jacobi formalism [22].
Another studies consider modified GCG interacting with a

1 Notice that it is straightforward to recover the classical Chaplygin gas
model when n = 1.
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other fluids/fields (see for instance [23–25] and references
therein). The interest of this kind of models lies on some of
their features: (1) they show a transition from decelerated to
accelerated expansion of the universe, (2) they present the
simplest corrections to ΛCDM, and (3) their microscopic
origins arising from string theory and braneworlds [26,27].

Several studies have constrained the (generalized) Chap-
lygin gas models in the cosmological context using SNIa,
Hubble parameter measurements, gamma ray bursts, cos-
mic microwave background radiation and other probes, for
instance see [28–31]. On the other hand, studies based on
the matter power spectrum without baryons effects [32,33]
rule out the GCG model. However, when the LSS analysis
includes a baryon component, the GCG reproduces the 2dF
mass power spectrum [34]. In addition, some authors con-
sider models including an extra DM component to the GCG
to obtain a suitable mass power spectrum [8,35,36]. Moti-
vated by these results, we aim to revisit a GCG alternative
model that, while keeping its advantages, could also alleviate
its known weaknesses. We will test this model with the latest
cosmological observations.

In this work we investigate an extension of a recent phe-
nomenological proposal [1] to a non-flat geometry; where
a generalized perfect fluid model that follows the Chaply-
gin gas-like scheme is studied as an alternative to GCG.
The phenomenological model supposes a mixture of unclus-
tered DE and DM driving the late cosmic acceleration, with
stable sub-horizon fluctuations, conservation of the scale
invariance instead of an unified dark sector context, resolv-
ing naturally the degeneracy problem [37,38] and with-
out future finite-time cosmological singularities. Consider-
ing the good agreement between the CC and the observa-
tional data at present times, this model modifies the Equa-
tion of State (EoS) of the CC by adding an extra term
which is a function of the energy density of the fluid at
present. Thus, at high redshifts the fluid behaves as DM
i.e. the EoS tends to zero, and at the present, it behaves
as DE with an EoS similar to minus one. Moreover, this
kind of evolving EoS can support the evidence of DE evo-
lution found by [39]. The strong point of this phenomeno-
logical model is its effectiveness at reproducing the Universe
dynamics without requiring additional components (or free
parameters) as previous/other GCG models. Therefore, the
free parameter of the theory is constrained by the observa-
tional Hubble data (OHD) from differential age (DA) tech-
nique [40] and the joint-light-analysis (JLA) sample of SNIa
[41].

The papers is organized as follows. In Sect. 2 we state
the theoretical framework of the model presented in Ref. [1].
Section 3 provides a description of the dataset and methods
used to constrain the parameters of the Chaplygin gas-like
model. In Sect. 4 we discuss the results obtained and finally,
in Sect. 5 the remarks and conclusions are presented.

2 Theoretical background

The traditional form to obtain the Chaplygin gas is through
the scalar field Lagrangian written in the form:

S[g, φ] = −
∫

dtd3x
√−g

(
1

2
∂μφ∂μφ − V (φ)

)
, (1)

where V (φ) is the scalar potential usually written in the form
V (φ) = φ2 ln φ2 + V0 and the action is associated with
the tachyonic scalar field, φ, which couples with the U (1)

gauge field living on the world volume theory of the non-
BPS brane (see [42] for details). In the same sense, Hova
and Yang [1] establish the connection of the Chaplygin gas
with the tachyon scalar field through the assumption of a con-
stant potential in the form V (φ) ∼ A1/2 = V0, where A is
related to the Chaplygin EoS; similarly happens for a general-
ized Chaplygin gas EoS (see also [1]). Several authors [43],
recently propose new tracker models involving hyperbolic
scalar potentials which may give the dark energy dynamics,
including the Chaplygin gas [43]. Moreover, other authors
explore the unification of dark matter, dark energy and also
inflation into a single scalar field [11], whose origin could
come from string landscape [44]. The explicit deduction of
the GCG from a microscopic point of view it is not well
theoretically established and the election of the generalized
EoS as sinc(μπρd f 0/ρd f ) in [1] it is only phenomenologi-
cal, therefore the respectively EoS can be written in the form
−1 + sinc(μπρd f 0/ρd f ). However, some clues comes from
Boehmer et al. [45] where it is possible to obtain the func-
tional form of the EoS under the assumption of a gravitational
bounded Bose–Einstein condensate (BEC) as dark matter.
We would expect that a similar EoS would also be impor-
tant at cosmological scales. Nevertheless, it is necessary to
strengthen the study to obtain conclusively responses, which
is far from the approach of the present paper.

We start following the recipe of [1], the generalized Chap-
lygin gas-like EoS is expressed as

pd f = −ρd f + ρd f sinc(μπρd f 0/ρd f ) , (2)

being sinc(x) ≡ sin(x)/x and ρd f the dark fluid density,
which plays the role of the mixture of DE and DM densities.
In this case μ is a dimensionless parameter constrained as
μ � 0.688 in order to be consistent with the stellar age
bound2 and ρd f 0 is the present energy density of this fluid,
constrained in terms of the density parameter as Ωd f 0 ∼ 0.96
in [1]. It behaves as a CC in the late times of the universe
evolution and as DM at the matter domination epoch. The
evolution of the EoS of the dark fluid is given by

2 Hova and Yang [1], adopt μ ≈ 0.876 in order to have an Universe
age of t ≈ 13.7Gyrs.
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ωd f (z) ≡ −1 + (z + 1)3 tan(λ)

[(z + 1)6 + tan2 λ]ξ(z)
, (3)

where ξ(z) ≡ arctan[(z+1)−3 tan λ] and λ ≡ μπ/2. In order
to explore the universe dynamics in this context, we consider
a general Friedmann–Lemaître–Robertson–Walker (FLRW)
metric including baryonic and radiation components, hence
we write the Friedmann and acceleration equations as

H2 = 8πG

3

(
ρd f +

∑
i

ρi

)
− k

a2 , (4)

ä

a
= −4πG

3

[ (
3 sinc

(
2λρd f 0

ρd f

)
− 2

)
ρd f

+
∑
i

(1 + 3ωi )ρi

]
, (5)

where H ≡ ȧ/a is the Hubble parameter, k is the curva-
ture parameter which depends on the universe geometry, and
the index i runs over baryonic and radiation components.
A dimensionless Friedmann function, E(z) = H(z)/H0, of
Eq. (4) can be written in terms of the density parameters and
the redshift as [1]

E(z)2 = λΩd f 0

ξ(z)
+

∑
i

Ωi0(z + 1)3(1+ωi ) + Ωk(z + 1)2,

(6)

here Ωd f 0 ≡ 8πGρd f 0/3H2
0 is the density parameter asso-

ciated with the Chaplygin gas-like fluid, Ωi0 and ωi are the
density parameters and the EoS for baryonic matter and radi-
ation3, Ωk ≡ −k/H2

0 is the curvature density parameter
and H0 = h × 100 km s−1Mpc−1. In addition, we have the
constraint Ωd f 0 + Ωb0 + Ωr0 = 1 − Ωk . The deceleration
parameter, q(z), is written in the form [1]

q(z) = 3ξ(z)

2λΩd f 0 + 2ξ(z)

[ ∑
i Ωi0(z + 1)3(1+ωi ) + Ωk(z + 1)2

]

×
{

λΩd f 0(z + 1)3 tan λ

ξ(z)2[(z + 1)6 + tan2 λ]
+

∑
i

(1 + ωi )Ωi0(z + 1)3(1+ωi ) + 2

3
Ωk(z + 1)2

}
− 1,

(7)

where q(z) is computed by the definition q ≡ −äa/ȧ2,
which written in terms of redshift and E(z) results q(z) ≡
−1+(z+1)E−1(z)(dE(z)/dz). As a complement, we com-
pute the jerk parameter which is dimensionless and defined
as j = ...

a /aH3:

3 We compute Ωr0 = 2.469 × 10−5h−2(1 + 0.2271Nef f ) [46], where
Nef f = 3.04 is the standard number of relativistic species [47].

j (z) = q(z)2 + (z + 1)2

E(z)

d2E(z)

dz2

= q(z)2 + (z + 1)2

2E(z)2

d2E(z)2

dz2

− (z + 1)2

4E(z)4

(
dE(z)2

dz

)2

, (8)

where E(z) and q(z) come from Eqs. (6) and (7) respectively,
and

dE(z)2

dz
= −λΩd f 0

ξ(z)2

dξ(z)

dz
+ 3

∑
i

Ωi0(1 + ωi )(z + 1)2+3ωi

+2Ωk(z + 1), (9)

d2E(z)2

dz2 = 2λΩd f 0

ξ(z)3

(
dξ(z)

dz

)2

− λΩd f 0

ξ(z)2

d2ξ(z)

dz2

+3
∑
i

Ω0i (1 + ωi )(2 + 3ωi )(z + 1)1+3ωi

+2Ωk , (10)

being

dξ(z)

dz
= − 3 tan λ

(z + 1)4
(
1 + tan2 λ(z + 1)−6

) , (11)

d2ξ(z)

dz2 = − 18 tan3 λ

(z + 1)11
(
1 + tan2 λ(z + 1)−6

)2

+ 12 tan λ

(z + 1)5
(
1 + tan2 λ(z + 1)−6

) . (12)

Note that we have followed the positive sign definition of
the jerk parameter as [48]. Commonly, this quantity provide
information on the possible evolution of any DE component.
Thus, if its value is j = 1, the DE behaves as CC, otherwise
it is a dynamical dark energy fluid.

In addition, from Eqs. (6) and (7) it is possible to calculate
an effective EoS containing the contributions of the Chaply-
gin gas-like and the standard fields like baryons, radiation
and the curvature term

ωe f f (z) = −1

3
+ 2

3
q(z)

[
1 + Ωk(1 + z)2

E(z)2

]
. (13)

Finally, using the following expression

tA = 1

H0

∫ ∞

0

dz′

(1 + z′)E(z′)
, (14)

we estimate the age of the universe for the Chaplygin gas-like
model.
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3 Data and methodology

In this section we introduce the observational data and
methodology used to constrain the free parameters of the
Chaplygin-like model.

3.1 Measurements of H(z) from cosmic chronometers

Some of the current estimation of the Hubble measure-
ments are obtained from cosmic chronometers. In the lit-
erature, a cosmic chronometer is a passive-evolving galaxy,
i.e. without ongoing star formation. The difference in age
(related to H ) is obtained by considering two of these galax-
ies with similar metallicities and separated by a small red-
shift interval [40]. The data provided by the DA method are
cosmological-model-independent and can be used to probe
alternative cosmological models. Here, we use the latest
OHD obtained from DA, which contains 31 data points cov-
ering 0 < z < 1.97, compiled by [49] and references therein.
The Chi-square for the OHD is written as

χ2
OHD =

31∑
i=1

[H(zi ) − HDA(zi )]2

σ 2
Hi

+
(
H0 − 73.24

1.74

)2

,

(15)

where H(zi ) is the theoretical Hubble parameter related to
Eq. (6), HDA(zi ) is the observational one at redshift zi ,
and σHi its uncertainty. Notice that in the Chi-square for-
mula we also consider the measurement of H0 = 73.24 ±
1.74 Kms−1Mpc−1 [50] as a Gaussian prior.

3.2 Type Ia supernovae

We use the JLA compilation by Ref. [41] consisting in 740
SNIa in the range 0.01 < z < 1.2. The observational distance
modulus is computed as

μobs = mB − (MB − a X1 + b C) , (16)

where mB is the observed peak magnitude in rest-frame B
band, X1 is the time stretching of the light-curve, andC is the
supernovae color at maximum brightness. The MB parameter
is defined as

Mb =
{
M1

b , if the host stellar mass M∗ < 1010M

M1

b + δM , otherwise.

(17)

Thus, we have two free parameter, M1
b , and δM . The quanti-

ties a, and b are nuisance parameters in the distance estimate.
On the other hand, the theoretical distance modulus is given

by μth = 5 log10(dL/ 10 pc), being dL = (1 + z)DM , the
luminosity distance predicted by the Chaplygin-like model
and DM is

DM (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c
H0

√
Ωk

sinh
[√

Ωk
∫ z

0
dz′
E(z′)

]
for Ωk > 0

c
H0

∫ z
0

dz′
E(z′) for Ωk = 0

c
H0

√
Ωk

sin
[√

Ωk
∫ z

0
dz′
E(z′)

]
for Ωk < 0

(18)

The Chi-square for SNIa data can be calculated as

χ2
JLA = (μobs − μth)

† C−1
η (μobs − μth), (19)

where Cη is the covariance matrix of the measurements pro-
vided by [41].

3.3 Joint analysis

To provide stronger constraints, we also perform a joint sta-
tistical analysis by combining the OHD and SNIa datasets.
The Chi-square function results as

χ2
Joint = χ2

OHD + χ2
JLA. (20)

In the following section, we present our results of the param-
eter estimation for the Chaplygin-like gas models.

4 Results

We test two models: one is a flat universe and the other one has
a curvature term Ωk �= 0. To estimate the free model param-
eters we perform a Bayesian analysis employing an Affine-
invariant Markov chain Monte Carlo (MCMC) method pro-
vided in the emcee Python module [51] for three data sets:
OHD, SNIa and its joint analysis (i.e. OHD+SNIa). We con-
sider a burn-in phase which is stopped when the converge
is achieved, which is done by requesting that the Gelman-
Rubin test is less than 1.07 for all parameters [52]. Then, we
set 6000 MCMC steps with 500 walkers. We consider Gaus-
sian priors for h and Ωb0h2 centered at h = 0.723 ± 0.017
and Ωb0h2 = 0.02202 ± 0.00046, and flat priors over μ and
Ωk in the range 0.60 < μ < 1.0 and −1.0 < Ωk < 1.0
respectively. The lower limit for μ is established to be con-
sistent with bounds on the age of the universe of tA > 11−12
Gyrs [1].

Table 1 provides the best fit values and their correspond-
ing uncertainties at 68% CL for both geometries of the uni-
verse. The different data sets estimate consistent values on
the μ parameter and the Chi-square values (χ2

min) indicate a
good-fit of the data. The joint constraint, μ = 0.843+0.014

−0.015,
is within 2.4σ to the value chosen as initial condition by
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Table 1 Mean values for the model parameters (Ωb0, Ωk , h, μ) derived from OHD and SNIa measurements for a flat universe (left side) and
non-flat one (right side)

Data set Flat universe Non-flat universe

OHD JLA Joint OHD JLA Joint

χ2
min 14.9 690.8 706.7 14.5 682.4 699.3

Ωb0 0.042+0.002
−0.002 0.041+0.002

−0.002 0.043+0.002
−0.002 0.041+0.002

−0.002 0.041+0.002
−0.002 0.041+0.002

−0.002

Ωk – – – 0.128+0.086
−0.090 0.392+0.187

−0.369 0.183+0.073
−0.079

h 0.724+0.015
−0.015 0.724+0.018

−0.017 0.714+0.014
−0.014 0.731+0.017

−0.017 0.731+0.017
−0.017 0.731+0.017

−0.017

μ 0.865+0.018
−0.019 0.816+0.021

−0.023 0.843+0.014
−0.015 0.850+0.027

−0.034 0.781+0.045
−0.055 0.822+0.022

−0.024

a – 0.141+0.007
−0.007 0.142+0.007

−0.007 – 0.141+0.007
−0.007 0.142+0.007

−0.007

b – 3.11+0.08
−0.08 3.12+0.08

−0.08 – 3.11+0.08
−0.08 3.11+0.08

−0.08

M1
b – − 19.00+0.06

−0.06 − 19.01+0.04
−0.04 – − 19.418+0.480

−0.360 − 19.134+0.072
−0.073

δM – 0.07+0.02
−0.02 0.07+0.02

−0.02 – − 0.071+0.023
−0.023 − 0.070+0.023

−0.023

Fig. 1 1D marginalized posterior distributions and the 2D 68%, 95%,
99.7% CL for the Ωb0, h, and μ parameters in a flat universe

[1] to obtain late cosmic acceleration. On the other hand,
our constraints on the curvature term under this Chaplygin-
like cosmology are consistent, within 3σ , with the estimated
Ωk = −0.052+0.049

−0.055 from the Planck measurements of the
CMB temperature spectra [53].

Figure 1 (Fig. 5) shows the 1D marginalized posterior
distributions and the 2D 68%, 95%, 99.7% confidence lev-
els (CL) for the Ωb0, h, μ, and (Ωk) parameters for a flat
(curved) universe. In the flat universe, the correlations of μ

with Ωb0 and h are ρ(μ,Ωb0) = −0.37 and ρ(μ, h) = 0.44.
The corresponding correlations in the non-flat universe are

Fig. 2 Best fit to cosmic chronometers OHD (top panel) and recon-
struction of the deceleration parameter (bottom panel) using the con-
straints from the joint analysis for both, flat (blue color) and non-flat
(brown color) models. The uncertainty bands refers to 68% (inner band)
and 99.7% (outermost band) CL
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Fig. 3 Reconstruction of the equation of state for the dark fluid given
by Eq. (3) (top panel) and the effective one (Eq. 13) (bottom panel)
using the constraints from the joint analysis for both cases, flat (blue
color) and non-flat (brown color) models. The uncertainty bands refers
to 68% (inner band) and 99.7% (outermost band) CL

ρ(μ,Ωb0) = −0.17, ρ(μ, h) = −0.16, and ρ(μ,Ωk) =
−0.70. Following the notation in [54], the effects of μ over
Ωb0 and h are negligible when the universe is curved, but
with noticeable influence over the curvature component.

Taking into account the best fit values of the model
parameters obtained from the joint analysis, we compare
the H(z) and the q(z) reconstruction between the spatially
flat and curved universes and found that there is an agree-
ment (within 2σ ) in the region 0 < z < 2.0 (see Fig. 2).
For the flat (curved) universe, the deceleration parameter at
the present epoch is q0 = −0.67 ± 0.02 (−0.51 ± 0.07),
which is consistent with the concordance model qΛCDM

0 =
−0.54 ± 0.07, calculated from the ΛCDM mean values
obtained by Ref. [15]. We obtain a similar redshift, zt =
0.57 ± 0.04 (0.50 ± 0.06), for the deceleration-acceleration
transition in both geometries, which is consistent within 2.5σ

with zt = 0.64+0.11
−0.06 obtained by [55] from cosmic chronome-

Fig. 4 Reconstruction of the jerk parameter using the constraints from
the joint analysis for both cases, flat (blue color) and non-flat (brown
color) models. The horizontal dashed line corresponds to the ΛCDM
model. The uncertainty bands refers to 68% (inner band) and 99.7%
(outermost band) CL

ters and baryonic acoustic oscillations data for an open uni-
verse. Based on the EoS reconstruction of the dark fluid (Eq.
3), its behavior for both flat and non-flat cases at recent
times is consistent with quintessence region and also con-
firms the Universe acceleration (see Fig. 3). In addition, for
both models, the effective EoS (Eq. 13) at z � 2 is achieved
for ωe f f → 0, indicating that the dynamics of the universe is
dominated by a non-relativistic fluid, which is consistent with
our hypothesis of the Chaplygin gas-like. Moreover, the ωd f

behavior at z � 0.5 also confirms that the dark fluid behaves
like a quintessence field, which dominates the dynamics of
the universe. On the other hand, the jerk parameter, presented
in Fig. 4, shows a clear deviation, more than 3σ CL, with
respect to a perfect fluid (jerk equal to one) in a flat universe;
this reinforces the idea of a dynamical DE. However, for a
non-flat universe the jerk parameter may mimic the perfect
fluid within 3σ CL.

We estimate the universe age by using the expression (14)

and the joint analysis, obtaining tA = 13.108+0.270
−0.260 Gyrs for a

flat geometry and tA = 12.314+0.500
−0.430 Gyrs for a curved one.

The results are, as expected, in agreement with the values
reported by [53], tPlanck

A = 13.799 ± 0.021 Gyrs, assuming
a ΛCDM model.

To statistically compare both, flat and non-flat models, the
Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) are given in Table 2. We also provide
the difference with respect to the minimum value for each
data set. From the joint analysis, the minimum AIC and BIC
values are those for the non-flat model. Thus, if the universe
is filled with a Chaplygin-like fluid instead of DM and DE, a
non-flat geometry is preferred for this combination of data.
However, the model in both geometries are in good agree-
ment with the observational data used (Fig. 4).
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Table 2 Values for AIC and
BIC for each data set for the flat
and non-flat cases. The Δ refers
the difference of these values
with respect the minimum value

Data set AICΩk=0 AICΩk �=0 ΔAIC BICΩk=0 BICΩk �=0 ΔBIC

OHD 20.9 22.5 1.6 25.20 28.23 3.03

JLA 704.8 698.4 6.4 714.83 735.25 20.41

Joint 720.7 715.3 5.4 753.33 752.59 0.73

Fig. 5 1D marginalized posterior distributions and the 2D 68%, 95%,
99.7% confidence levels for the Ωb0, Ωk , h, and μ parameters for a
non-flat universe

5 Conclusions

This paper is focused on the viability of a Chaplygin gas-like
fluid in a curved space-time to resemble the current Universe
dynamics. Inspired in the scheme of a Chaplygin gas, i.e.
a unique fluid formed with the mixing of the DM and DE
components, the phenomenological model proposed by [1]
is a modified perfect fluid that behaves as dust in the early
epochs of the universe and as DE (CC) at recent times. The
strength of this model is its ability to reproduce the Uni-
verse dynamics, without the need of a DE component of
unknown nature, by adding an extra term on the perfect fluid
EoS. Although this one free parameter modified EoS is phe-
nomenological, it could comes from a scalar field dynamics.
We used the latest observational Hubble data from cosmic
chronometers and the type Ia SN JLA compilation to con-
straint the cosmological parameters under this cosmology.
We showed that in a flat universe the acceleration is vari-
able, presenting a phase change at zt = 0.57 ± 0.04. The
jerk parameter shows a deviation of at least of 3σ CL with
respect to the CC value, also implying a dynamical DE-like
behavior.

The values for the density parameter of the baryonic matter
are consistent with those expected for ΛCDM. The effective
EoS has a dust behavior at redshifts higher than ∼ 1.5, acting
as dark matter and behaving like a fluid that fulfills the rela-
tion ω < −1/3 at redshift below ∼ 0.57. It is worth to notice
that ωe f f (0) ∼ −0.8, entering the quintessence regime. We
also report an estimate of universe age of about 13.108 Gyrs
for a flat geometry.

In the context of a curved geometry of the universe, the
jerk parameter of Chaplygin gas-like fluid is consistent at 3σ

with j = 1 for CC in the region of 0 < z < 2. We observe
a consistent (within 1σ ) behavior of the dark fluid EoS (and
also of the universe) between both geometries, i.e., the dark
fluid also enters to the quintessence regime about z ∼ 0.57
and we estimate an universe age of 12.314 Gyrs. Our best
value Ωk = 0.183+0.073

−0.079 is compatible within 3σ to the one
reported by the Planck Collaboration.

We have confirmed that this Chaplygin gas-like model can
mimic the background Universe dynamics of the standard
model, e.g. its expansion rate and current cosmic accelera-
tion. In the linear regime, perturbations under this cosmol-
ogy give similar results to those of ΛCDM, thus, a com-
parable large-scale structure (LSS) is expected. Neverthe-
less, differences could arise from the non-linear regime of
perturbations, such as the integrated Sachs-Wolfe effect in
CMB, virialization of dark halos and assembly of galaxies,
etc. The exploration of these possible effects requires further
perturbation analysis and numerical simulations, which is
beyond the scope of this work. Finally, our results under-
score the importance of the Chaplygin-like gas model as
a plausible alternative to shed light onto the DE and DM
nature.
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