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1 Introduction

Evidence of a sizeable deviation in the measured muon anomalous magnetic moment from

its Standard Model (SM) expectation is likely to call for physics beyond the SM. A 3.6 σ dis-

crepancy between theoretical calculations within the SM and experimental data [1], quoting

∆aµ = aexp
µ − aSM

µ = 288(63)(48)× 10−11 . (1.1)

Another important issue is the inability to generate non-zero neutrino mass within the

SM. While non-zero neutrino mass can be induced at tree level using the Type-I [2–6],

Type-II [7–9] and Type-III [10] seesaw mechanisms, an also attractive way in this context

is to invoke loop processes [11–14] for the same. (See also refs. [15–20] for recent reviews.)

In such a case, the scale of the new physics responsible for generating neutrino mass can

be not too far from the TeV scale, thereby enhancing the observability at colliders. We

pick up two such scenarios that are particularly relevant for the present discussion. These

are the Type-II seesaw scenario that employs a scalar SU(2)L triplet [7, 21, 22] and the

Zee-Babu model [11, 12] that introduces two SU(2)L singlet scalars that carry one and two

units of electric charge, respectively. However, the Type-II seesaw model has been ruled

out due to a negative contribution to the muon anomalous magnetic moment [23]. The
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Zee-Babu model also does not fare well in this direction owing to the constraints put on it

by non-observation of various lepton flavor-violating decays [24, 25].

In this paper, we propose two models that serve as unified frameworks to address the

muon g − 2 anomaly and the current data on neutrino masses and mixings. A common

feature of two models is the simultaneous existence of doubly charged scalars in the SU(2)L
singlet and triplet. Thanks to their right-chiral and left-chiral Yukawa interactions and also

non-zero mixing between the doubly charged scalar states, the experimentally favored sign

of the anomalous muon g − 2 deviation is achieved. Furthermore, the overall magnitude

of the contribution is enhanced by the chirality flipping effect. On the other hand, the

presence of two doubly charged scalars suffer severe constraints from the non-observation

of the lepton flavor violating processes. We will show that the lepton flavor-violating decays

turn out to be naturally suppressed in these models by imposing a (softly broken) global

Z3 symmetry without spoiling the explanation of the muon g − 2 anomaly.

In addition to the SM fields, the first model features a scalar SU(2)L triplet, a doubly

charged scalar singlet and three singly charged scalar singlets. The singly charged scalars

are charged under the global Z3 while the triplet and the doubly charged singlet remain

neutral. The Weinberg operator [26] responsible for neutrino mass can be derived in this

model at the two-loop level, similar to what happens in the Zee-Babu model.1 The second

model features three SU(2)L triplet scalars that are distinguished from one another by

their Z3 charges. In addition, a Z3-neutral doubly charged SU(2)L singlet scalar is also

present. A small neutrino mass arises in this model when the scalar triplets acquire vacuum

expectation values (VEV’s) to mimic the usual Type-II seesaw model. Besides, in the case

of the first model, the same mixing also induces sizeable contributions to the neutrino mass

elements through two-loop amplitudes. Therefore, the proposed models emerge as novel

scenarios successfully connecting the observation of small but non-zero neutrino mass with

the long-standing muon g − 2 anomaly, without invoking additional fermionic degrees of

freedom. Further, we note in passing that it is possible to identify appropriate collider

signatures that can potentially distinguish the models discussed here from the usual Type-

II seesaw model.

This paper is organized as follows. In sections 2.1 and 2.2, we introduce the two

models, discussing the additional scalar content in them and the assignment of the global

symmetry charges. For the first model, we discuss the contribution of the given scenario to

the muon anomalous magnetic moment in section 3.1 and explain the current discrepancy

between experimental data and the SM expectation. Appropriate discussions on various

lepton flavor-violating decays can be found in the same section. Section 3.2 outlines the

calculation of neutrino mass, and identifies the parameter space allowed by the recent

neutrino data. The numerical results for the second model are detailed in section 4. The

results obtained are summarized in section 5. Important expressions encountered while

calculating the two-loop neutrino mass matrix are relegated to the appendix.

1Refs. [24, 25, 27, 28] are recent studies on the Zee-Babu model. Some variants of the original model

can be seen in refs. [29–32].
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Field SU(3)c × SU(2)L ×U(1)Y Z3

φ (1,2, 1/2) 1

Le, eR (1,2,−1/2) 1

Lµ, µR (1,2,−1/2) ω

Lτ , τR (1,2,−1/2) ω2

Table 1. Quantum numbers of the relevant SM fields under the SM gauge group and Z3.

Here ω = 3
√
−1.

Field SU(3)c × SU(2)L ×U(1)Y Z3

∆ (1,3, 1) 1

k++ (1,1, 2) 1

k+
e (1,1, 1) 1

k+
µ (1,1, 1) ω

k+
τ (1,1, 1) ω2

Table 2. Quantum numbers of the additional fields in Scenario A under the SM gauge group

and Z3.

2 Models

2.1 Scenario A: two-loop realization

In this model, the scalar sector of the SM is augmented by an SU(2)L scalar triplet ∆,

a doubly charged scalar singlet k++ and three singly charged scalar singlets k+
e , k

+
µ , k

+
τ .2

A Z3 symmetry is imposed, whose utility will become clear in the subsequent sections.

Tables 1 and 2 list the quantum numbers of both SM and additional fields respectively.

The most general renormalizable scalar potential is expressed as the sum of quadratic,

trilinear and quartic terms as

V = V2 + V3 + V4, (2.1)

where,

V2 = µ2
φ(φ†φ) +M2

∆Tr(∆†∆) +m2
k|k++|2 +M2

αβk
+
α k
−
β , (2.2a)

V3 = µ1 φ
T (iσ2)∆†φ+ µ2 Tr

(
∆†∆†

)
k++ + µαβ k

+
α k

+
β k
−− + H.c. (2.2b)

V4 = λ(φ†φ)2 + λ1φ
†φTr(∆†∆) + λ2[Tr(∆†∆)]2 + λ3Tr[(∆†∆)2] + λ4φ

†∆∆†φ

+λ5φ
†φ|k++|2 + λ6Tr(∆†∆)|k++|2 + λ7

(
φ̃†∆φk−− + H.c.

)
+ λ8|k++|4

+λ9φ
†φk+

α k
−
α + λ10Tr(∆†∆)k+

α k
−
α + λ11k

+
α k
−
α k

++k−−

+λ12φ
†∆†φk+

e + λ13k
+
α k
−
α k

+
β k
−
β . (2.2c)

Throughout the text, the indices α, β are used to denote the lepton flavors e, µ, τ and

repeated indices imply summation. We point out that some elements of M2
αβ and µαβ

break the Z3 symmetry softly. The off-diagonal entries of the dimension-2 terms are violent

2A recent study also with singly charged scalars in the Zee-Babu context is ref. [33].
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sources of the lepton flavor violation, while the dimension-3 terms is necessary for realizing

observed neutrino mass spectrum, mixings and CP violation. Hereafter, we take minimal

Z3 violation hypothesis, where the Z3 symmetry is violated only by the dimension-3 terms.

A small deviation from this hypothesis will be commented later on.

Following electroweak symmetry breaking (EWSB), φ and ∆ can be parameterized as

φ =

(
G+

1√
2
(vφ + φ0 + iG0)

)
, (2.3a)

∆ =

(
δ+
√

2
δ++

1√
2
(v∆ + δ0 + iδ1) − δ+

√
2

)
, (2.3b)

where vφ and v∆ are the VEV’s of the scalar doublet and triplet, respectively, with v2
φ +

2v2
∆ = (246 GeV)2. The presence of the scalar triplet VEV leads to a modified ρ parameter

at tree level, i.e., ρ =
(

1 +
2v2

∆

v2
φ

)
/
(

1 +
4v2

∆

v2
φ

)
. The current bound of ρ = 1.0004+0.0003

−0.0004 [34]

leads to v∆ < 5 GeV.

We now briefly discuss the scalar spectrum of this scenario. The scalar potential

generally allows mixing among the scalar states of the same charge. In terms of mass

eigenstates, the neutral scalars in this model are: two CP -even scalars (h,H) and one CP -

odd scalar (A). The mixing in the neutral sector is therefore identical to the Type-II seesaw

model. More details on this part can be found in refs. [35, 36] and are omitted here for

brevity. An important impact of the EWSB is the mixing between the two doubly charged

states δ++ and k++. Diagonalizing the corresponding mass matrix through a rotation by

θ leads to the mass eigenstates H++
1 and H++

2 :

δ++ = cθH
++
1 + sθH

++
2 , (2.4a)

k++ = −sθH++
1 + cθH

++
2 . (2.4b)

We also list below the expressions of the H++
1,2 masses and θ for v∆ � vφ:

(M++
1,2 )2 =

1

2

[
(A+B)±

√
(A−B)2 + 4C2

]
, (2.5a)

tan2θ =
2C

B −A , where (2.5b)

A = M2
∆ +

1

2
λ1v

2 , (2.5c)

B = M2
k +

1

2
λ5v

2 , (2.5d)

C =
1

2
λ7v

2 . (2.5e)

It follows from eq. (2.5e) that θ 6= 0 demands λ7 6= 0.

The next thing taken up is the mixing among the singly charged states. In general, the

mixing among φ+, δ+, k+
e , k

+
µ , k

+
τ is governed by a 5 × 5 matrix. We, however, shall take

the λ12 → 0 limit in this study, as a result of which the φ+–δ+ mixing decouples from the

remaining 3 × 3 part. This small mixing limit is justified by v∆ � vφ. In this limit, the
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Field SU(3)C × SU(2)L ×U(1)Y Z3

k++ (1,1, 2) 1

∆e (1,3, 1) 1

∆µ (1,3, 1) ω

∆τ (1,3, 1) ω2

Table 3. Quantum numbers of the additional scalar fields in Scenario B under the SM gauge group

and Z3.

2 × 2 mixing matrix for φ+ and δ+ becomes identical to that in the pure Type-II seesaw

model, giving rise to the Goldstone boson G+ and the singly charged physical scalar H+ in

the mass basis. Since we assume no dimension-2 soft breaking terms in the scalar potential,

the 3× 3 submatrix spanned by (k+
e , k

+
µ , k

+
τ ) is also diagonal: diag(M+

e ,M
+
µ ,M

+
τ ). Thus,

mass eigenstates are the same as in the flavor basis: H+
α ≡ k+

α .

The softly Z3-violating trilinear interaction then can be recast in terms of H++
i (i =

1, 2) using the mixing angle θ as

V Z3 breaking
3 = µαβH

+
αH

+
β (− sin θH−−1 + cos θH−−2 ) + H.c. (2.6)

We next discuss the Yukawa Lagrangian in this model. The following additional terms

are allowed under the Z3 symmetry:

LY = −yee∆ Lce (iσ2)∆Le − yeeS ecR eRk
++ − 2 yµτ∆ Lcµ iσ2∆Lτ − 2 yµτS µcR τRk

++

−
∑
α

yαA ε
αβγ Lcβ iσ2Lγk

+
α + H.c (2.7)

Fermionic statistics demands yαβ∆ = yβα∆ and yαβS = yβαS . A combinatorial factor of 2

shows up in eq. (2.7). We note that apart from the (ee) and (µτ) elements, 〈∆〉 does not

contribute to the other elements of the neutrino mass matrix. The matrices describing the

Yukawa interactions of H+
α and consistent with the Z3 symmetry are

ykeA =

0 0 0

0 0 yeA
0 −yeA 0

 , y
kµ
A =

 0 0 −yµA
0 0 0

yµA 0 0

 , ykτA =

 0 yτA 0

−yτA 0 0

0 0 0

 . (2.8)

All parameters apart from µαβ are henceforth taken to be real in this scenario.

2.2 Scenario B: type-II seesaw realization

The additional scalars introduced in this scenario are three SU(2)L triplets, ∆e,∆µ,∆τ

and one doubly charged singlet, k++. Once again, a softly broken Z3 symmetry is imposed

and the charge assignment is given in table 3. Those of the Higgs doublet and the SM

leptons are the same as in table 1. Note that the number of new multiplets in Scenario B

is smaller than that in Scenario A, which makes the model more restrictive, whereas the

number of new particles in Scenario A is smaller.

– 5 –
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The scalar potential reads:

V = V2 + V3 + V4, (2.9)

with

V2 = µ2
φ(φ†φ) +M2

∆αβTr(∆†α∆β) +M2
k |k++|2, (2.10)

V3 = µe φ
T(iσ2)∆†eφ+ µµ φ

T(iσ2)∆†µφ+ µτ φ
T(iσ2)∆†τφ

+ µ2 k
++Tr(∆†e∆

†
e) + H.c., (2.11)

V4 = λ(φ†φ)2 + λ1α(φ†φ)Tr(∆†α∆α)

+ (λ2αβγδTr(∆†α∆β)Tr(∆†γ∆δ) + H.c.)

+ (λ3αβγδTr(∆†α∆β∆†γ∆δ) + H.c.)

+ λ4αφ
†∆α∆†αφ+ λ5φ

†φ|k++|2 + λ6αTr(∆†α∆α)|k++|2

+ λ7(φ̃†∆eφk
−− + H.c.) + λ8|k++|4. (2.12)

We again adopt the minimal Z3 violation hypothesis, where the dimension-2 terms

respect the Z3 symmetry. The trilinear Z3-breaking terms with µµ, µτ 6= 0 are included

since they ensure all the triplets acquire VEV’s.3 We define v2
∆ = v2

e + v2
µ + v2

τ , where,

ve, vµ, vτ denote the VEV’s of the three triplets. Each triplet comprises

∆α =

 δ+
α√
2

δ++
α

1√
2
(vα + δ0α + iδ1α) − δ+

α√
2

 . (2.13)

With 3 singly charged states and 4 doubly charged states, this scenario is more involved

in terms of field content than the previous one. The mass eigenstates H+
α and H++

1,2,µ,τ are

admixtures of the gauge-basis states. However, in the v∆ � vφ limit, the mixings simplify

to the following
G+

H+
e

H+
µ

H+
τ

 =


φ+

δ+
e

δ+
µ

δ+
τ

 ,


k++

δ++
e

δ++
µ

δ++
τ

 =


− sin θ cos θ 0 0

cos θ sin θ 0 0

0 0 1 0

0 0 0 1



H++

1

H++
2

H++
µ

H++
τ

 . (2.14)

Similar to Scenario A, a non-zero λ7 induces mixing in the δ++
e –k++ sector. The

masses and the mixing angle θ can be obtained from eqs. (2.5a)–(2.5e) with the indices

appropriately replaced. The masses of the remaining scalars in the v∆ � vφ limit are

given by

(M+
α )2 = M2

∆α +
1

4
(λ1α + 2λ4α)v2, (2.15a)

(M++
µ )2 = M2

∆µ +
1

2
λ1µv

2, (2.15b)

(M++
τ )2 = M2

∆τ +
1

2
λ1τv

2. (2.15c)

3The Z3 can be thought of as a descendant of a bigger symmetry such as U(1)Lµ−Lτ .
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The Z3-governed Yukawa Lagrangian is expanded in the flavor basis as

LY = −yee∆ Lce (iσ2)∆eLe − yeeS ecR eRk
++ − 2 yµτ∆ Lcµ iσ2∆eLτ − 2 yµτS µcR τRk

++

−yµµ∆ Lcµ (iσ2)∆µLµ − 2 yeτ∆ Lce (iσ2)∆µLτ − yττ∆ Lcτ (iσ2)∆τLτ

−2 yeµ∆ Lce (iσ2)∆τLµ + H.c. (2.16)

The Yukawa couplings with the triplets entering eq. (2.16) are taken to be complex. These

interactions in the gauge basis for the scalars can therefore be described by the following

symmetric matrices:

yS =

yeeS 0 0

0 0 yµτS
0 yµτS 0

 , ye∆ =

yee∆ 0 0

0 0 yµτ∆

0 yµτ∆ 0

 ,

yµ∆ =

 0 0 yeτ∆
0 yµµ∆ 0

yeτ∆ 0 0

 , yτ∆ =

 0 yeµ∆ 0

yeµ∆ 0 0

0 0 yττ∆

 . (2.17)

Before closing this section, we give the neutrino mass matrix as follows:

mν =
√

2

yee∆ ve y
eµ
∆ vτ y

eτ
∆ vµ

yeµ∆ vτ y
µµ
∆ vµ y

µτ
∆ ve

yeτ∆ vµ yµτ∆ ve y
ττ
∆ vτ

 . (2.18)

We note in passing that the generation of a realistic neutrino mass matrix through the tree-

level Type-II fashion demands that each triplet has a VEV (see eq. (2.18)). This therefore

makes it compulsory to include the dimension-3 soft breaking terms.

3 Numerical results: Scenario A

The numerical analysis corresponding to Scenario A is presented in this section. It is

further split in two subsections for convenience.

3.1 Muon g − 2 and lepton flavor violation

In this section, we discuss the contribution of this model to the muon anomalous magnetic

moment and its possible implications on various lepton flavor-violating (LFV) processes.

The total muon anomalous magnetic moment, ∆aµ, is split into individual contributions

coming from the various singly charged as well as doubly charged scalars (see refs. [37, 38]

for the relevant formulae) as

∆aµ = ∆a∆+

µ + ∆ak
+

µ +
∑
i=1,2

∆a
H++
i

µ , (3.1)

– 7 –
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where

∆a∆+

µ = −
m2
µ

8π2(1 + 2v2
∆/v

2
φ)

(yµτ∆ )2

∫ 1

0
dx

x(1− x)

M2
H+ −m2

µ(1− x)
, (3.2a)

∆ak
+

µ = −
m2
µ

16π2

∑
α=e,τ

(yαA)2

∫ 1

0
dx

x(1− x)

(M+
α )2 −m2

µ(1− x)
, (3.2b)

∆a
H++
i

µ = −
m2
µ

4π2

∫ 1

0
dx x2 [(yµτiL )2 + (yµτiR )2](1− x) + 2 yµτiL y

µτ
iR (mτ/mµ)

m2
µx

2 + (m2
τ −m2

µ)x+ (M++
i )2(1− x)

−
m2
µ

2π2

∫ 1

0
dx x(1− x)

[(yµτiL )2 + (yµτiR )2]x+ 2 yµτiL y
µτ
iR (mτ/mµ)

m2
µx

2 + ((M++
i )2 −m2

µ)x+m2
τ (1− x)

, (3.2c)

with

yαβ1L = yαβ∆ cθ, (3.3a)

yαβ1R = yαβS sθ , (3.3b)

yαβ2L = yαβ∆ sθ , (3.3c)

yαβ2R = −yαβS cθ . (3.3d)

In the above expressions, yiL and yiR respectively parameterize the left- and right-chiral

Yukawa couplings of H++
i as appearing in the Yukawa Lagrangian below:

LY ⊂
∑
i

`cα(yαβiL PL + yαβiR PR)`β H
++
i + H.c. (3.4)

Analytical forms of the various integrals in eq. (3.2c) are given in the appendix.

According to eqs. (3.2a) and (3.2b), the singly charged scalar contribution is always

negative. On the other hand, an inspection of eq. (3.2c) shows that a non-zero mixing

between δ++ and k++ can render a positive contribution through the chirality flipping

effect that is proportional to O(mτ/mµ). Hence, it becomes possible to address the muon

g − 2 anomaly in this model through an appropriate choice of the relevant parameters.

Since couplings of the doubly charged scalars to dilepton states other than µτ and

ee are absent in this case, the only LFV process (see [39] for a comprehensive review)

mediated by the doubly charged scalars at tree level is τ → µ̄ee. This is in contrast to the

pure Type-II and Zee-Babu models, where the other tree-level LFV modes are also allowed.

BRτ→µ̄ee
BRτ→µνν

=
1

4G2
F

{(
|yτµS |2|yee∆ |2 + |yτµ∆ |2|yeeS |2

)
s2
θc

2
θ

(
1

(M++
1 )2

− 1

(M++
2 )2

)2

+|yτµS |2|yeeS |2
(

s2
θ

(M++
1 )2

+
c2
θ

(M++
2 )2

)2

+|yτµ∆ |2|yee∆ |2
(

c2
θ

(M++
1 )2

+
s2
θ

(M++
2 )2

)2}
, (3.5)

where GF = 1.17 × 10−5 GeV−2 refers to the Fermi coupling constant. The experimental

upper limits on the various LFV processes are summarized in table 4. If non-zero mixing
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LFV channel Experimental bound

µ→ eγ < 4.2 ×10−13 [40]

τ → eγ < 1.5 ×10−8 [41]

τ → µγ < 1.5 ×10−8 [41]

µ→ ēee < 1 ×10−12 [42]

τ → ēee < 1.4 ×10−8 [43]

τ → µ̄ee < 8.4 ×10−9 [43]

τ → µ̄eµ < 1.6 ×10−8 [43]

τ → ēµµ < 9.8 ×10−9 [43]

τ → ēµe < 1.1 ×10−8 [43]

τ → µ̄µµ < 1.2 ×10−8 [43]

Table 4. Latest upper limits on LFV branching ratios.

M2
αβ (α 6= β) among the singly charged states H+

α is allowed, non-vanishing rates of the

radiatively driven LFV processes appear, namely, µ→ eγ, τ → eγ and τ → µγ.

For the subsequent numerical study, we choose the following set of parameters:

(v∆,MH+ ,M++
i ,M+

α , y
α
A, y

ee
∆ , y

ee
S , y

µτ
∆ , yµτS , θ) as the basis of independent parameters. For

the numerical analysis, we define ∆M = M++
2 −M++

1 and make the representative choices

of ∆M = 10, 50, 100 GeV4 and θ = π
4 ,

π
10 to reduce computational time. The following

scan is made:

500 GeV < M++
1 < 5 TeV , (3.6a)

−
√

4π < yµτS , yµτ∆ , yeeS , y
ee
∆ , y

e
A, y

µ
A, y

τ
A <
√

4π . (3.6b)

We choose MH+ = M++
1 in this analysis for simplicity. The other parameters are fixed

as M+
e = 810 GeV, M+

µ = 800 GeV, M+
τ = 820 GeV, and v∆ = 10−15 GeV.5 The singly

charged scalar masses are not constrained from LFV in this model. The scalars k+
α still con-

tribute to h→ γγ. However, the h–k+
α –k−α coupling is given by a linear combination of λ9

and λ10, and, these quartic couplings do not appear in the rest of the analysis. The contri-

bution to h→ γγ amplitude from the k+
α loops is therefore rendered negligible by choosing

small λ9, λ10 without having to make k+
α too heavy. We still adhere to the aforementioned

conservative bound of ' 800 GeV keeping in mind possible direct search constraints.

The lightest neutrino has been taken massless thoughout in this study, as will be stated

in the next subsection. Therefore there are no constraints on the normal and inverted mass

hierarchies from neutrinoless double beta decay. Model points are randomly generated in

the aforementioned ranges and tested by the following constraints:

1. The muon g − 2 is within its 2 σ interval, i.e., 12× 10−10 ≤ ∆aµ ≤ 44× 10−10.

4Since the scalar triplet has a v∆ 6= 0 here, the electroweak T paramater shall receive contributions

from the counterterm generated from shifting the triplet VEV [44], over and above the vacuum polarization

graphs for W+ and Z. Any possible large contribution to the T parameter due to a choice of ∆M can be

absorbed into that counterterm.
5This value of the triplet VEV contributes to the neutrino mass elements negligibly. The principal

contribution is generated radiatively as will be discussed in the next section.
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Figure 1. The allowed parameter space maintaining ∆aµ within its 2σ range in the M++
1 − yµτ∆

plane for θ = π
4 (left) and π

10 (right). The color coding is explained in the legends. The M++
1 values

left to the vertical line are disallowed by like-sign dilepton searches at the LHC [45].

2. The LFV processes remain within their respective bounds.

3. The quartic coupling λ7 = 2 sθ cθ
[
(M++

2 )2 − (M++
1 )2

]
/v2 remains perturbative, i.e.,

|λ7| ≤ 4π

Points clearing the constraints are then kept and used in the following analysis.

Figure 1 shows the allowed parameter space in the M++
1 –yµτ∆ plane for the choices of

∆M = 10, 50, 100 GeV in green, red and cyan, respectively and for θ = π
4 (left plot)

and π
10 (right plot). The contribution to ∆aµ from H+ is roughly given by

−(yµτ∆ )2

48π2

m2
µ

M2
H+

,

whereas the chirality flipping term from H++ in this model has

∆aµ '
yµτ∆ yµτS
16π2

mµmτ

(M++
1 )3

∆Msθcθ log
m2
τ

(M++
1 )2

. (3.7)

In comparison, the singly charged contribution is suppressed by roughly a factor of

mτ∆M/m2
µ for MH+ 'M++

1 and yµτS ' y
µτ
∆ , thereby rendering the doubly charged scalars

the dominant contributors. Two crucial parameters in this case are therefore θ and ∆M . A

higher ∆M implies a larger positive contribution to ∆aµ. For a fixed value of ∆aµ, a higher

value of ∆M also implies a higher maximally allowed value for M++
1 . For example, the left

plot in figure 1 shows M++
1 . 3.7 TeV in case of ∆M = 50 GeV and M++

1 . 1.7 TeV in case

of ∆M = 10 GeV. The scalar coupling λ7 hits its perturbative limit for ∆M = 100 GeV and

θ = π
4 , thereby disfavoring M++

1 & 3.75 TeV for this particular choice. This explains the

sharp vertical boundary in the left plot. In addition, θ = π
4 maximizes ∆aµ when the other

parameters are held fixed. This leads to the expectation that the allowed range of M++
1

will be the most relaxed. This is again confirmed in the plots, where for ∆M = 50 GeV,

M++
1 . 3.7 TeV for θ = π

4 while M++
1 . 2.9 TeV for θ = π

10 .
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Figure 2. The allowed parameter space maintaining ∆aµ within its 2σ range in the yµτ∆ − yµτS
plane for θ = π

4 (left) and π
10 (right). The color coding is explained in the legends.

Figure 3. The allowed parameter space maintaining ∆aµ within its 2σ range in the yee∆ −yeeS plane

for θ = π
4 (left) and π

10 (right). The color coding is explained in the legends.

The same parameter points are plotted in the yµτ∆ –yµτS plane in figure 2. It is seen

that points are distributed along the entire ranges of both Yukawa couplings whenever

∆M = 100 GeV. The same allowed ranges for both couplings can be traced back to the

invariance of the chirality flip under yµτ∆ ↔ yµτS . For lower ∆M values, low values of the

Yukawa couplings tend to be disfavored, albeit the reduction in the parameter space is not

appreciable. Hence, no strong constraint is imposed by ∆aµ in this parameter space.

We have taken BRτ→µνν ' 1/6 while determining BRτ→µ̄ee using eq. (3.5). The

prediction of the τ → µ̄ee rate is correlated with that of ∆aµ, much due to their dependence

on a common set of model parameters, as is evident from eq. (3.2c) and eq. (3.5). Firstly,
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Figure 4. The allowed parameter space maintaining ∆aµ within its 2σ range in the yee∆ −yeeS plane

for θ = π
4 (left) and π

10 (right). The color coding is explained in the legends. The M++
1 values left

of the vertical line are disallowed by like-sign dilepton searches at the LHC.

Figure 5. The allowed parameter space maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within

the quoted limit in the M++
1 − Re(yµτ∆ ) plane for θ = π

4 (left) and π
10 (right). A normal neutrino

mass hierarchy is assumed. The color coding is explained in the legends. The region left to the

black line is disallowed by the dilepton searches at the LHC.
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k++

k+α k+β

νL νCL

�C �
× ×

(a)

×
k++

δ++

k+α k+β

�CL �L

νL νCL

(b)

Figure 6. Two-loop graphs responsible for neutrino mass generation.

the allowed range of |yeeS | is similar to that of |yee∆ | (see figure 3). As illustrated in this

section, the mass splitting ∆M becomes crucial in determining the maximum of M++
1 ,

from the consideration of ∆aµ. And the allowed ranges of yµτ∆ and yµτS obviously depend

on the overall mass scale of doubly charged scalars. That is, a larger allowed band for

M++
1 loosens the allowed ranges for yµτ∆ and yµτS . This is corroborated by an inspection of

figures 3 and 4. In the case of θ = π
4 , |yee∆ | < 10−2 is obtained for ∆M = 10 GeV while the

corresponding bound settles at ' 0.05 for ∆M = 100 GeV. The bound for ∆M = 50 GeV,

as expected, is somewhere in between. The qualitative behavior of the parameter space for

other values of θ and ∆M can be readily understood from this discussion.

We add here that the results of the numerical scans presented in this section are

not affected by the details in the neutrino sector. This is so because a neutrino mass

matrix complying with the latest data can always be reconstructed in this model by tuning

the trilinear parameters accordingly, as we shall see in the next subsection. The same

parameters do not enter the calculations of ∆aµ and the LFV rates.

3.2 Neutrino mass matrix

We discuss details of neutrino mass generation in this section. Similar to what happens in

the Zee-Babu model, non-zero mass for the neutrinos arises at the two-loop level in this

framework. Representative Feynman graphs are shown in figure 6.

We point out here that the amplitude in figure 6(a) is similar to the usual Zee-Babu

amplitude as far as its chirality structure is concerned. In contrast, the amplitude in

figure 6(b) is induced by the δ++–k++ mixing in one of the scalar lines. A different

chirality structure renders it much more enhanced compared to figure 6(a). Explicitly, the

neutrino mass matrix elements in this model are given by:

mαβ
ν =

√
2yαβ∆ v∆

−16
∑

α′β′α′′β′′

µα′′β′′y
α′′
A εαα

′α′′yβ
′′

A εββ
′β′′
{
yα
′β′

S

[
s2
θI
α′′β′′α′β′

k1 + c2
θI
α′′β′′α′β′

k2

]
+yα

′β′

∆ sθcθ

[
− Iα′′β′′α′β′∆1 + Iα

′′β′′α′β′

∆2

]}
, (3.8)

where Iα
′′β′′α′β′

Xi ≡ IX(M+
α′′ ,M

+
β′′ ,M

++
i ,mα′ ,mβ′).

The 2-loop integrals Ik(M
+
α ,M

+
β ,M

++
i ,mµ,mτ ) and I∆(M+

α ,M
+
β ,M

++
i ,mµ,mτ ) have

been defined and evaluated in the appendix.
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The UPMNS matrix diagonalizes the neutrino mass matrix mν , i.e.,

mν = U∗PMNS m
diag
ν UTPMNS , (3.9a)

with UPMNS = VPMNS × diag(1, eiα21/2, , eiα31/2) and (3.9b)

VPMNS =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 ,

(3.9c)

where sij = sin θij , cij = cos θij , δCP is the Dirac phase, and α21 and α31 are the Majorana

phases.

Before proceeding further, a comment on the relative magnitudes of Ik and I∆ is in

order. Due to different chirality structures, Ik/I∆ ∼ O(m2
`/M

2
S), where m` and MS denote

a lepton mass and a scalar mass, respectively. Any contribution from Ik can hence be

neglected for this model. One may refer to ref. [46] and some references therein to gain

additional insight in the two-loop functions.

We have fitted the neutrino oscillation data using our model in the following approach.

An mαβ
ν has six complex entries that are derivable from the neutrino oscillation parameters

(see eq. (3.9a)). There are 6 complex µαβ in this model. Each µαβ can therefore be solved

for from eq. (3.8). We recall that all the Yukawa couplings are taken to be real and

therefore µαβ are necessarily complex in order to account for the phases coming from

δCP , α21 and α31.

One can make the following order-of-magnitude estimate for µαβ . First, let’s assume

v∆ = 10−15 GeV so that there is no noticeable contribution from 〈∆〉 to any of the neutrino

mass elements. Then for M+
α ' 800 GeV, M++

i ' 1 TeV, the I∆ integral is of O(10−4).

Considering a typical mαβ
ν having an absolute value around O(10−3) eV and assuming the

Yukawa couplings of O(1), the µαβ value is about O(10−8) GeV. As expected, this is

several orders of magnitude smaller than what it would have been in case where only the

Zee-Babu-like amplitude (figure 6(a)) is present. Noting that the new 2-loop amplitude as

shown in figure 6(b) survives only in the θ 6= 0 limit, we deem this observation a fallout of

the ∆–k++ mixing. Therefore, this mixing plays a pivotal role in neutrino mass generation,

much like it plays in explaining the muon g − 2 anomaly.

The full allowed ranges of µαβ can be revealed through a parameter scan. The singly

charged scalars are assigned with masses ' 800 GeV. Besides, M++
1 and the Yukawa

couplings are varied in the same ranges as in the previous section. In addition, the neutrino

oscillation parameters are fixed to their central values [34] as

sin2θ12 = 0.307 , sin2θ23 = 0.510 , sin2θ13 = 0.021 ,

∆m2
21 = 7.45× 10−5 GeV2 , ∆m2

32 = 2.53× 10−3 GeV2 ,

δCP = 1.41π , α21 = α31 = 0 . (3.10)

The mass of the lightest neutrino and Majorana phases are assumed to vanish in

the present analysis. In addition to imposing the constraints of ∆aµ, LFV bounds and
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|λ7| < 4π, we also perform the a perturbativity check of the trilinear parameters, i.e.,

|µαβ | < 4π min(M++
i ,M+

α ). Figures 7 and 8 depict the real and imaginary parts of

µαβ that are required to explain the neutrino data for normal as well as inverted mass

orderings, respectively. Since the Yukawa couplings for this scenario are taken real, there

are no nonzero electric dipole moment (EDM) amplitudes at one loop. They therefore arise

at higher loop levels and are naturally suppressed. In order to understand the linear shape

of these plots, consider that µµτ ∝ mee
ν , with the proportionality factor being real (since

the Yukawa couplings are real). One then can write

Re(µµτ )

Im(µµτ )
=

Re(mee
ν )

Im(mee
ν )

(3.11)

Now, the right hand side of eq. (3.11) is fixed and this in turn fixes the slope of the parameter

points in the |Re(µµτ )|–|Im(µµτ )| plane. This pattern is also seen in case of trilinear

parameters other than µee. And this difference comes from the fact that the expression for

mµτ
ν constrains contributions from both µee and µµτ . The linear shape obviously will get

smeared once a variation of the neutrino oscillation parameters is invoked.

We comment here that the above analyses can be repeated for a larger value of v∆. In

such a case, the contribution of the triplet to the (ee) and (µτ) elements can be appreciable

and, in fact, much larger than the mass scale of the light neutrinos in principle. If so, |µµτ |
and |µee| also have to be suitably large so as to make way for a cancellation between the

tree-level and two-loop terms. Therefore, no strong constraint on the triplet VEV emerges

in this scenario from the consideration of neutrino mass.

4 Numerical results: Scenario B

In this section, we demonstrate the viability of Scenario B in connection to the muon g− 2

anomaly, neutrino mass and LFV processes. As we will see below, the predictions of ∆aµ
and LFV are expected to be sharply correlated with the neutrino masses and mixings for

the present scenario. Therefore, we do not divide our discussions into different subsections,

as was the approach taken in the case of Scenario A, owing to a different neutrino mass

mechanism in that case. The contributions to muon g − 2 coming from the singly and

doubly charged scalars add up as follows:

∆aµ = ∆a∆+

µ + ∆a∆++

µ +
∑
i=1,2

∆a
H++
i

µ , (4.1)

where

∆a∆+

µ = −
m2
µ

8π2
|yµτ∆ |

2
∫ 1

0
dx

x(1− x)

(M+
e )2 −m2

µ(1− x)

−
m2
µ

8π2
|yµµ∆ |

2
∫ 1

0
dx

x(1− x)

(M+
µ )2 −m2

µ(1− x)

−
m2
µ

8π2
|yeµ∆ |

2
∫ 1

0
dx

x(1− x)

(M+
τ )2 −m2

µ(1− x)
, (4.2a)
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Figure 7. Allowed values of µαβ in the case of normal hierarchy (NH), plotted in the plane of real

vs imaginary axes. The color coding can be read from the legends.
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Figure 8. Allowed values of µαβ in the case of inverted hierarchy (IH), plotted in the plane of real

vs imaginary axes. The color coding can be read from the legends.
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∆a
H++
i

µ = −
m2
µ

4π2

∫ 1

0
dx

(|yµτiL |2 + |yµτiR |2)(1− x) + 2 Re[yµτiL y
µτ
iR ](mτ/mµ)

m2
µx

2 + (m2
τ −m2

µ)x+ (M++
i )2(1− x)

x2

−
m2
µ

2π2

∫ 1

0
dx

(|yµτiL |2 + |yµτiR |2)x+ 2 Re[yµτiL y
µτ
iR ](mτ/mµ)

m2
µx

2 + ((M++
i )2 −m2

µ)x+m2
τ (1− x)

x(1− x), (4.2b)

∆a∆++

µ = −
m2
µ|yµµ∆ |2
4π2

∫ 1

0
dx

x2(1− x)

m2
µx

2 + (m2
τ −m2

µ)x+ (M++
µ )2(1− x)

−
m2
µ|yµµ∆ |2
2π2

∫ 1

0
dx

x2(1− x)

m2
µx

2 + ((M++
µ )2 −m2

µ)x+m2
τ (1− x)

(4.2c)

−
m2
µ|yeµ∆ |2
4π2

∫ 1

0
dx

x2(1− x)

m2
µx

2 + (m2
τ −m2

µ)x+ (M++
τ )2(1− x)

−
m2
µ|yeµ∆ |2
2π2

∫ 1

0
dx

x2(1− x)

m2
µx

2 + ((M++
τ )2 −m2

µ)x+m2
τ (1− x)

. (4.2d)

The absence of a chirality-flipping term in the contributions from H++
µ,τ is expected

and, therefore, one observes ∆a∆++

µ < 0.

LFV decays of τ → µ̄ee and τ → ēµµ are allowed by the underlying Z3 symmetry.

Of these, the branching fraction formula for the former process is the same as eq. (3.5) in

Scenario A. The branching fraction for the latter is given by

BRτ→ēµµ =
|yeτ∆ |2|y

µµ
∆ |2

4G2
F (M++

τ )4
. (4.3a)

The independent parameters here are M+
α ,M

++
i , vα, y

µτ
S , yeeS and θ. The muon g − 2

is most sensitive to M++
i , yµτ∆ and yµτS . Among these, yee∆ and yµτ∆ can be fixed by the

neutrino mass matrix elements as yee∆ = meeν√
2ve

and yµτ∆ = mµτν√
2ve

. The following model

parameter variation is made:

500 GeV < M++
1 < 5 TeV , (4.4a)

|yµτS |, |yeeS | <
√

4π , (4.4b)

10−14 GeV < ve < 10−4 GeV . (4.4c)

In an approach similar to Scenario A, the representative values ∆M = 50 GeV,

100 GeV, M+
1 = M++

1 and θ = π
4 ,

π
10 are assigned. The remaining model parameters

contribute only at subleading order to ∆aµ, leading us to fix M+
µ = 1 TeV, M+

τ = 1.2 TeV,

and M++
µ = M++

τ = 1.1 TeV. The neutrino oscillation parameters are fixed to their central

values as shown in eq. (3.10).

With eq. (4.3a), BRτ→ēµµ < 10−8 is translated to

vµ &
v

M++
τ

√
|meτ

ν |
1 eV

|mµµ
ν |

1 eV
× 10−7 GeV . (4.5)

For typical values of M++
τ ' 1 TeV and |meτ

ν |, |meτ
ν | ' 0.1 eV, we get vµ & 2.5×10−9 GeV.

We have therefore chosen vµ = vτ = 10−8 GeV in this analysis to ensure a suppressed rate
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Figure 9. The allowed parameter space maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within

the quoted limit in the yµτS − Re(yµτ∆ ) plane for θ = π
4 (left) and π

10 (right). A normal neutrino

mass hierarchy is assumed. The color coding is explained in the legends.

for τ → ēµµ. Also, once all the triplet VEV’s are fixed, all yαβ∆ can be determined from

the neutrino mass matrix. Note that this choice for ve and vτ renders the contributions of

H++
µ and H++

τ to ∆aµ negligible. In the following, we plot the parameter points favoring a

∆aµ in the 2σ interval, a perturbative λ7 and sufficiently small decay rate in the τ → µ̄ee

channel in various planes of the parameter space.

The complex phases in yαβ∆ induce nonzero EDMs for the leptons at one loop. The

experimental upper bounds read [47–49]

|de| <1.1× 10−29 e-cm, (4.6)

|dµ| <1.9× 10−19 e-cm, (4.7)

|dτ | <(−0.22− 0.45)× 10−16 e-cm. (4.8)

We therefore also enumerate the EDMs while analyzing this part.

It is important to highlight how the present scenario numerically differs from Scenario

A. First, the allowed parameter space in the current scenario shows similar trends as in

the case of Scenario A (see figure 1), much due to a common mechanism to explain ∆aµ.

However, a main difference lies in the fact that yµτ∆ is now proportional to mµτ
ν . This

correlation gives the restriction |Re(yµτ∆ )| < 0.6 for ∆M = 100 GeV. On the other hand,

the corresponding bound is more relaxed in case of Scenario A, as seen by a comparison

between figure 5 and figure 1. In a way, figure 5 can be seen as a constrained version of

figure 1. Given that the chirality flip contribution is proportional to ∼ ∆Msθcθy
µτ
∆ yµτS , a

lower |yµτ∆ | in Scenario B calls for a higher ∆M and/or a lower M++
1 in order to maintain

the muon enhancement at the same magnitude.

In figure 9 together with figure 10, we show the allowed parameter space in the yµτ∆ –yµτS
plane. These plots characterize the contributions to muon g − 2, and should be compared
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Figure 10. Scatter points maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within the quoted

limit plotted in the Re(yµτ∆ ) − Im(yµτ∆ ) plane for θ = π
4 (left) and π

10 (right). A normal neutrino

mass hierarchy is assumed. The color coding is explained in the legends.

Figure 11. Scatter points maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within the quoted

limit plotted in the yeeS − Re(yee∆ ) plane for θ = π
4 (left) and π

10 (right). A normal neutrino mass

hierarchy is assumed. The color coding is explained in the legends.

with figure 2 in Scenario A. Because of the proportionality relation mµτ
ν ∝ yµτ∆ , the pa-

rameter yµτ∆ is constrained more severely in Scenario B for a given ve. In order to fit the

neutrino oscillation data, the real part and the imaginary part of yµτ∆ are strongly corre-

lated, as shown in figure 10. This correlation is somewhat similar to the relation between

µαβ and mαβ
ν in Scenario A (see also figures 7 and 8).

The couplings yµτ∆ and yee∆ that enter the expression for the τ → µ̄ee branching fraction

are dictated by the size of the (ee) and (µτ) neutrino mass matrix elements, respectively.
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Figure 12. Points maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within the quoted limit

plotted in the Re(yee∆ ) − Im(yee∆ ) plane for θ = π
4 (left) and π

10 (right). A normal neutrino mass

hierarchy is assumed. The color coding is explained in the legends.

Therefore, the choice of the neutrino mass hierarchy becomes crucial in the analysis. In

the case of NH, |mee
ν | ∼ O(10−3) eV throughout the entire space allowed by the oscillation

data. However, the same is O(10−2) eV for the IH case, causing the τ → µ̄ee branching

ratio to overshoot the allowed limit by a factor of ∼ O(102). Consequently, no parameter

point survives in the case of IH when the muon g − 2 and LFV constraints are considered

simultaneously.

We read from figure 11 that the bound on |yee∆ | is about 0.05 for θ = π
4 and settles to

about 0.033 for θ = π
10 . These numbers are close to the corresponding numbers in Scenario

A. However, yeeS is more constrained in the present case. This is attributed to the fact that

|yµτ∆ | is more tightly constrained in Scenario B. BRτ→µ̄ee therefore allows the bound on yee∆
to be loosened accordingly. For completeness, we also display the imaginary part of yee∆ in

figure 12.

In figure 13, we show the allowed parameter space in the yee∆ –M++
1 plane. Here, we

take θ = π
4 and ∆M = 50 GeV, and find that ∆aµ in its 2σ range disfavors M++

1 & 1.4 TeV.

The corresponding disfavored range stands at M++
1 & 3.7 TeV in Scenario A. In the same

logic, ∆M = 10 GeV is disfavored in Scenario B as it does not provide the required ∆aµ
enhancement. A reduction in the parameter space after switching from the maximal mixing

(θ = π
4 ) to another angle (θ = π

10 here) is expected and seen in all the plots.

The triplet VEV ve turns out to be bounded from both above and below in Scenario

B, as seen in figure 14. This is because the maximally (minimally) allowed values of yµτ∆

and yee∆ passing the constraints come from the minimum (maximum) of ve for given mµτ
ν

and mee
ν . Again, this is in contrast with Scenario A where there is no such bound.

The majority of the allowed parameter points collected in this model are found to be

compatible with the EDM constraints. This is shown by distributing the points in the

de-dµ and de-dτ planes in figure 15. A small fraction yields an elevated electron EDM,
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Figure 13. Scatter points maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within the quoted

limit plotted in the M++
1 −Re(yee∆ ) plane for θ = π

4 (left) and π
10 (right). A normal neutrino mass

hierarchy is assumed. The color coding is explained in the legends. The region left to the black line

is disallowed by dilepton searches at the LHC.

Figure 14. Scatter points maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within the quoted

limit in the ve − Re(yµτ∆ ) plane for θ = π
4 (left) and π

10 (right). A normal neutrino mass hierarchy

is assumed. The color coding is explained in the legends.
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Figure 15. Scatter points maintaining ∆aµ within its 2σ range and BRτ→µ̄ee within the quoted

limit plotted in the de − dµ (left) and de − dτ (right) planes. A normal neutrino mass hierarchy is

assumed. The color coding is explained in the legends. The region to the right of the vertical black

line is disallowed by the electron EDM upper limit.

implying that the EDM poses a stronger limit on yeeS than LFV does. EDMs for the muon

and tau are several orders of magnitude smaller than the current limits. This is because,

for yµτS , Im(yµτ∆ ) ' 1 and

dµ(τ) '
em(τ)µ

8π2

∆M

(M++
1 )2

log

(
(M++

1 )2

m2
(τ)µ

)
. (4.9)

Moreover, the choice of θ = π
4 ,m

++
1 ≥ 500 GeV, and ∆M ' 100 GeV results in

dµ ∼ 10−20 e-cm, dτ ∼ 10−21 e-cm. Upon choosing the central values for the oscilla-

tion parameters, we obtain Im(yµτ∆ ) ∼ 10−5 for the allowed parameter region. The muon

and tau EDMs get similar suppressions.

As a closing remark, Scenario B is more constrained than Scenario A, in spite of

having a larger number of scalar degrees of freedom. This is because of the Type-II-like

y∆ ∼ mν
v∆

relation in the scenario. Therefore, the sizes of the (ee) and (µτ) elements in

the neutrino mass matrix are crucial in shaping up the allowed parameter space. Going

from Scenario A to Scenario B, the IH becomes disallowed. And this is found to hold true

even if the neutrino oscillation parameters are varied within their allowed ranges. However,

the parameter regions corresponding to NH open up a bit further in that case. Scenario

A enjoys more freedom precisely due to the presence of Z3-breaking trilinear parameters.

An appropriate choice of these parameters can reproduce both NH as well as IH without

conflict with the muon g − 2 anomaly and LFV decay bounds.

5 Summary and conclusions

The main theme of the present work is an explanation of the muon g − 2 anomaly by

arranging for a mixing between the doubly charged scalar belonging to an SU(2)L triplet
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and a doubly charged SU(2)L scalar singlet. The doubly charged mass eigenstates then

couple to both chiralities of leptons. In such a case, the chirality flip in the muon g − 2

loops can induce the requisite positive contribution so as to accommodate the anomaly. We

have proposed two models (Scenario A and Scenario B) to investigate this effect. We have

also sought to address non-zero neutrino mass and to satisfy the LFV decay constraints at

the same time.

In Scenario A, the SM scalar sector is augmented by a complex scalar triplet ∆, a

doubly charged scalar singlet k++, and three singly charged scalar singlets k+
e , k

+
µ , k

+
τ .

A softly broken Z3 symmetry is imposed under which k+
e , k

+
µ , k

+
τ have charges 1, ω, ω2,

respectively, while ∆, k++ have charge 1. However, soft Z3-breaking quadratic and trilinear

terms are allowed, thereby causing the singly charged scalars to mix. Neutrino mass arises

at the two-loop level and, therefore, this framework is a generalization of the well-known

Zee-Babu model. The main findings in this scenario are the following:

• Owing to the ∆–k++ mixing, the dipole term corresponding to muon g− 2 receives a

boosted contribution. More precisely, this is due to the chirality flip and a logarithmic

term in the loop amplitudes. It therefore becomes possible to address the muon g−2

anomaly in this framework.

• The singlet-triplet scalar mixing plays a pivotal role also in the case of neutrino

mass. A non-zero mixing induces a new two-loop amplitude that enjoys a chirality

enhancement over the usual Zee-Babu-like diagram. In this paper, we have calculated

the two-loop integrals exactly, including one which to our knowledge has not been

done before. We have shown that by a suitable choice of the soft Z3 breaking trilinear

parameters, it is possible to satisfy the present neutrino oscillation data. We have

demonstrated it through benchmark points that agree with normal and inverted mass

hierarchies.

• In the absence of Z3-breaking quadratic terms, the only non-trivial LFV process is

τ → µ̄ee. We have shown that the rate of this process can be maintained within the

allowed limit in the parameter region that accounts for the muon g − 2 anomaly.

• The triplet VEV is allowed to take a wide range of values.

In Scenario B, three scalar triplets ∆e,∆µ,∆τ having Z3 charges 1, ω, ω2 respectively

and one doubly charged scalar singlet k++, each having Z3 charge 1, are introduced. A

violation of Z3 through soft terms is necessary here as neutrino mass is generated at the tree

level when the triplets acquire VEV’s. Once again, mixing between between the doubly

charged state of ∆e and k++ occurs after EWSB. Some salient features of the allowed

parameter region in this case are as follows:

• In this case, the ∆e–k
++ mixing also paves the way for a chirality flipping contribution

in the muon g − 2 loops. The requisite enhancement in muon g − 2 is therefore

generated in a manner similar to the previous scenario.
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• In the case of a normal neutrino mass hierarchy, the parameter space favoring an

enhanced muon g − 2 also complies with the bounds on the branching fractions of

τ → µ̄ee and τ → ēµµ, the only non-vanishing LFV modes in this scenario.

• The present scenario disfavors an inverted neutrino mass hierarchy. This is attributed

to the fact that the mee
ν value associated with the IH is typically larger than the

corresponding NH value by at least an order of magnitude. As a result, the rate of

τ → µ̄ee is often predicted above the permitted limit.

• Unlike in Scenario A, the triplet VEV gets bounded from both ends in the process

of reconciling the muon g − 2 anomaly with LFV constraints.

The introduction of any dimension-2 Z3-breaking terms in such scenarios will lead to

quadratic mixing between the scalars and, therefore, turn on the loop-induced lα → lβγ

LFV processes. For both Scenario A and Scenario B, singly charged and doubly charged

scalars will be running in the loops. However, the Z3-violating Yukawa interactions so

induced will obviously be proportional to the magnitude of the quadratic mixing. Hence,

such LFV rates can be easily controlled by keeping the magnitude of the Z3-breaking terms

sufficiently small.

Finally, a remark on possible collider signatures of these models is in order. The

strengths of the µτ Yukawa couplings of the doubly charged scalars in both scenarios are

found to be much larger than the corresponding ee strength. In such a case, pp→ H++
1 H−−2

followed by H++
1,2 → µ+τ+ can give rise to a pair of like-sign dilepton µτ with an invariant

mass peaking around M++
1 and M++

2 , respectively. For a sizeable mass gap, these invariant

mass peaks would share no overlap. A resolution of these two peaks can enable one to

distinguish the proposed scenarios from the pure Type-II model.
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A Useful analytic formulas

This section contains various analytical expressions related to ∆aµ, EDMs and neu-

trino mass.

A.1 Muon g − 2 integrals

The H++
i contributions to ∆aµ contain the following integrals with MS denoting M++

1,2 :∫ 1

0
dx

x2 − x3

m2
µx

2 + (m2
τ −m2

µ)x+M2
S(1− x)

=

[
2M6

S + 3M4
Sm

2
τ − 6M2

Sm
4
τ +m6

τ − 6M4
Sm

2
τ log

m2
τ

M2
S

]
/
[
6(M2

S −m2
τ )2
]
, (A.1)
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∫ 1

0
dx

x2

m2
µx

2 + (m2
τ −m2

µ)x+M2
S(1− x)

=

[(
− 3M4

S + 4M2
Sm

2
τ −m4

τ + 2M4
S log

m2
τ

M2
S

)]
/
[
2(M2

S −m2
τ )
]
, (A.2)∫ 1

0
dx

x2(x− 1)

m2
µx

2 + (M2
S −m2

µ)x+m2
τ (1− x)

= −
[
M6
S − 6M4

Sm
2
τ + 7M2

Sm
4
τ − 2m6

τ + 6M4
Sm

2
τ log

m2
τ

M2
S

]
/
[
6(M2

S −m2
τ )2
]
, (A.3)∫ 1

0
dx

x(x− 1)

m2
µx

2 + (M2
S −m2

µ)x+m2
τ (1− x)

= −
[(
M4
S − 2M2

Sm
2
τ log

m2
τ

M2
S

)]
/
[
2(M2

S −m2
τ )
]
. (A.4)

A.2 Leptonic electric dipole moment

The EDMs of the leptons in Scenario B take forms as under

de =− 2eme sin θ cos θyeeS Im(yee∆ )

(4π)2

×
{−2 log

(
(M++

1 )2/m2
e

)
+ 1

(M++
1 )2

+
2 log

(
(M++

2 )2/m2
e

)
− 1

(M++
2 )2

}
(A.5)

dµ =− 2emτ sin θ cos θyµτS Im(yµτ∆ )

(4π)2

×
{−2 log

(
(M++

1 )2/m2
τ

)
+ 1

(M++
1 )2

+
2 log

(
(M++

2 )2/m2
τ

)
− 1

(M++
2 )2

}
(A.6)

dτ =− 2emµ sin θ cos θyµτS Im(yµτ∆ )

(4π)2

×
{−2 log

(
(M++

1 )2/m2
µ

)
+ 1

(M++
1 )2

+
2 log

(
(M++

2 )2/m2
µ

)
− 1

(M++
2 )2

}
(A.7)

A.3 Evaluation of Ik(m1,m2,m,mc,md)

We use the notation in ref. [46] when calculating the two-loop integrals connected to neu-

trino mass generation:

(m1|m2|m) =

∫
ddpEd

dqE
1

(p2
E +m2

1)(q2
E +m2

2)((pE + qE)2 +m2)
, (A.8a)

(2m1|m2|m) =

∫
ddpEd

dqE
1

(p2
E +m2

1)2(q2
E +m2

2)((pE + qE)2 +m2)
(A.8b)

= −π4

[
− 2

ε2
+

1

ε
(1− 2γE − 2log(πm2

1))

]
−π4

[
− 1

2
− π2

12
− γ2

E + (1− 2γE)log(πm2
1)− log2(πm2

1)− f(m1,m2,m)

]
+O(ε) , (A.8c)
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where

f(m1,m2,m3) =

∫ 1

0
dx

(
Li2(1− µ2)− µ2logµ2

1− µ2

)
, (A.9a)

and µ2 =
m2

2x+m2(1− x)

x(1− x)m2
1

(A.9b)

The contribution of k++ to neutrino mass is given by

Ik(m1,m2,m,mc,md)

=

∫
ddpE
(2π)d

ddqE
(2π)d

mcmd

(p2
E +m2

1)(p2
E +m2

c)(q
2
E +m2

2)(q2
E +m2

d)((pE + qE)2 +m2)

=
1

(2π)8

mcmd

(m2
1 −m2

c)(m
2
2 −m2

d)

×
[
(m1|m2|m)− (mc|m2|m)− (m1|md|m) + (mc|md|m)

]
(A.10)

In d = 4 dimensions, the following holds

(m1|m2|m) = −
[
m2

1(2m1|m2|m) +m2
2(2m2|m1|m) +m2(2m|m1|m2)

]
(A.11)

Therefore,

Ik(m1,m2,m,mc,md) =
1

(2π)8

1

(3− d)

mcmd

(m2
1 −m2

c)(m
2
2 −m2

d)

×
[
m2

1(2m1|m2|m) +m2
2(2m2|m1|m) +m2(2m|m1|m2)

−m2
c(2mc|m2|m)−m2

2(2m2|mc|m)−m2(2m|mc|m2)

−m2
1(2m1|md|m)−m2

d(2md|m1|m)−m2(2m|m1|md)

+m2
c(2mc|md|m) +m2

d(2md|mc|m)

+m2(2m|mc|md)
]

(A.12a)

=
1

(4π)4

−mcmd

(m2
1 −m2

c)(m
2
2 −m2

d)

×
[
m2

1f(m1,m2,m) +m2
2f(m2,m1,m) +m2f(m,m1,m2)

−m2
cf(mc,m2,m)−m2

2f(m2,mc,m)−m2f(m,mc,m2)

−m2
1f(m1,md,m)−m2

df(md,m1,m)−m2f(m,m1,md)

+m2
cf(mc,md,m) +m2

df(md,mc,m)

+m2f(m,mc,md)
]

(A.12b)

Therefore, Ik(m1,m2,m,mc,md) is UV finite.

A.4 Evaluation of I∆(m1,m2,m,mc,md)

The contribution coming from δ++ involves the following integral:

I∆(m1,m2,m,mc,md)

= −
∫

ddpE
(2π)d

ddqE
(2π)d

pE .qE
(p2
E +m2

1)(p2
E +m2

c)(q
2
E +m2

2)(q2
E +m2

d)((pE + qE)2 +m2)

(A.13)
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We define

D1 = p2
E +m2

1 (A.14a)

D2 = q2
E +m2

2 (A.14b)

Dc = p2
E +m2

c (A.14c)

Dd = q2
E +m2

d (A.14d)

D = (pE + qE)2 +m2 (A.14e)

and

I∆(m1,m2,m,mc,md) = −1

2

∫
ddpE
(2π)d

ddqE
(2π)d

[
(D −m2 −D1 +m2

1 −D2 +m2
2)

D1DcD2DdD

]
(A.15a)

= −1

2

∫
ddpE
(2π)d

ddqE
(2π)d

[
1

D1DcD2Dd
− 1

DcD2DdD

− 1

D1DcDdD
+

(m2
1 +m2

2 −m2)

D1DcD2DdD

]
(A.15b)

We split the second, third and fourth terms using partial fractions as

I∆(m1,m2,m,mc,md)

= −1

2

∫
ddpE
(2π)d

ddqE
(2π)d

[
1

D1DcD2Dd

]
− 1

2

1

(2π)8

1

(m2
2 −m2

d)

[
(mc|m2|m)− (mc|md|m)

]
−1

2

1

(2π)8

1

(m2
1 −m2

c)

[
(m1|md|m)− (mc|md|m)

]
−1

2

1

(2π)8

(m2
1 +m2

2 −m2)

(m2
1 −m2

c)(m
2
2 −m2

d)

[
(m1|m2|m)− (m1|md|m)

−(mc|m2|m) + (mc|md|m)
]

(A.16a)

= −1

2

∫
ddpE
(2π)d

ddqE
(2π)d

[
1

D1DcD2Dd

]
−1

2

1

(2π)8

1

(m2
1 −m2

c)(m
2
2 −m2

d)

[
(m2

1 +m2
2 −m2)(m1|m2|m)

+(m2 −m2
2 −m2

c)(mc|m2|m) + (m2 −m2
1 −m2

d)(m1|md|m)

+(m2
c +m2

d −m2)(mc|md|m)
]

(A.16b)

= −1

2

∫
ddpE
(2π)d

ddqE
(2π)d

[
1

D1DcD2Dd

]
− 1

2

1

(3− d)

1

(2π)8

1

(m2
1 −m2

c)(m
2
2 −m2

d)

×
[
(m2

1 +m2
2 −m2)

(
m2

1(2m1|m2|m) +m2
2(2m2|m1|m) +m2(2m|m1|m2)

)
+(m2 −m2

2 −m2
c)
(
m2
c(2mc|m2|m) +m2

2(2m2|mc|m) +m2(2m|mc|m2)
)

+(m2 −m2
1 −m2

d)
(
m2

1(2m1|md|m) +m2
d(2md|m1|m) +m2(2m|m1|md)

)
+(m2

c +m2
d −m2)

(
m2
c(2mc|md|m) +m2

d(2md|mc|m) +m2(2m|mc|md)
)]

(A.16c)

– 28 –



J
H
E
P
1
2
(
2
0
1
8
)
1
0
4

Note that I∆(m1,m2,m,mc,md) is not UV-finite. However, the combination that

enters the neutrino mass, I∆(m+
1 ,m

+
2 ,M

++
1 ,mc,md)− I∆(m+

1 ,m
+
2 ,m

++
2 ,mc,md), is.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous

magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035]

[INSPIRE].

[2] P. Minkowski, µ→ eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421.

[3] O. Sawada and A. Sugamoto, Workshop on the unified theories and the baryon number in the

universe, Natl. Lab. High Energy Phys., Tsukuba, Japan (1979).

[4] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc.

C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

[5] S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687.
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