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1 Introduction

The gauge-gravity duality [1] based on the holographic principle, establishes a relationship

between a gravitational theory in the bulk with d + 1 dimensions and a quantum field

theory on the boundary with d dimensions. This duality can deal with lots of unsolved

problems in strongly coupled field theories. One of the main achievements of this duality

is the establishment of the holographic superconductors [2–5].

More precisely, the standard BCS theory [6, 7], which can describe the properties of

low temperature superconductors, is not capable of fully explaining unconventional super-

conductors in strongly coupled regime. However, the gauge/gravity duality may help us

to handle strongly coupled systems and understand some features of the high tempera-

ture superconductors. This duality relies on the mechanism of spontaneously breaking of

the global U(1) symmetry in the dual field theory. This holographic model undergoes a

phase transition from a black hole with no hair to a black hole with scalar hair at low

temperatures [8, 9]. There exist several studies on holographic superconductors to describe

their different aspects [10–19]. One of the most interesting phenomena in superconductor

research is the second order phase transitions in Abelian-Higgs models [9]. Remarkably,

the measurements of the ratio of pseduo-gap frequency to critical temperature (ωg/Tc) in

standard holographic superconductors [2] are in agreement with the experimental measure-

ments of this ratio in the high temperature superconductors (ωg/Tc ≈ 8) [20].

It is also interesting to take an effective field theory approach and consider the existence

of the spontaneous symmetry breaking via the Stückelberg mechanism [21–23]. Such a
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model depends on a general function of the scalar field, F(ψ). One of the main features of

this phenomenological model is provision of a large group of phase transitions which are the

first order and second order phase transitions with non-mean field behavior. In particular,

the investigation of phase transitions in this model has achieved significant progress [24–

27]. Furthermore, in the conductivity case, additional resonances at non zero frequencies

for some choices of function F . One can interpret these poles as a sign of the existence of

quasiparticles in the superconductor. A similar behavior can be observed once the scalar

field mass approaches the BF bound [28]. In addition, Stückelberg mechanisem enhances

degrees of freedom (DOFs) of a given model by introducing a generic function F containing

some parameters which can be fixed by experiments. Therefore, it is interesting to apply

Stückelberg mechanism in holographic superconductors to reach an efficient model with

more DOF. The main purpose of this paper is to study the effects of this freedom in an

unbalanced model [29, 30].

An unbalanced model is based on an emerge of superconducting phase around a quan-

tum critical point [31]. The mechanism of this model is that the superconductive phase

happens where the two fermionic species contribute with unbalanced populations or un-

balanced chemical potentials. This is a relevant subject both in condensed matter systems

and QCD at finite density [32]. The unbalanced chemical potential can be produced by

magnetic impurities in a system or by an existence of external magnetic field inducing

Zeeman splitting of single-electron energy levels.

In the holographic context, adding a non-trivial charged field on the gravity side leads

to the breaking of a U(1)A “charge” symmetry which characterizes the onset of supercon-

ductivity [2, 3, 9]. The chemical potential mismatch is also a potential for a U(1)B “spin”

symmetry under which the scalar field is uncharged [33]. These two gauge fields correspond

to two conserved currents in the boundary theory which provides us with the strong-

coupling generalization of the two-current model proposed by Mott [34, 35]. Furthermore,

mixing effects of these two currents creates the spintronic features. One can, therefore, in-

vestigate the mixed spin-electric linear response by using the holographic method [29, 30].

In refs. [36, 37], Larkin, Ovchinnikov, Fulde, and Ferrel showed that, except for the nor-

mal/superconductor phase transition, a system may also experience a new state called

LOFF phase. This inhomogeneous phase with spatially modulated condensate leads to

spontaneously non-trivial spatial modulations. Since Stückelberg mechanism results in

various phase transitions, its mixture with an unbalanced model can provide us with an

appropriate theory to search for inhomogeneous superconducting phases.

In this paper, we study an unbalanced Stückelberg holographic superconductor where

the backreaction effects of matter on the geometry has been considered. In other words,

we going to investigate the behaviors of holographic Stückelberg superconductors in

refs. [21, 22] in the presence of an imbalance. Or equally, we look for how behaviors of

unbalanced systems obtained in [29, 30] are affected by applying the Stückelberg mech-

anism. This mechanism is characterized by a generic function F(ψ) and goes to the

Higgs mechanism by setting F(ψ) = ψ2. Therefore, in order to trace the effects of the

Stückelberg mechanism and imbalance on all types of conductivity, we need to construct

the conductivity matrix describing the linear response of the system to variations of the
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external sources. In most cases, results show that the imbalance makes the influences of

the Stückelberg mechanism weaker. However, diagrams illustrate complicated behaviors in

some situations.

The paper is organized as follows. In section 2, we introduce the Lagrangian for

our model. We also numerically calculate condensation and phase transition for different

values of δµ/µ (the ratio of the chemical potential mismatch to the chemical potential where

indicates the amount of the imbalance) and F(ψ). In section 3, we briefly introduce the

process of calculations for all types of the conductivity. Then, we verify their response to

changes in the form of F(ψ) function and the imbalance. Finally, conclusions are presented

in section 4.

2 The model

We consider an extension of the generalized Stückelberg model introduced in [21] in which

an extra U(1) gauge field B is added in the bulk. This gauge field is dual to spin current

in the boundary theory. Note that the scalar field ψ is uncharged under the additional

gauge field B. Therefore, the bulk action for such an unbalanced Stückelberg model in

(3+1)-dimensions is defined as:

S =
1

2κ24

∫
dx4
√
−g
(
R+

6

L2
+ Lmatter

)
, (2.1)

where

Lmatter = −1

4
F 2 − 1

4
Y 2 − V (|ψ|)− (∂ψ)2 −F(ψ)(∂p− qA)2 (2.2)

in which F = dA and Y = dB are the two field strengths associated with the two gauge

fields. The Maxwell equation makes the phase of ψ constant, so we take it to be null in

order to have real ψ. In addition, this theory is invariant under the local gauge symmetry

A → A + ∂Ω(x) and p → p + Ω(x) [21]. Therefore, we can utilize the gauge freedom to

fix p = 0. We also set L = 1 and 2κ24 = 1. Moreover, function F(ψ) can be written in a

general form as:

F(ψ) = ψ2 + Cαψ
α. (2.3)

It is obvious that our model reduces to the unbalanced model in refs. [29, 30] when F(ψ) =

ψ2. Note that we should take this function to be positive because of the positivity of the

kinetic term. The properties of the CFT at the boundary can change under the influence

of function F(ψ) [22]. In the effective field theory context, a change in the form of this

function can correspond to a sort of “non normalizable deformation” or, equivalently, a

change in the theory.

A plane-symmetric black hole, with considering backreaction effects, can be described

by the metric ansatz:

ds2 = −g(r)e−χ(r)dt2 + r2(dx2 + dy2) +
dr2

g(r)
. (2.4)

We also consider the following ansatz for the scalar and the vector fields:

ψ = ψ(r) , Aa dx
a = φ(r) dt , Ba dx

a = v(r) dt . (2.5)
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Furthermore, the temperature of such a black hole with the horizon at r = rh is defined as:

T =
g′(rh)e−χ(rh)/2

4π
. (2.6)

By varying the action with respect to the metric and the fields, we arrive at the following

equations of motions,

ψ′′ + ψ′
(
g′

g
+

2

r
− χ′

2

)
− V ′(ψ)

2g
+
eχq2φ2Ḟ(ψ)

2g2
= 0 , (2.7)

φ′′ + φ′
(

2

r
+
χ′

2

)
− 2q2F(ψ)

g
φ = 0 , (2.8)

1

2
ψ′2 +

eχ(φ′2 + v′2)

4g
+
g′

gr
+

1

r2
− 3

g
+
V (ψ)

2g
+
eχq2F(ψ)φ2

2g2
= 0 , (2.9)

χ′ + rψ′2 + r
eχq2φ2F(ψ)

g2
= 0 , (2.10)

v′′ + v′
(

2

r
+
χ′

2

)
= 0 , (2.11)

where the prime denotes derivative with respect to r and the dot denotes derivative with

respect to ψ. We also take the standard choice of mass as m2 = −2 [38, 39] and restrict

the potential to V (ψ) = m2ψ2 containing just the mass term. For our case, in which

m2 > −9/4, the Breitenlohner-Freedman (BF) bound [40] is respected.

In order to solve the set of equations (2.7)–(2.11), one needs to impose suitable bound-

ary conditions at the horizon and AdS boundary. The asymptotic behavior of the scalar

and gauge fields near the AdS boundary, r →∞, are:

ψ(r) =
ψ1

r
+
ψ2

r2
+ . . . , (2.12)

φ(r) = µ− ρ

r
+ . . . , v(r) = δµ− δρ

r
+ . . . , (2.13)

where ψ1 (ψ2) can be regarded as the source of the dual condensation operator, O1 (O2).

Since we need the U(1) symmetry to be broken spontaneously, we should turn one of the

sources off. Therefore, we set ψ1 = 0 and 〈O2〉 =
√

2 ψ2. According to the gauge/gravity

duality, the leading terms of φ(r) (v(r)) are interpreted as chemical potential (chemical

potential mismatch) and charge density (charge density mismatch) in the dual theory, re-

spectively. Working in the grand-canonical ensemble, we fix the chemical potential (chem-

ical potential mismatch) and alter the charge density (charge density mismatch). At the

AdS boundary, we also should set χ = 0 and impose the asymptotic behavior

g(r) = r2 − ε

2r
+ . . . , (2.14)

where ε is the mass of black hole interpreted as the energy density of the dual field theory [3].

The other boundary conditions are those which are imposed at the horizon, r = rh. In

this region, both g(r) and the temporal component of the gauge fields vanish. Therefore,

we have

g(rh) = φ(rh) = v(rh) = 0. (2.15)
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Figure 1. Diagram of critical temperature Tc as a function of δµ by considering (2.3) with α > 2.

α 2 2.1 2.2 2.3

Tc 0.0488 0.0145 0.0025 0.0005

Table 1. Value of critical temperature Tc as a function of α for given F(ψ) = ψα and fixed δµ = 1.

By substituting Taylor expansion of fields at horizon in (2.6) and making use of the Einstein

equation (2.9), the black hole temperature can be rewritten as

T =
rh

16π

[
e−

χh0
2
(
12− 2m2ψ2

h0

)
− e

χh0
2
(
φ2h1 + v2h1

)]
, (2.16)

where subindexes h0 and h1 indicate the coefficients of the field’s expansion at r = rh.

Both the bulk and the boundary theory have the same time coordinate and, conse-

quently, they have the same complex time continuation and temperature. We numerically

solve the equations of motion (2.7)–(2.11) by integrating from the horizon out to the infin-

ity with respect to the mentioned boundary conditions. We mostly consider the interval

0 ≤ δµ/µ ≤ 2 with a fixed chemical potential, µ = 1.

2.1 Condensation and phase transition

In this subsection, we are looking for phase transition properties through study of the

condensation of the scalar operator. Firstly, we plot the second order phase transition

diagrams in the (Tc, δµ) plane for F(ψ) = ψ2 + Cαψ
α, with α > 2 and µ = 1. From

figure 1, we find that the critical temperature is not affected by the parameters in (2.3)

since α > 2. Of course, it could be predictable since at limit ψ → 0 (near the normal

phase), the dominant term in the function F(ψ) is ψ2. While, if we assume, for instant,

F(ψ) = ψα from ref. [21], the critical temperature will be affected by α change. We check

numerically this assertion by plotting Tc with respect to α for the function F(ψ) = ψα and

various values of δµ parameter in figure 2. These curves explicitly show the Tc dependence

on α as well as δµ. However, for our model in which function (2.3) with α > 2 is considered,

the Tc is only affected by δµ/µ. We also represent some data in table 1 which indicates

the α-dependence of Tc for F(ψ) = ψα and δµ/µ = 1. In the following we consider a few

forms of function F(ψ) and investigate phase transitions.
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Figure 2. Diagram of critical temperature Tc as a function α for the chosen function F(ψ) = ψα.

From up to down we have δµ = 0, 0.5, 1, 1.5.

2.1.1 The case of F(ψ) = ψ2 + C4ψ
4

We start with the special case of F(ψ) = ψ2+C4ψ
4 to identify the order of phase transitions

in the interval 0 ≤ δµ/µ ≤ 4. Figure 3 illustrates the change of phase transition order by

increasing C4. Moreover, figure 4 demonstrates that the influence of reducing C4 on phase

transition is stronger in less unbalanced systems. The results are detailed as follows:

• Figures 3 and 4 show the change of the phase transition order caused by increasing

C4. The second order phase transitions occurs for 0 ≤ C4 . 2 and the first order ones

occurs for C4 & 5 (see figure 4). However, for the region 3 . C4 . 4 whether the

phase transition is second or first order depends on the value of δµ/µ. The curves in

figure 3 (c) and (d) illustrate that our most unbalanced systems, i.e. δµ/µ = 2 and 4,

do not undergo a first order phase transition even for C4 = 3. As a result, increasing

the imbalance in a system makes it harder to switch the order of phase transition

from second to first by increasing C4.

• We numerically check that the condensations approach zero as

〈O2〉 ∝ (Tc − T )β , (2.17)

with mean field critical exponent β = 1/2 for the second order phase transitions.

Thus, β does not depend on neither δµ/µ nor C4.

2.1.2 The case of F(ψ) = ψ2 + C3ψ
3

As clearly shown in figure 5, in this case, first order phase transition occurs for any non-

vanishing positive C3. It is important to note that parameter δµ/µ has no effect on the

order of phase transition. Since all the phase transitions are first order, relation (2.17) is

not valid here.

– 6 –



J
H
E
P
0
1
(
2
0
1
9
)
0
1
5

(a) (b)

(c) (d)

Figure 3. Condensation versus temperature normalized by Tc for chosen function F(ψ)=ψ2+C4ψ
4.

2.1.3 The case of F(ψ) = ψ2 − ψα + ψ4

We are interested in investigating the effect of α (for Cα < 0) on critical exponent β and

searching for a non-mean field behavior. We check that the relation

β = (α− 2)−1, (2.18)

from ref. [21], remains unchanged even in unbalanced systems. As indicated in figure 6, the

above relation has been checked for a few different values of δµ/µ when 3 ≤ α < 4. The

data in figure 6 (c) and (d) show that the imbalance clearly has nothing to do with the

gradient of condensation plot near the critical temperature. It is worth to mention that in

the relation (2.18), β is larger than the mean field critical exponent for 3 ≤ α < 4. Such

behavior causes the suppression of the fluctuations and the stability of the condensation as

observed in the Gross-Neveu model for massless fermions [41]. Moreover, it likely indicates

the existence of long-range interaction and chiral symmetry in the boundary theory [42, 43].

3 Conductivity

In this section, we study the conductivity properties of our model. In addition to consid-

ering mixed spin-electric linear response to the external gauge fields fluctuations, here we

– 7 –
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Value of condensation as a function of temperature for function F(ψ) = ψ2 +C4ψ
4 with

C4 = 0, 2, 3, 4, 5, 6 and δµ = 0, 0.5, 1, 1.5, 2.

add the thermal effects, namely the thermo-electric and thermo-spin linear response to the

temperature gradient. Therefore, one can define the conductivity matrix as follows:JAQ
JB

 =

σA αT γ

αT κT βT

γ βT σB

 ·
 EA

−∇TT
EB

 , (3.1)

which encodes the whole system response. The diagonal components σA, σB, and κT

stand for “electric”, “spin”, and “thermal” conductivities, respectively. Furthermore, the

off-diagonal components indicate mixed effects; i.e. γ, αT , and βT indicate the “mixed”,

– 8 –
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(a) (b)

Figure 5. The value of the condensate as a function of the temperature for function F(ψ) =

ψ2 + C3ψ
3 with C3 = 1, 3 (left plot, right plot) and δµ = 0, 0.5, 1, 1.5, 2.

(a) (b)

(c) (d)

Figure 6. The value of the condensate near the critical temperature for function F(ψ) = ψ2 −
ψα + ψ4. Each plot in the first array indicates the condensation for fixed δµ = 0.5, 1.5 (left plot,

right plot) and various values of α. The plots in the second array indicate condensation for fixed

α = 3.5, 3.25 (left plot, right plot) and different δµ = 0.5, 1, 1.5. It shows that imbalance does not

violate relation (2.18).
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“thermo-electric”, and “thermo-spin” response, respectively. The symmetry of this matrix

is a result of time-reversal invariance [3, 44, 45].

To study the transport behavior of our system, we take a small variation of the sources

and the consequent current flows. More specifically, to calculate conductivities in the

boundary field theory side, we need to turn on the perturbation of the gauge fields A

and B in the direction x with time dependent function e−iωt in the bulk. Afterwards,

by substituting Einstein equation in the two Maxwell equations on the background, and

eliminating metric fluctuations, one arrives at the two following linear differential equations:

A′′x +

(
g′

g
− χ′

2

)
A′x +

(
ω2

g2
eχ − 2q2F(ψ)

g

)
Ax −

φ′

g
eχ
(
Bxv

′ +Axφ
′) = 0 , (3.2)

B′′x +

(
g′

g
− χ′

2

)
B′x +

ω2

g2
eχBx −

v′

g
eχ
(
Bxv

′ +Axφ
′) = 0 . (3.3)

Note that the backreaction leads to coupled differential equations. This event is responsible

for appearing the mixed spin-electric transport properties in a system [29]. We can consider

near-horizon behavior ansatz

Ax(r) =
(

1− rH
r

)iaω [
1 + a1

(
1− rH

r

)
+ . . .

]
, (3.4)

Bx(r) =
(

1− rH
r

)iaω [
1 + b1

(
1− rH

r

)
+ . . .

]
, (3.5)

which also impose ingoing boundary conditions at horizon. In addition, the asymptotic

behavior of fields around boundary r →∞ is

Ax(r) = A(0)
x +

1

r
A(1)
x + . . . , (3.6)

Bx(r) = B(0)
x +

1

r
B(1)
x + . . . , (3.7)

gtx(r) = r2g
(0)
tx −

1

r
g
(1)
tx + . . . . (3.8)

Using introduced method in [29], we can finally get

σA = − i
ω

A
(1)
x

A
(0)
x

|
g
(0)
tx =B

(0)
x =0

,

γ = − i
ω

B
(1)
x

A
(0)
x

|
g
(0)
tx =B

(0)
x =0

(3.9)

= − i
ω

A
(1)
x

B
(0)
x

|
g
(0)
tx =A

(0)
x =0

,

σB = − i
ω

B
(1)
x

B
(0)
x

|
g
(0)
tx =A

(0)
x =0

.

The thermo-electric and the thermo-spin conductivities are also obtained as follows:

αT =
Q

EA
|
g
(0)
tx =B(0)=0

=
iρ

ω
− µσA − δµγ , (3.10)

βT =
Q

EB
|
g
(0)
tx =A

(0)
x =0

=
iδρ

ω
− δµσB − µγ .

– 10 –
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Finally, one can find that the non-canonical thermal conductivity is given by

κT =
i

ω
[ε+ p− 2µρ− 2δµδρ] + σAµ

2 + σBδµ
2 + 2γµδµ , (3.11)

where we have considered pressure p = ε/2, like its value in [29], in order to account for

contact terms not directly implemented by the previous computations (see Herzog’s review

in [4]). To find more details about equations (3.9), (3.10), and (3.11) see [29]. By numeri-

cally solving equations (3.2) and (3.3) and utilizing (3.9), (3.10), and (3.11) we are able to

study the effects of the model parameters and the imbalance on all the conductivity types.

3.1 Diagrams and behaviors

We restrict ourselves to the case where the temperature takes value T = 0.3Tc. As before,

we assume the chemical potential equals to one (µ = 1) over this section. Note that the

imaginary part of the conductivity has a pole at ω = 0, which translates in a delta function

at the same point in the real part, according to the Kramers-Kroning relation. Since we are

working with the fully backreacted solution, translational invariance is preserved due to the

lack of dissipation in probe approximation. Because of the Ferrell-Glover-Tinkham sum

rule, the area under the curves must be constant at different temperatures. Therefore, we

have a depletion at small frequencies to compensate the development of the delta function

at ω = 0 [3]. According to the terminology used in [29], we take the “pseudo-gap” idiom to

describe the depletion at small frequencies; since the real part of the electric conductivity

appears exponentially small with respect to T , this is not exactly zero even at T = 0.

3.1.1 Conductivity behavior with respect to the variation of δµ/µ

We first carry out analysis on the conductivities behavior in the presence of an imbalance.

We are actually looking for the validity of the results achieved in [29] for our model. We

can therefore consider a fixed form of function F(ψ) to investigate the conductivities for

various imbalances, i.e. δµ/µ = 0, 0.5, 1, 1.5.

Figure 7 illustrates the decline in the pseudo-gap of electric conductivity as a system

becomes more and more unbalanced, which is also reported in [29]. For example, figure 7

(a) demonstrates that the pseudo-gap of the system with δµ/µ = 1.5 almost vanishes.

Moreover, one can easily see that the difference between the pseudo-gap values for different

imbalances becomes negligible at a high enough value of C4. In order to clarify this point, we

depict ωg/Tc as a function of C4 for different values of δµ/µ in figure 8. One can realize that

the differences between ωg/Tc of various unbalanced systems almost vanishe for large C4s.

Figure 7 also indicates that the increasing coefficient parameter C4 may make the

coherent peak turn to a delta function (see figures 7 and 11 (a)). It should be noted that

this is followed by the change of ωg position from the frequency of the delta function to

near the frequency of the next peak. Therefore, ωg/Tc of various unbalanced systems do

not converge to the same value for large amounts of C4, but by ignoring these jumps in

pseudo-gap we can see that all values of ωg/Tc approach to the same amount.

In addition, imbalance disturbs the constant values of the spin and mixed conductiv-

ities. Note that optical spin and mixed conductivities of a balanced system are constant

– 11 –
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(a) (b)

(c) (d)

(e)

Figure 7. The optical electric conductivity in terms of ω/Tc for function F(ψ) = ψ2 + C4ψ
4 and

δµ = 0, 0.5, 1, 1.5 (solid curve, dotted curve, dashed curve, and dot-dashed curve). In each figure

we have fixed values C4 = 0, 1, 2, 3, 6, 8 for figures (a), (b), (c), (d), and (e), respectively.

values of 1 and 0, respectively. In our model, the optical spin and mixed conductivities of

unbalanced systems relaxe to these values at large ω after some fluctuations.

It is obvious from figure 9 that the optical spin conductivity becomes more and more

depleted at small frequencies by growing the imbalance in contrast to the electric conduc-

tivity [29]. This opposite behavior of the electric and spin conductivities with respect to

increasing δµ/µ is usually interpreted as a separation of the dynamics of charge and spin

degrees of freedom [29, 46].
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Figure 8. Plot of the ωg/Tc as a function of C4 for δµ = 0.1, 0.3, 0.4, 0.5 (solid curve, dotted curve,

dashed curve, dot-dashed curve). Here, we have fixed T = 0.3Tc and considered the numerical

threshold Re[σ] = 0.005 to numerically define ωg.

(a) (b)

Figure 9. The real part of spin conductivity in terms of ω/Tc for δµ = 0, 0.5, 1, 1.5 (solid curve,

dotted curve, dashed curve, dot-dashed curve) and function F(ψ) = ψ2+C4ψ
4. We have considered

the non-vanishing C4 = 3 (left) and C4 = 6 (right) in order to highlight the fluctuations.

The real part of the mixed conductivity is depicted in figure 10 (a). It shows a number

of fluctuations for unbalanced systems. One can see that not only does the increase of the

imbalance intensify these fluctuations, but it also shifts them to larger frequencies.

The real part of the thermo-electric conductivity for function F(ψ) = ψ2 + 3ψ4 are

represented in figure 10 (c). They show some fluctuations of the conductivity before con-

verging to −1 at larger frequencies. More unbalanced systems (systems in the range of

δµ/µ = 1 and 1.5) also tend to generate a positive peak in the conductivity at lower

frequencies. This behavior, therefore, kills the pseudo-gap in such systems. In the next

subsection, we also show that the increase of C4 not only does not disturb the general

behavior with imbalance but also amplifies it.

Imbalance also turns on the thermo-spin conductivity. Figure 10 (c) shows that more

unbalanced systems possess larger negative conductivities.

In the case of thermal conductivity, it worth mentioning that there are no obvious

differences between the pseudo-gaps width of unbalanced cases. Figure 10 (d) illustrates

that the only pseudo-gap which is comparably different from the others belongs to the
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Figure 10. The real part of mixed, thermo-electric, thermo-spin, and thermal conductivities

(figures (a), (b), (c), and (d)) in terms of ω/Tc for δµ = 0, 0.5, 1, 1.5 (solid curve, dotted curve,

dashed curve, dot-dashed curve) and function F(ψ) = ψ2 + 3ψ4. We have considered the non-

vanishing C4 to highlight the fluctuations.

balanced system. In fact, the conductivity pseudo-gap is wider for the balanced system.

Therefore, it seems that there is a non-monotonic behavior with imbalance of the thermal

conductivity in the small frequency region. This is similar to the behavior of unbalanced

holographic superconductors built upon Higgs mechanism in [29]. It should also be noted

that the real part of the thermal conductivity of systems with different imbalances does

not rest to a same value at large frequencies, like the thermo-spin ones.

3.1.2 Conductivity behavior with respect to the variation of C4

The aim of this part of the study is to determine how C4 affects the conductivities, for

F(ψ) = ψ2 + C4ψ
4. By increasing C4 the pseudo-gap becomes wider and the coherent

peak becomes narrower and stronger. Comparing plots of figure 11 (and figure 7), one

can also observe that parameter C4 gradually loses its control over coherent peak as a

system becomes more unbalanced. On the other hand, this parameter keeps making the

pseudo-gap wider even in highly unbalanced systems.

As mentioned, increasing coefficient parameter C4 may produce extra delta functions

in the pseudo-gap. This is the direct consequence of the fact that poles of the imaginary

part are mapped by the Kramers-Kroning relation to delta functions, just like the case of

– 14 –



J
H
E
P
0
1
(
2
0
1
9
)
0
1
5
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Figure 11. The real part of the mixed conductivity in terms of ω/Tc for function F(ψ) = ψ2+C4ψ
4

with C4 = 0, 1, 3, 6, 8 (solid curve, dotted curve, dashed curve, dot-dashed curve, and pale (green)

solid curve) and δµ = 0, 0.5, 1, 1.5 (figures (a), (b), (c), and (e)).

the delta function at ω = 0. Formation of these extra delta functions leads to create extra

resonances. We should expect such resonances since we have the “vertex” ψα(∂p − A)2

with α ≥ 3 providing inelastic scattering [47].

For the spin conductivity, in contrast to the electric case, C4 play a minor rule in

controlling conductivity fluctuations. Figure 12 indicates the optical spin conductivities

for two unbalanced systems with δµ/µ = 1, 1.5. Moreover, increasing both δµ/µ and C4

results in stronger depletion at low frequencies.

For the mixed conductivity, the increase of C4 shifts fluctuations to larger frequencies.

This happens because of the suppression of negative fluctuations at small ω and the amplifi-

cation of positive ones at larger ω, see figure 13. It means that there is a shift in fluctuations

towards positive conductivities and this is more noticeable in less unbalanced systems.

In the case of the thermo-electric conductivity, figure 14 shows that C4 has a remarkable

control over the fluctuations. In more unbalanced systems, the growth in C4 intensifies

the fluctuations not only in the negative direction but also in the positive direction (at

smaller frequencies). Although the positive fluctuations in more unbalanced systems kills

the pseudo-gap, it becomes wider by raising C4 in less unbalanced ones (e.g. systems with

δµ/µ = 0.5).
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(a) (b)

Figure 12. The real part of the spin conductivity in terms of ω/Tc for function F(ψ) = ψ2 +C4ψ
4

with C4 = 0, 1, 3, 6, 8 (solid curve, dotted curve, dashed curve, dot-dashed curve, and pale (green)

solid curve). The conductivity of systems with δµ = 1 and 1.5 are presented in the left and the

right figure respectively.

(a) (b)

(c)

Figure 13. The real part of the mixed conductivity in terms of ω/Tc for function F(ψ) = ψ2+C4ψ
4

with C4 = 0, 1, 3, 6, 8 (solid curve, dotted curve, dashed curve, dot-dashed curve, and pale (green)

solid curve) and δµ = 0.5, 1, 1.5 (figures (a), (b), and (c)).
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(c)

Figure 14. The real part of the thermo-electric conductivity in terms of ω/Tc for function F(ψ) =

ψ2 +C4ψ
4 with C4 = 0, 3, 6, 8 (solid curve, dotted curve, dashed curve, and dot-dashed curve) and

δµ = 0.5, 1, 1.5 (figures (a), (b), and (c)).

Figure 15 shows the appearance of slight thermo-spin conductivity fluctuations caused

by increasing C4 at middle frequencies. The fluctuations are also suppressed when a system

becomes more unbalanced.

As one can see from figure 16, the fluctuations of the thermal conductivity are dom-

inated by increasing C4. Furthermore, the coherent peak gets sharper and shifts towards

larger frequencies when C4 grows. But, as evident in figure 16, it seems that these behaviors

vanish in highly unbalanced systems.

3.1.3 Conductivity behavior with respect to α

By assuming the parameter Cα to be fixed, we can study how conductivities behave when

α varies. From figure 17 part (c) to (h), one can find that conductivity pseudo-gap of an

unbalanced system becomes smaller by the growth of α.

In balanced systems, the part (a) of figure 17 obviously shows that, in balanced systems,

both α and Cα control the strength of the fluctuations [22]. Although growth of the α

parameter makes the coherent peak of the optical electric conductivity sharper and higher

in balanced systems, it is not what always happens in the case of unbalanced ones. For

instance, in figures 17 (c) and (e)–(h), one can see the suppression of fluctuations when α
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(c)

Figure 15. The real part of the thermo-spin conductivity in terms of ω/Tc for function F(ψ) =

ψ2 +C4ψ
4 with C4 = 0, 3, 6, 8 (solid curve, dotted curve, dashed curve, and dot-dashed curve) and

δµ = 0.5, 1, 1.5 (figures (a), (b), and (c)).

increases. It is interesting that for δµ/µ = 0.5 quite opposite treatments in the fluctuations

can be observed when Cα = 2 and Cα = 6. Therefore, how the fluctuations are affected by

increasing α depends on the value of Cα. Observe that, for δµ/µ = 1 and 1.5, figures 17 (f)

and (h) illustrate damped fluctuations even for large Cαs. Indeed, we could not find a large

enough Cα for which α amplifies the fluctuations (it does not happen even for Cα = 14).

As an interesting result, changes in Cα and α values can approach ωg/Tc to 8 which is

similar to the standard holographic superconductor model [2]. For example, in δµ/µ = 1.5

and Cα = 8, the ωg/Tc ratio goes to about 8 by setting α = 6 (figure 17 (h)).

Figure 18 displays that for large α, there is a slight reduction of the optical spin conduc-

tivity pseudo-gap and reinforcement of the fluctuations. It means that spin conductivity

is not as sensitive as the other conductivity types to the parameter α.

However, in figure 19, the mixed conductivity plots show an increase in strength of the

fluctuations as long as α grows. The influence of α on the mixed conductivity of balanced

systems is stronger compared with unbalanced ones. As shown in figure 20, there is a

movement in the fluctuations towards smaller frequencies for large α values in the thermo-

electric conductivity. Similar to the electric case, whether the increase of α intensifies

fluctuations or not depends on the values of both Cα and the imbalance. Figure 20 (b)
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(c)

Figure 16. The real part of the thermal conductivity in terms of ω/Tc for function F(ψ) =

ψ2 +C4ψ
4 with C4 = 0, 3, 6, 8 (solid curve, dotted curve, dashed curve, and dot-dashed curve) and

δµ = 0.5, 1, 1.5 (figures (a), (b), and (c)).

shows that, for the case of δµ/µ = 0.5, the parameter Cα = 6 is large enough to has

the fluctuations amplified by increasing α. Nevertheless, for highly unbalanced systems

with δµ = 1 and 1.5, even for Cα = 8, the fluctuations are suppressed by increasing α

(figure 20 (a) and (c)–(f)).

Moreover, in the case of the optical thermo-spin conductivity, one can figure out from

figure 21 that the growth of the α parameter produces slight fluctuations. Similar to the

spin conductivity, these fluctuations do not obey an explicit pattern, but they are damped

by increasing the imbalance. Observe that we need larger Cα to well demonstrate the

conductivity fluctuations of more unbalanced systems.

The thermal and electric conductivities behave with varying the α parameter in almost

the same manner. For the balanced case, the real part of the thermal conductivity reduces

to the optical electric one. The growth of the α parameter is generally followed by a shift of

the conductivity fluctuations and the coherent peak towards lower frequencies, while their

amplification depends on the values of both the imbalance and Cα. According to figure 22

(a) and (b), there exist two opposite behaviors for two different values of Cα in the system

with δµ/µ = 0.5. Nevertheless, in more unbalanced systems, fluctuations are damped in

our range of parameter Cα (even for Cα = 10 in the system of δµ/µ = 1).
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(g) (h)

Figure 17. The optical electric conductivities in terms of ω/Tc for function F(ψ) = ψ2 + Cαψ
α

with α = 3, 4, 5, 6 (solid curve, dotted curve, dashed curve, and dot-dashed curve). Each row is

related to systems with same imbalance; we have δµ = 0, 0.5, 1, 1.5 from up to down.
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Figure 18. The optical spin conductivities in terms of ω/Tc for function F(ψ) = ψ2 +Cαψ
α with

α = 3, 4, 5, 6 (solid curve, dotted curve, dashed curve, and dot-dashed curve) and fixed Cα = 6.

The left and right figures belong to systems with δµ = 1 and 1.5.

(a) (b)

(c)

Figure 19. The real part of mixed conductivities in terms of ω/Tc for function F(ψ) = ψ2 +Cαψ
α

with α = 3, 4, 5, 6 (solid curve, dotted curve, dashed curve, and dot-dashed curve), Cα = 6, and

δµ = 0.5, 1, 1.5 (figures (a), (b), and (c)).
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Figure 20. The real part of thermo-electric conductivities in terms of ω/Tc for function F(ψ) =

ψ2+Cαψ
α with α = 3, 4, 5, 6 (solid curve, dotted curve, dashed curve, and dot-dashed curve). Each

row is related to the systems with the same imbalance; we have δµ = 0, 0.5, 1, 1.5 from up to down.

4 Conclusion

We studied the unbalanced holographic superconductor model in combination with

Stückelberg mechanism which gives us a highly flexible dual theory. This flexibility gives

us more freedom in tuning the model parameters with experiments. We showed that while

model parameter C4 provides the change of phase transition order from second to first, the

imbalance makes it harder. In other words, we need a larger C4 for a more unbalanced

system to change the order of phase transition. Such behavior also can be observed from

conductivity diagrams. In most cases, conductivities behavior of highly unbalanced systems
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Figure 21. The real part of the thermo-spin conductivities in terms of ω/Tc for function F(ψ) =

ψ2 + Cαψ
α with α = 3, 4, 5, 6 (solid curve, dotted curve, dashed curve, and dot-dashed curve).

is less influenced by the Stückelberg model parameters compared with the less unbalanced

ones. In other words, Stückelberg mechanism generally loses its effects as system becomes

more unbalanced. Moreover, we have numerically recovered the eq. (2.18) also for the case

of unbalanced system.

Additionally, we have found that imbalance can significantly divert the system’s behav-

ior with model parameters of Stückelberg mechanism. Such deviations can even reverse the

behavior in some cases. We can specifically mention the behavior of electric and thermal

conductivity with model parameter α. For example, electric conductivity fluctuations of the

relatively less unbalanced system with δµ/µ = 0.5 are intensified as C4 = 6 although they

are damped as C4 = 2. The same has been also observed in the case of thermal conductivity.

It is interesting to investigate inhomogeneous superconductors in our model. However,

we do not observe a Chandrasekhar-Clogston-like bound [48, 49] at zero temperature (for

our choice of the model parameters and function (2.3)). Therefore, the LOFF phase is not

expected to occur in our model. Nevertheless, different choices of model parameters may

allow for Chandrasekhar-Clogston-like bounds.

As a future task, we should push more towards the experimental directions and com-

parisons by making use of the method introduced in [50]. It would be interesting to take

advantage of the freedom of F to simultaneously match two phenomenological behavior,

i.e. the phase transition and conductivity.
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Figure 22. The real part of the thermal conductivity in terms of ω/Tc for the function F(ψ) =

ψ2 + Cαψ
α with α = 3, 4, 5, 6 (solid curve, dotted curve, dashed curve, and dot-dashed curve).
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